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Abstract

We consider the problem of estimating the probability that the maximum of a Gaussian
process with negative mean and indexed by positive integers reaches a high level, say b.
In great generality such a probability converges to 0 exponentially fast in a power of b.
Under mild assumptions on the marginal distributions of the process and no assumption on
the correlation structure, we develop an importance sampling procedure, called the target
bridge sampler (TBS), which takes a polynomial (in b) number of function evaluations
to achieve a small relative error. The procedure also yields samples of the underlying
process conditioned on hitting b in finite time. In addition, we apply our method to the
problem of estimating the tail of the maximum of a superposition of a large number, n, of
independent Gaussian sources. In this situation TBS achieves a prescribed relative error
with a bounded number of function evaluations as n ↗ ∞. A remarkable feature of TBS
is that it is not based on exponential changes of measure. Our numerical experiments
validate the performance indicated by our theoretical findings.
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1. Introduction

Gaussian processes constitute a popular class of models used in various settings in engineer-
ing and science, ranging from econometrics to communication networks (see Brockwell and
Davis (1991) and Mandjes (2007, Chapter 2)). One of their most convenient features is their
ability to capture complex dependence structures by means of linear associations (measured in
terms of covariances and correlations). Nevertheless, owing to such complex structures, the
probabilistic analysis of nonlinear functionals of a Gaussian process often becomes considerably
difficult. One such nonlinear functional is the corresponding all-time maximum, which arises in
communication applications and the analysis of queues with Gaussian input (see, for instance,
Addie et al. (1999)). This is the main focus of this paper.

1.1. Problem setup

In order to provide a concrete framework for further developments, let us first introduce
some notation. Let {Xk : k ∈ N} be a discrete-time Gaussian process with mean 0 and variance
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σ 2
k = var(Xk). We consider a nonnegative drift sequence {µk : k ≥ 1}. Our main interest is to

apply simulation to efficiently estimate the tail probability

α(b) = P
(

max
1≤k<∞(Xk − µk) > b

)
as b ↗ ∞. We refer to this asymptotic environment as ‘large-buffer scaling’(the terminology is
borrowed from the queueing setting; see Mandjes (2007, p. 65)). We will assume that both σ· and
µ· are regularly varying. In particular, we assume that σk = kHσ Lσ (k) and µk = kHµLµ(k),
where 0 < Hσ < Hµ < ∞ and Lσ (·) and Lµ(·) are slowly varying functions at ∞ (i.e.
Lσ (ta)/Lσ (t) → 1 as t → ∞ for all a > 0, and similarly for Lµ(·)).

These assumptions cover most cases of applied interest, including the important special case
of fractional Gaussian noise with negative linear drift. Note in particular that no restrictions are
imposed on the correlation structure nor are the increments of the underlying Gaussian process
assumed to be stationary. We assume that Hσ < Hµ because this implies that α(b) ↘ 0 as
b ↗ ∞. (In the setting of stationary increments we must implicitly assume that Hσ ≤ 1. Since
we do not impose any form of stationarity, we do not require this assumption.) In fact, the
convergence to 0 is exponentially fast in a positive power of b as b ↗ ∞ (see, for instance,
Dȩbicki (1999) or Theorem 1 below). On the other hand, if Hσ > Hµ and µk ≥ 0, we obtain

α(b) ≥ max
1≤k<∞ P(Xk − µk > b) = max

1≤k<∞

[
1 − �

(
b + µk

σk

)]
= 1

2
.

(Here and throughout the rest of the paper, we use �(x) to denote the cumulative distribution
function (CDF) of a standard Gaussian random variable evaluated at x.)

One of our goals is to develop an algorithm for estimating α(b) that takes at most a polynomial
number (in b) of function evaluations and that yields an estimate that is guaranteed to be close
in relative terms to α(b). In addition, we are interested in developing efficient (polynomial
time in b) algorithms for generating samples that are close in total variation to the sample path
(Xk : k ≤ T (b)) given that T (b) < ∞, where T (b) := inf{k ≥ 1 : Xk − µk > b}. Finally, we
are also concerned with estimation of the tail of the maximum of the superposition of a large
number, n, of independent and identically distributed (i.i.d.) Gaussian sources; this asymptotic
environment is commonly referred to as the ‘many-sources scaling’ as n ↗ ∞. In this scaling
we replace σ 2

k , µk by nσ 2
k , nµk and b by bn, and we perform our complexity analysis as a

function of n.
As a function evaluation, we consider a single addition, a multiplication, a single evaluation

of the Gaussian CDF, and the simulation of a single uniform random number. We recognize
that these procedures would typically require different numbers of floating-point operations
in a computer. However, similar models of computation are often used when dealing with
complexity of continuous problems (see, for instance, the discussion in Section 2 of Traub
(2003)). Also, any Monte Carlo method in this setting will require simulating Gaussian
random variables—a procedure that requires at least evaluating an exponential function if
the polar method is used. On the other hand, we can approximate the tail of the Gaussian
CDF with a good relative precision uniformly over the real line (no larger than 6 × 10−19

according to Cody (1969)) using rational approximations (which can be computed by evaluating
an exponential function and a ratio of two polynomials with degrees no larger than eight).
Consequently, we believe that our model of computation, while somewhat coarse, is accurate
enough to compare the efficiency of our procedure against alternative Monte Carlo methods
when available. Numerical experiments are given in Section 5.
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1.2. Asymptotics

There is a rich literature on sharp asymptotic approximations for α(b), both in discrete- and
continuous-time settings, and under large-buffer and many-sources scalings. The correlation
structure, however, is typically more restricted than what we impose. Pickands (1969) first
explored this problem in the context of stationary processes and finite time horizon. The use
of the double sum method allows us to obtain refined results in broader environments; see,
for instance, the books by Berman (1992, Chapter 9) and Piterbarg (1996, Chapter 4). The
text of Adler and Taylor (2007, Chapter 4) contains a comprehensive discussion of asymptotic
approximations for Gaussian random fields. For the important example of a queue fed by a
fractional Brownian noise, Duffield and O’Connell (1995) first obtained logarithmic asymp-
totics; Hüsler and Piterbarg (1999) later provided exact asymptotics. Recently, Dieker (2005)
extended the exact asymptotics to a more general class of Gaussian processes under four classes
of local correlation structures. In the setting of many-sources scaling, Likhanov and Mazumdar
(1999) obtained the sharp asymptotics, assuming stationary increments; see also Dȩbicki and
Mandjes (2003) for the continuous-time counterpart. Many-sources asymptotics is also covered
by Mandjes (2007).

Sharp asymptotic approximations of α(b) as b ↗ ∞ must rely on the local correlation
structure of the process and (as with any such approximation results) there is always an
error that might be either difficult to quantify or simply nonnegligible relative to a given
precision requirement. In addition, sharp asymptotics often contain constants that are difficult to
evaluate, specially in the large-buffer scaling setting where the discrete nature of our formulation
gives rise to continuity corrections that even in the case of Gaussian random walks are not
entirely straightforward to compute (see, for instance, Chang and Peres (1997)). While sharp
asymptotics are rather explicit in the discrete-time many-sources scaling context (see Likhanov
and Mazumdar (1999)), we note in our numerical experiments, shown in Section 5, that the
asymptotics might incur a substantial error (of the order of 70%), even in situations concerning
probabilities of order 10−10. In contrast, our algorithm requires about a second, or even
considerably less time, to obtain an estimate with an error of the order of 2%.

1.3. Simulation

The performance of rare-event simulation estimators for overflow probabilities is often
quantified according to efficiency notions such as strong or weak efficiency; see Asmussen
and Glynn (2007, Chapter 6) or Juneja and Shahabuddin (2006).

In our current Gaussian setting, there are relatively few simulation estimators that can be
rigorously quantified in terms of these types of efficiency notion, especially in the large-buffer
scaling setting. Huang et al. (1999) and Michna (1999) provided two algorithms for queues
with fractional Brownian noise. However, it was later proved in Dieker and Mandjes (2006) that
their estimators were not efficient. Related literature on rare-event simulation of multivariate
Gaussian random variables includes the work of Sadowsky and Bucklew (1990) and Bucklew
and Radeke (2003). The algorithms that are closest in spirit to our approach are those of Adler
et al. (2008), (2010), but an important difference is that they needed to simulate or approximate
the whole process of interest. In contrast, as we will see, our algorithm here involves simulating
only a random number of components plus an additional ‘trimming’procedure. This distinction
is particularly useful in our infinite horizon setting.

In the many-sources scaling setting, Dieker and Mandjes (2006) summarized and analyzed
several estimators, including an estimator based on a decomposition studied in Boots and
Mandjes (2002), another based on dynamic importance sampling ideas developed in Dupuis
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and Wang (2004), and a third estimator based on the work of Sadowsky and Bucklew (1990).
These three algorithms are also shown to be weakly efficient. Finally, we mention an alternative
approach in Giordano et al. (2007) called bridge Monte Carlo which shares a common feature
with our approach in that both require the construction of a Gaussian bridge. However, the
ideas are fundamentally different. First, in contrast to our method, bridge Monte Carlo is not
based on importance sampling. Second, and most importantly, bridge Monte Carlo is typically
not even weakly efficient.

It is important to point out that most provably efficient simulation procedures for first passage
time probabilities of Gaussian processes involve exponential tilting. A typical application of
exponential tilting in rare-event simulation involves two steps (see Asmussen and Glynn (2007,
Section 6.6)). First, the identification of the most likely path (or ‘optimal path’) to the rare event,
often done in a fluid scale and using large deviation techniques. The optimal path is simply a law
of large numbers (or fluid) description of the conditional distribution of the process given the
event of interest. This identification step often involves solving a calculus of variations problem
based on the associated large deviations rate function of the process of interest (see, for instance,
Norros (1999)). The second step involves tracking the optimal path using exponential tilting.
In the Gaussian setting this just means simulating sequentially the increments of the process
with the original variance and correlation structure but with the mean equal to the gradient of
the optimal path. It is well known (see the discussion at the end of Section 6.6 of Asmussen and
Glynn (2007)) that this two-step procedure is not even guaranteed to yield provably efficient
estimators. In contrast, as we will discuss, our sampler (called the ‘target bridge sampler’ or
TBS for short) avoids the problem of attempting to sequentially track the most likely path to
level b.

Since we deal both with the large-buffer scaling setting and the many-sources scaling setting
separately, we should mention that these two environments are intrinsically different. The main
difference is that the most likely time at which overflow occurs remains uniformly bounded
as n ↗ ∞ in the many-sources scaling setting but it is unbounded in b in the large-buffer
scaling environment. Given this difference, it is not surprising that our results are stronger in
the many-sources scaling setting. Let us now list our contributions in a more precise way.

1.4. Contributions

To state our contributions, and throughout the rest of the paper, we will use Landau’s notation
for the asymptotic behavior of functions. That is, given the functions f (·), g(·) : R

m+ → R for
some m ≥ 1, we write f (x) = o(g(x)) as ‖x‖∞ ↗ ∞ if f (x)/g(x) → 0 as ‖x‖∞ ↗ ∞ and
f (x) = O(g(x)) if |f (x)| ≤ cg(x) for some c < ∞ and all x ∈ R

m+.

Our main contributions are as follows.

(i) We propose a provably efficient importance sampling algorithm, not based on exponential
tilting, that allows us to circumvent the challenge of directly approximating and tracking
the most likely path to overflow under an arbitrary correlation structure. As a sanity check,
when applied to the Brownian motion in the continuous-time setting, our importance
sampling estimator achieves zero variance (see Proposition 1). This coincides with the
standard exponential tilting approach in this particular case.

(ii) In the large-buffer setting we provide a simulation estimator for α(b) with o(b1/Hµ+ξ )

relative mean squared error for any ξ > 0 (i.e. the mean squared error divided by the
square of the probability of interest is o(b1/Hµ+ξ ) as b ↗ ∞). Moreover, each replication
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of our estimator takes o(b3/Hµ+ξ ) function evaluations to be produced for any ξ > 0 (see
Theorem 2 and Proposition 2).

(iii) Also, in the large-buffer scaling context, we provide a sampler that allows us to generate
paths that are ε-close in total variation to

P∗(X1, . . . , XT (b) ∈ ·) := P(X1, . . . , XT (b) ∈ · | T (b) < ∞), (1)

with an expected number of function evaluations which is

o(b1/Hµ(b1/Hµ+ξ + log(ε−1)1/(Hµ−Hσ +ξ))3)

as max(b, ε−1) ↗ ∞ for any ξ > 0 (see Theorem 2 and Proposition 2).

(iv) In the many-sources scaling setting we provide an estimator that is strongly efficient in
the sense that the relative mean squared error remains bounded as n ↗ ∞. Moreover, our
estimator can be implemented in O(1) function evaluations as n ↗ ∞ (see Theorem 3
and Proposition 2).

1.5. Organization

The rest of the paper is organized as follows. We describe our main strategies and ideas in
Section 2. The description and technical analysis of the algorithm for the large-buffer scaling
setting is given in Section 3. The case of many-sources scaling is discussed in Section 4.
Additional computational issues are discussed in Section 5, together with examples showing
the numerical performance of our estimator against other procedures.

2. Basic strategy of target bridge sampling

As we mentioned in the introduction, our method is based on importance sampling. For a
review of the importance sampling methodology, the reader may consult the text of Asmussen
and Glynn (2007, Section 5.1). It is known that importance sampling dictates that the conditional
distribution of the process given the event of interest provides a zero-variance importance
sampling distribution for the probability of such an event (see Asmussen and Glynn (2007,
p. 128)). In our context, this means that in order to achieve zero variance, we must sample
(Xk : k ≥ 1) given the event T (b) < ∞ (see (1)). Since such a conditional distribution is not
directly accessible, the objective is to construct an alternative probability measure, say Q, that
suitably mimics the behavior of the zero-variance importance sampling distribution, thereby
inducing an estimator with reduced variance.

This intuition is typically exploited in the design of importance sampling algorithms. A stan-
dard approach in light-tailed settings (such as our current Gaussian environment) involves
constructing Q by sampling the process X· sequentially using exponential tiltings. In the
Gaussian setting this is equivalent to changing the mean of the process at each time conditional
on past observations. When the dependence is complex, attempting to track the optimal path
to overflow by a sequential mean-shifting procedure could become substantially complicated.
We now explain the ideas behind our procedure, which circumvents tracking such an optimal
path sequentially in time.

2.1. Target sampling

Gaussian distributions have special features that allow us to deal with complex dependence
in a convenient way. Among them the most useful to us is that a family of random variables
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that is jointly Gaussian remains jointly Gaussian even after conditioning on specific values of
an arbitrary subset of the family. Our construction exploits this particular feature combined
with the standard intuition about the zero-variance importance sampling distribution described
before.

We start our sampling procedure by placing a point on the ‘target set’ T , defined as

T = {(k, Xk) : k ∈ {1, 2, . . . , }, Xk − µk > b}.
This strategy is quite natural given that

T (b) < ∞ ⇐⇒ T �= ∅.

Therefore, if we sample a random point (τ, Xτ ) ∈ {0, 1, . . .} × [b, ∞) according to some
procedure and let it be an element of T , this automatically implies that T (b) < ∞. We call the
sampling of (τ, Xτ ) the ‘target sampling step’. In some sense, this step can be viewed as an
alternative to sampling T (b) directly.

The exact law that we choose to sample (τ, Xτ ) is as follows. First, we sample τ according
to the probability mass function

pτ (k) = P(Xk − µk > b)∑∞
j=1 P(Xj − µj > b)

. (2)

Using Chernoff’s bound, we obtain the following bound for the denominator:

∞∑
j=1

P(Xj − µj > b) ≤
∞∑

j=1

exp

(
− (b + µj )

2

2σ 2
j

)
.

Obviously, under our assumption that Hµ > Hσ , the last summation is finite. Thus, τ is
well defined. An important issue involves the sampling of τ , which might appear to require
knowledge of the infinite series in the numerator of (2). However, typically sampling τ can be
done efficiently via an acceptance–rejection procedure.

Second, given τ , we sample Xτ according to P(Xτ ∈ · | Xτ − µτ > b). Simulating Xτ

given that Xτ > b + µτ can be done via acceptance/rejection with proposal distribution given
by (b + µτ ) + Exp(1)σ 2

τ /(b + µτ ), where Exp(1) represents an exponential random variable
with mean 1. This acceptance–rejection procedure turns out to have an acceptance probability
which converges to 1 as b ↗ ∞, so it is quite efficient.

2.2. Bridge sampling

Assume that the target sampling step has been carried out with the output (τ, Xτ ). The
‘bridge sampling step’ proceeds simply by first simulating X0, . . . , Xτ−1 given (τ, Xτ ) under
the nominal (original) law, namely P(· | τ, Xτ ). This is easily done because of the Gaussian
property of the process. Since τ ≥ T (b), once we have the path X0, . . . , Xτ , we can compute
T (b) = min(k : 1 ≤ k ≤ τ, Xk − µk > b). The output of the ‘bridge sampling step’ is simply
(X0, . . . , XT (b)). It is important to note that the path segment XT (b)+1, . . . , Xτ is discarded.

The combination of both steps corresponds to our target bridge sampling (TBS) method.
Figure 1 illustrates a generic path generated under TBS, with b = 16, T (b) = 13, and τ = 20.
In summary, TBS suitably selects an element from the target set T which serves as an anchor
point for constructing a bridge. Next, in the bridge sampling step, T (b) is computed and we
actually discard samples beyond T (b) up to the anchor point.
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Figure 1: Illustration of a path generation under TBS.

The procedure explained above induces a likelihood associated to the sample path (X0, . . . ,

XT (b)), and a corresponding likelihood ratio between the probability measure induced by TBS
and P(· | T (b) < ∞). We now provide a precise mathematical description of the probability
measure induced by TBS, which we will denote by Q(·). We will use EQ(·) for the associated
expectation operator and varQ(·) for corresponding variances.

Clearly, T (b) = min{k ≥ 1 : Xk − µk > b} is a stopping time with respect to the filtration
Fk = σ({X1, . . . , Xk}), k ≥ 1, generated by the process (Xn : n ≥ 1). Set F = σ(

⋃
k≥1 Fk).

The stopped σ -field associated to T (b) is defined as FT (b) = σ {A ∈ F : A∩{T (b) = k} ∈ Fk}.
Because τ < ∞, clearly the importance sampling probability measure Q(·) is defined on FT (b)

in such a way that Q(T (b) < ∞) = 1. Moreover, translating in mathematical terms the
description of TBS given earlier we see that, for any Borel sets B1, . . . , Bk , we have

Q(X1 ∈ B1, . . . , Xk ∈ Bk, T (b) = k)

=
∞∑

j=1

P(X1 ∈ B1, . . . , Xk ∈ Bk, T (b) = k | Xj − µj > b)pτ (j)

=
∞∑

j=k

P(X1 ∈ B1, . . . , Xk ∈ Bk, T (b) = k | Xj − µj > b)pτ (j)

=
∞∑

j=k

P(X1 ∈ B1, . . . , Xk ∈ Bk, T (b) = k, Xj − µj > b)∑∞
n=1 P(Xn − µn > b)

= P(X1 ∈ B1, . . . , Xk ∈ Bk) 1(T (b) = k)

×
∑∞

j=k P(Xj − µj > b | X1 ∈ B1, . . . , Xk ∈ Bk)∑∞
n=1 P(Xn − µn > b)

.
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The previous equations define Q(·) throughout FT (b) and we have

1(T (b) = k)
dP

dQ
(X1, . . . , Xk) = 1(T (b) = k)

∑∞
j=1 P(Xj − µj > b)∑∞

j=k P(Xj − µj > b | X1, . . . , Xk)
.

Consequently, the importance sampling estimator for α(b) generated by Q is simply

L = dP

dQ
(X1, . . . , XT (b)) =

∑∞
j=1 P(Xj − µj > b)∑∞

j=T (b) P(.Xj − µj > b | X1, . . . , XT (b))
. (3)

Observe that

∞∑
j=T (b)

P(Xj − µj > b | X1, . . . , XT (b)) ≥ P(XT (b) − µT (b) > b) = 1.

Therefore,

L ≤
∞∑

j=1

P(Xj − µj > b), EQ L2 ≤
( ∞∑

j=1

P(Xj − µj > b)

)2

.

As a consequence, the behavior of the relative mean squared error of the estimator is upper
bounded by the ratio

∑∞
j=1 P(Xj − µj > b)/α(b), which grows graciously (polynomially

bounded in b as Theorem 1 at the end of this section indicates) and sometimes it even stays
bounded.

2.3. Exact sampling

An additional observation that is useful for the design of exact sampling procedures is that
in our case the likelihood ratio, L, is bounded and, therefore, in principle it can be used to
construct an acceptance–rejection procedure. More precisely, using our notation for P∗(·) =
P(· | T (b) < ∞) introduced in (1), we obtain

L

α(b)
= dP∗

dQ
(X1, . . . , XT (b)) ≤

∑∞
n=1 P(Xj − µj > b)

α(b)
. (4)

Therefore, we can use Q(·) as our proposal distribution, then generate a random variable U

uniformly distributed over the interval [0, 1] (independent of L) and accept if

L ≤ U

∞∑
k=1

P(Xk − µk > b).

A sample path accepted under this procedure follows the law P∗. The procedure has acceptance
ratio

∑∞
k=1 P(Xk − µk > b)/α(b), and, therefore, the acceptance probability per sample is

equal to α(b)/
∑∞

k=1 P(Xk − µk > b). As a consequence, as we will show in Theorem 1 below,
the acceptance probability under this acceptance–rejection procedure goes to 0 polynomially
as b ↗ ∞. Consequently, the expected number of proposed sample paths required to obtain a
successful realization from P∗(·) grows at most polynomially in b.
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2.4. An insightful case: Brownian motion

Here we consider the special case in which the underlying Gaussian process is Brownian
motion. We do this exercise to verify that our method is not worse than exponential tilting,
which in particular describes the optimal importance sampling distribution (in terms of variance
minimization) for computing α(b). Let X· be a standard Brownian motion under P, and set
µt = µt for t ≥ 0. It is well known that α(b) = P(maxt≥0(Xt − µt) > b) = exp(−2µb).

Now we apply the ideas behind TBS to this continuous-time setting. As a simple analogy
to the procedure we described above for the discrete Gaussian processes, we proceed by first
sampling a time τ with density fτ (·) proportional to P(X· > b). Then, given τ , we sample
the Brownian bridge (Xs − µs : 0 ≤ s ≤ t) conditional on the observed value Xτ , which
in turn has been sampled from the distribution of Xτ given that Xτ − µτ > b. Following a
simple discretization procedure we find that TBS gives a likelihood ratio for the generated path
(Xs : 0 ≤ s ≤ T (b)) equal to

L =
∫ ∞

0 P(Xs − µs > b) ds∫ ∞
T (b)

P(Xu − µt > b | XT (b)) dt
=

∫ ∞
0 P(Xs − µs > b) ds∫ ∞
0 P(Xt − µt > 0) dt

,

which has zero variance because the right-most expression is nonrandom and depends on neither
τ nor T (b). Because the sampler is unbiased, we must have L = exp(−2µb). This expression
can also be directly checked by obtaining the Laplace transform of

∫ ∞
0 P(Xs − µs > b) ds as

a function of b.
The overall outcome is that in the Brownian motion setting TBS yields the zero-variance

importance sampling distribution. In turn, as discussed at the beginning of the section, such
a distribution is equal to the conditional distribution of (Xs − µs : 0 ≤ s ≤ T (b)) given that
T (b) < ∞, which is known to be described by the process (Bs + µs : 0 ≤ s ≤ T1(b)), where
(Bs : s ≥ 0) is a standard Brownian motion and T1(b) := inf{s ≥ 0 : Bs +µs > b}. We record
this observation as a proposition.

Proposition 1. Under the probability measure Q generated by the sampling strategy described
in the current section for the Brownian motion case, it follows that the law of (Xs −µs : 0 ≤ s ≤
T (b)) is just that of (Bs + µs : 0 ≤ s ≤ T1(b)). Therefore, Q is the zero-variance importance
sampling probability measure.

It is obviously not surprising that we can obtain a good simulation estimator for α(b) in the
context of Brownian motion. Nevertheless, the fact that TBS recovers the optimal sampler in
this case is, we believe, remarkable. This is specially so given that we did not even attempt
to describe the process generated by TBS sequentially in time; yet, the typical description of
Brownian motion with negative drift conditioned on reaching level b based on exponential
tilting exploits the Markovian nature of the conditional process. It is because we steer the
system to the rare event of interest directly that our approach is applicable to any discrete-time
Gaussian process that meets our (mild) regularity conditions. In principle, our approach only
requires (i) explicit knowledge of the marginal distributions, (ii) that conditional distributions
given marginals can be sampled, and (iii) that conditional marginal probabilities can also be
computed. These features actually appear in other processes of interest beyond the Gaussian
case. For instance, Blanchet et al. (2009) adapted the ideas here to estimate loss probabilities
in a Markov-modulated M/G/s queue.
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2.5. Main result of the section

We conclude this section with a summary of the mean squared error properties behind an
estimator based on Q(·) based on the likelihood ratio (3).

Theorem 1. We have EQ L = α(b) and, for any ξ > 0,

varQ(L)

P(maxk≥1 Xk − µk > b)2 = o(b2/Hµ+2ξ ) as b → ∞.

Moreover, the acceptance ratio of the procedure described in (4) satisfies∑∞
k=1 P(Xk − µk > b)

α(b)
= o(b1/Hµ+ξ ) as b → ∞

for any ξ > 0.

We will prove this theorem at the end of the next section as it follows directly from technical
results that are required to deal with the truncation of the infinite sums appearing in the definition
of L.

3. Large-buffer scaling and time truncation

In the previous section we described the main conceptual ideas behind our importance
sampling strategy via the nonexponential change of measure Q. We noted, however, that from
a simulation standpoint, the likelihood ratio estimator L resulting from Q cannot be directly
computed because it requires the exact computation of certain infinite sums. In this section we
will study two ways to address this issue.

The first way to remedy this situation is via another randomization step as we now explain.
Given the path (X1, . . . , XT (b)) obtained by TBS, define the function

L̃(n; X1, . . . , XT (b)) = P(Xn−T (b)+1 − µn−T (b)+1 > b | X1, . . . , XT (b))

P(Xn − µn > b | X1, . . . , XT (b))
, k ≥ T (b).

Also, given (X1, . . . , XT (b)), define N with probability mass function

pN(k) = P(Xk − µk > b | X1, . . . , XT (b))∑∞
k=T (b) P(Xk − µk > b | X1, . . . , XT (b))

, k ≥ T (b).

Generating paths according to pN(·) can be easily done via acceptance/rejection. Then note
that L̃(N; X1, . . . , XT (b)) is an unbiased estimator of L given (X1, . . . , XT (b)). Indeed,

E(L̃(N; X1, . . . , XT (b)) | X1, . . . , XT (b))

=
∞∑

k=T (b)

P(Xk−T (b)+1 − µk−T (b)+1 > b | X1, . . . , XT (b))

P(Xk − µk > b | X1, . . . , XT (b))

× P(Xk − µk > b | X1, . . . , XT (b))∑∞
k=T (b) P(Xk − µk > b | X1, . . . , XT (b))

=
∑∞

j=1 P(Xj − µj > b)∑∞
j=T (b) P(Xj − µj > b | X1, . . . , XT (b))

= L.

https://doi.org/10.1239/jap/1308662639 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662639


Simulation for the maximum of Gaussian processes 477

Although this approach provides an unbiased estimator, it will introduce some variance due
to the additional randomization step.

The second way to deal with the issue of evaluating the infinite series in L is to introduce a
truncation, although this inevitably induces a bias in the estimator. This truncation technique,
used in Dieker and Mandjes (2006), is the one that we will consider in the rest of the section.
Obviously, for any time horizon t+(b), the truncated estimator

αt+(b)(b) = P
(

max
1≤k≤t+(b)

(Xk − µk) ≥ b
)

≤ α(b). (5)

Therefore, t+(b) has to be chosen sufficiently large to guarantee that α(b) ≤ αt+(b)(b)(1 + ε)

for some small ε > 0 fixed.
A crucial role in our analysis is played by a time that minimizes the decay rate of P(Xk−µk >

b). Let k∗(b) be any optimizer of such a rate of decay, in particular,

k∗(b) ∈ arg min
k∈N

g(k; b),

where g(k; b) := (b + µk)/σk . Clearly, we have

P(Xk∗(b) − µk∗(b) > b) ≤ α(b) ≤ αt+(b)(b) +
∞∑

k=t+(b)+1

P(Xk − µk > b).

In order to guarantee that the infinite sum in the previous display is small relative to the lower
bound on α(b), we need the following lemma that establishes a bound on g(k∗(b); b). The
proof is given at the end of the section.

Lemma 1. For any 0 < δ < min{(Hµ − Hσ )/2, Hσ }, there exists M(δ) ∈ N such that, for all
k ≥ M(δ),

kHµ−δ ≤ µk ≤ kHµ+δ, kHσ −δ ≤ σk ≤ kHσ +δ,

and

g(k∗(b); b) ≤ h(b)

:=

⎧⎪⎨⎪⎩
b + M(δ)Hµ+δ

M(δ)Hσ −δ
if b <

Hµ − Hσ + 2δ

Hσ − δ
M(δ)Hµ+δ,

c(δ; Hσ , Hµ)b(Hµ−Hσ +2δ)/(Hµ+δ) otherwise,

where

c(δ; Hσ , Hµ) =
(

Hσ − δ

Hµ − Hσ + 2δ

)−(Hσ−δ)/(Hµ+δ)(
1 + (Hσ − δ)2Hµ−Hσ +2δ

Hµ − Hσ + 2δ

)
is a constant independent of b.

Using h(b), it turns out, as we will explain in the proof of Theorem 2 below, that t+(b) in (5)
can be specified as

t+(b, ε) :=
⌈
λ

(
h(b) + 1

h(b)

∣∣∣∣log

(
(1 − h(b)−2)qε

2η−1λ

)∣∣∣∣)1/q⌉
, (6)

where q = (Hµ − Hσ − 2δ), η = max{1, 1/2q}, λ = 
(1 + η), and ε > 0 was introduced
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right after (5). To ease the notation, we will simply write t+(b) rather than t+(b, ε). Note that
by choosing δ sufficiently small we ensure that

t+(b) = o(b1/Hµ+ξ + log(ε−1)1/(Hµ−Hσ +2ξ)) (7)

as max(b, ε−1) ↗ ∞ for any fixed ξ > 0.
We then have the following algorithm for generating samples of an unbiased estimator for

αt+(b)(b). In the sequel, we use the notation Q0(·), EQ0(·), and varQ0(·) to respectively denote
the probability measure, expectation operator, and variance induced by the importance sampling
distribution in Algorithm 1.

Algorithm 1. 1. Set t+(b) according to (6).

2. Targeting.

• Sample τ according to the probability mass function

pτ (k) = P(Xk > b)∑t+(b)
j=1 P(Xj > b)

.

• Given τ , sample Xτ according to the law P(Xτ ≤ · | Xτ > b + µτ ).

3. Bridging. Given Xτ , sample the Gaussian bridge X1, X2, . . . , Xτ−1 | Xτ from the nominal
(original) distribution.

4. Find T (b) = min{j ≥ 1 : Xj − µj > b}.
5. Compute and output the likelihood estimator

Lt+(b) =
∑t+(b)

j=1 P(Xj − µj > b)∑t+(b)
j=T (b) P(Xj − µj > b | X1, . . . , XT (b))

.

As explained in Section 2, a companion algorithm based on acceptance/rejection can be
obtained to generate exact samples according to P(· | T (b) ≤ t+(b)), which in turn is ε-close
in total variation to P(· | T (b) < ∞). Indeed, note that, for any measurable set A ∈ FT (b), we
obtain

P(A | T (b) < ∞) ≤ P(A, T (b) ≤ t+(b))

α(b)
+ α(b) − αt+(b)(b)

α(b)

≤ P(A, T (b) ≤ t+(b))

αt+(b)(b)
+ 1 − αt+(b)(b)

α(b)

≤ P(A | T (b) ≤ t+(b)) + ε.

Also,

P(A | T (b) ≤ t+(b)) = P(A, T (b) ≤ t+(b))

αt+(b)(b)

≤ P(A, T (b) < ∞)

αt+(b)(b)

≤ P(A | T (b) < ∞) + ε.

https://doi.org/10.1239/jap/1308662639 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662639


Simulation for the maximum of Gaussian processes 479

Therefore,
sup

A∈FT (b)

|P(A | T (b) ≤ t+(b)) − P(A | T (b) < ∞)| ≤ ε.

We now state explicitly our algorithm for generating exact samples from

P((X1, . . . , XT (b)) ∈ · | T (b) ≤ t+(b)).

Algorithm 2. 1. Set t+(b) according to (6).

2. Sample X1, . . . , XT (b) and calculate its corresponding likelihood ratio Lt+(b) according to
Algorithm 1.

3. Simulate U ∼ Unif[0, 1]. If Lt+(b) ≤ U
∑t+(b)

j=1 P(Xj − µj > b), accept and output path
X1, . . . , XT (b). Otherwise, go back to step 2.

The next result summarizes the statistical properties in terms of the relative mean squared
error of the estimator Lt+(b) and the expected number of proposals required to terminate
Algorithm 2 (recall the definition of Q0(·) given immediately before Algorithm 1).

Theorem 2. The relative bias of Lt+(b) is less than ε, that is,

0 ≤ 1 − EQ0(Lt+(b))

α(b)
= 1 − αt+(b)(b)

α(b)
< ε.

Moreover, for each ξ > 0, we have

varQ0(Lt+(b))

αt+(b)(b)2 = o(b2/Hµ+2ξ )

as b ↗ ∞ and the number of proposals required to terminate Algorithm 2 is geometrically
distributed with mean o(b1/Hµ+ξ ) as b ↗ ∞.

Before we provide the proof of Lemma 1 and Theorem 2, we need the following two results.
The first result is a well-known bound on the Gaussian CDF (see Durrett (2004, p. 6)).

Lemma 2. For any positive x and the standard normal CDF �(·), we have

1√
2π

(x−1 − x−3) exp

(
−1

2
x2

)
≤ 1 − �(x) ≤ 1√

2π
x−1 exp

(
−1

2
x2

)
.

The next elementary bound is similar to Lemma 2.1 and Lemma 2.2 of Dieker and Mandjes
(2006). However, because our primary target is the large-buffer scaling setting and the estimates
in Dieker and Mandjes (2006) are derived with the case of a large number of sources in mind,
we provide a slightly different result which is an adaptation of the bounds obtained in Alzer
(1997).

Lemma 3. For any time T ≥ 1 and parameters q, C > 0, we have∫ ∞

T

exp(−Ctq) dt <
λ

qCη
exp

(
−C

(
T

λ

)q)
,

where η = max{1, 1/q} and λ = 
(1 + η) ≥ 1.
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Proof. (i) When q ≥ 1 and T ≥ 1, using a simple variable substitution,∫ ∞

T

exp(−Ctq) dt ≤ 1

qC1/q

∫ ∞

CT q
s1/q−1 exp(−s) ds

≤ T 1−q

qC

∫ ∞

CT q
exp(−s) ds

≤ 1

qC
exp(−CT q).

(ii) When 0 < q < 1, the main corollary in Alzer (1997) states that

1


(1 + 1/q)

∫ ∞

x

exp(−tq) dt < 1 −
[

1 − exp

(
−

[



(
1 + 1

q

)]−q

xq

)]1/q

.

Therefore, we have∫ ∞

T

exp(−Ctq) dt = C−1/q

∫ ∞

C1/qT

exp(−sq) ds

< C−1/qλ

[
1 −

(
1 − exp

(
−C

(
T

λ

)q))1/q]
< C−1/qλ

[
1 −

(
1 − exp(−C(T/λ)q)

q

)]
= λ

qC1/q
exp

(
−C

(
T

λ

)q)
,

where λ = 
(1 + 1/q) > 1. Combining (i) and (ii), we obtain the result.

Now we provide the proofs of Theorem 1, Lemma 1, and Theorem 2. We start with Lemma 1.

Proof of Lemma 1. Since σ· and µ· are regularly varying, the first set of inequalities are from
the well-known Potter’s bound, i.e. for all δ < (Hµ − Hσ )/2, the exists M(δ) ∈ N sufficiently
large such that, for all k ≥ M(δ),

kHµ−δ ≤ µk ≤ kHµ+δ, kHσ −δ ≤ σk ≤ kHσ +δ, g(k; b) ≤ b + kHµ+δ

kHσ −δ
=: gU(k; b).

Therefore, g(k∗(b); b) = min1≤k≤∞ g(k; b) ≤ minM(δ)≤k≤∞ gU(k; b).

Since

g′
U(t; b) = (Hµ − Hσ + 2δ)tHµ+δ − (Hσ − δ)b

tHσ −δ+1 (8)

has only one single root in R
+, gU(·; b) is unimodal on R

+. Define

t∗U(b) := arg min
t∈R

gU(t; b);

then, clearly,

min
M(δ)≤k≤∞ gU(k; b) ≤

{
gU(M(δ); b) if t∗U(b) < M(δ),

gU (t∗U(b) + 1; b) otherwise.
(9)
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Using (8), we have

t∗U(b) =
(

Hσ − δ

Hµ − Hσ + 2δ
b

)1/(Hµ+δ)

.

Therefore, when b ≥ ((Hµ − Hσ + 2δ)/(Hσ − δ))M(δ)Hµ+δ , we have t∗U(b) ≥ M(δ) ≥ 1
and

gU(t∗U(b) + 1; b) <
b

(t∗U)Hσ−δ
+ (t∗U + 1)Hµ−Hσ +2δ

<
b

(t∗U)Hσ−δ
+ (2t∗U)Hµ−Hσ +2δ

=
(

Hσ − δ

Hµ − Hσ + 2δ

)−(Hσ−δ)/(Hµ+δ)

×
(

1 + (Hσ − δ)2Hµ−Hσ +2δ

Hµ − Hσ + 2δ

)
b(Hµ−Hσ +2δ)/(Hµ+δ)

= c(δ; Hσ , Hµ)b(Hµ−Hσ +2δ)/(Hµ+δ).

Substituting this bound into (9) we obtain

g(k∗(b); b) ≤

⎧⎪⎨⎪⎩
b + M(δ)Hµ+δ

M(δ)Hσ −δ
if b <

Hµ − Hσ + 2δ

Hσ − δ
M(δ)Hµ+δ,

c(δ; Hσ , Hµ)b(Hµ−Hσ +2δ)/(Hµ+δ) otherwise.

Now we are ready to prove the two theorems. The proofs are actually very similar in nature.
Here we choose to prove Theorem 2 and structure the proof of Theorem 1 as a simple corollary
of the proof of Theorem 2.

Proof of Theorem 2. First of all, it is obvious thatLt+(b) is an unbiased estimator ofαt+(b)(b).
Therefore,

|P(maxk≥1(Xk − µk) ≥ b) − E Lt+(b)|
P(maxk≥1(Xk − µk) ≥ b)

≤ P(maxk>t+(b)(Xk − µk) ≥ b)

P(maxk≥1(Xk − µk) ≥ b)

≤
∑∞

k=t+(b)+1 P(Xk − µk ≥ b)

P(Xk∗ − µk∗ ≥ b)
.

For the numerator, applying Lemma 2, we obtain

∞∑
k=t+(b)+1

P(Xk − µk ≥ b) ≤ 1√
2π

∞∑
k=t+(b)+1

exp

(
−1

2
g(k; b)2

)/
g(k; b). (10)

Now, similar to the proof of Lemma 1, we have

gL(k; b) := bHµ−Hσ −2δ ≤ g(k; b) for any k ≥ M(δ).

Furthermore, recalling the definition of t+(b) in (1), we have

gL(t+(b); b) = t+(b)1/q > h(b) > gL(M(δ)), t+(b) > M(δ).
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Therefore, (10) can be further bounded by

1√
2πh(b)

∞∑
k=t+(b)+1

exp

(
−1

2
gL(k; b)2

)
≤ 1√

2πh(b)

∫ ∞

t+(b)

exp

(
−1

2
gL(t; b)2

)
dt. (11)

Now, applying Lemma 3 to (11), we obtain

∞∑
k=t+(b)+1

P(Xk − µk ≥ b) <
2η−1λ

Hµ − Hσ − 2δ

exp(−gL(t+(b)/λ)2/2)√
2πh(b)

.

Again, recall the definition of t+(b) in (1) and the lower bound of �(·) in Lemma 2. We have

2η−1λ

Hµ − Hσ − 2δ

exp(−gL(t+(b)/λ)2/2)√
2πh(b)

<
exp(−h(b)2/2)√

2π
(h(b)−1 − h(b)−3)ε

≤ [1 − �(h(b))]ε
≤ ε P(Xk∗ − µk∗ ≥ b).

Equivalently, ∑∞
k=t+(b)+1 P(Xk − µk ≥ b)

P(Xk∗ − µk∗ ≥ b)
≤ ε.

Now let us analyze the squared coefficient of variation of Lt+(b), namely,

varQ(Lt+(b))

P(max1≤k≤t+(b)(Xk − µk) > b)2

≤
EQ(L2

t+(b)
)

P(max1≤k≤t+(b)(Xk − µk) > b)2

=
( ∑t+(b)

k=1 P(Xk − µk ≥ b)

P(max1≤k≤t+(b)(Xk − µk) > b)

)2

E

(
1∑t+(b)

k=t∗ P(Xk ≥ b | X[0,t∗])

)2

≤
( ∑t+(b)

k=1 P(Xk − µk ≥ b)

P(max1≤k≤t+(b)(Xk − µk) > b)

)2

≤ t+(b)2

= O(b((Hµ−Hσ +2δ)/(Hµ−Hσ −2δ))(2/(Hµ+δ))).

Since we can choose any δ < min{(Hµ − Hσ )/2, Hσ }, by sending δ to 0, we obtain

varQ(Lt+(b))

P(max1≤k≤t+(b)(Xk − µk) ≥ b)2 = O(b2/Hµ+ξ )

for any ξ > 0.

Theorem 1 now follows as a simple extension of our proof of Theorem 2.

Proof of Theorem 1. First of all, it is easily seen from the construction of our algorithm that
the estimator L is unbiased, so

EQ L = α(b) = P
(

max
k≥1

(Xk − µk) ≥ b
)
.
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On the other hand, in terms of the relative mean squared error, similar to the proof of
Theorem 2, we have

varQ(L)

P(maxk≥1(Xk − µk) ≥ b)2

≤ EQ(L2)

P(maxk≥1(Xk − µk) ≥ b)2

=
( ∑∞

k=1 P(Xk − µk ≥ b)

P(maxk≥1(Xk − µk) ≥ b)

)2

E

(
1∑∞

k=k∗ P(Xk ≥ b|X[0,k∗])

)2

≤ (t+(b) + ε)2

= O(b((Hµ−Hσ +2δ)/(Hµ−Hσ −2δ))(2/(Hµ+δ)))

= O(b2/Hµ+ξ )

for any ξ > 0.

4. Many-sources scaling

In this section we consider the maximum of a Gaussian process that is obtained as a
superposition of a large number of independent Gaussian sources. It is commonly encountered
in queues with Gaussian input (see Mandjes (2007, Chapter 2)). It turns out that our method
is not only applicable to this setting, but in fact it can be shown to be strongly efficient, in
the sense that the coefficient of variation of the underlying estimator remains bounded as the
probability of interest decreases to 0.

To state the problem in mathematical terms, let us define

X̃
(n)
k =

n∑
j=1

X
(j)
k ,

where the processes (X
(j)
k : k ≥ 1), j ≥ 1, are i.i.d. copies of the process (Xk : k ≥ 1) described

in Section 3 (in particular, centered Gaussian processes with variance σ 2
k ). We are interested in

estimating

α̃(nb) = P
(

max
1≤k<∞(X̃

(n)
k − nµk) > nb

)
.

It is important to emphasize that in this section we mainly concentrate on α̃(nb) as n ↗ ∞ for
fixed b.

If we set µk = ck for some c > 0 and X
(j)
k has stationary increments, then we recover the

setting discussed in Dieker and Mandjes (2006). They applied four methods to this problem.
All of them were proved to be weakly efficient (in the sense of subexponential complexity
as n ↗ ∞, as mentioned in the introduction). In this particular setting our method, which
corresponds to applying Algorithm 1 to the process (X̃

(n)
k : k ≥ 1), gives rise to a strongly

efficient estimator. That is, the number of function evaluations required to obtain an estimate
with a given relative accuracy remains bounded as a function of n.

In order to estimate α̃(nb), we follow a scheme parallel to that of Section 3. In particular,
we define the function g̃(k; nb) as

g̃(k; nb) := nb + nµk

n1/2σk

= n1/2g(k; b).
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Because of the factor n1/2 appearing in g̃k; nb it turns out, as our next result shows, that our
selection t+(b) defined in (6) can still be used as a truncation threshold. The proof of the next
lemma is given later in this section.

Lemma 4. For any ε > 0, let t+(b) be truncation time defined in (6). Then, for any n ≥ 1, we
have

0 ≤ 1 − P(max1≤k<t+(b)(X̃
(n)
k − nµk) > nb)

P(max1≤k<∞(X̃
(n)
k − nµk) > nb)

< ε.

Remark. For the linear drift case, Dieker and Mandjes (2006) obtained a different truncation
time which also guarantees at most ε relative bias. Their bound directly exploits the fact that
the number of sources is large. As an alternative to our truncation time, we can use their bound,
which is readily available in Corollary 2.3 of Dieker and Mandjes (2006). None of these bounds
dominate the other one in every problem instance in which they are both applicable, so the reader
might simply select the minimum between them.

The previous lemma allows us to concentrate our efforts on estimating

α̃t+(b)(nb) = P
(

max
1≤k<t+(b)

(X̃
(n)
k − nµk) > nb

)
at the price of introducing a relative bias of at most ε. A detailed algorithm, completely
analogous to Algorithm 1, is now given for estimating α̃t+(b)(nb).

Algorithm 3. 1. Set t+(b) according to (6).

2. Targeting.

• Sample τ according to the probability mass function

pτ (k) = P(X̃
(n)
k − nµk > nb)∑t+(b)

k=1 P(X̃
(n)
k − nµk > b)

= P(n1/2Xk − nµk > nb)∑t+(b)
k=1 P(n1/2Xk − nµk > nb)

.

• Given τ , sample X̃
(n)
τ according to the law P(X̃

(n)
τ ≤ · | X̃

(n)
τ > b + nµτ ).

3. Bridging. Given X̃
(n)
τ , sample the Gaussian bridge X̃

(n)
1 , X̃

(n)
2 , . . . , X̃

(n)
τ−1 | X̃

(n)
τ from the

nominal (original) distribution.

4. Find T (b) = min{k : X̃
(n)
k > b + nµk}.

5. Compute the likelihood estimator

Ln =
∑t+(b)

j=1 P(X̃
(n)
j − nµj > nb)∑t+(b)

j=T (b) P(X̃
(n)
j − nµj > nb | X̃

(n)
1 , . . . , X̃

(n)
T (b))

.

We use Q1(·) to denote the probability measure corresponding to the importance sampling
strategy introduced before, and EQ1(·) and varQ1(·) to denote the corresponding expectation
and variance operators, respectively. We have the following result.

Theorem 3. The estimator Ln for the multisource Gaussian process is strongly efficient for
estimating α̃t+(b)(nb) as n ↗ ∞ (assuming that b = O(1) as n ↗ ∞). In particular, we have

varQ1(Ln)

α̃t+(b)(nb)
≤ t+(b)2.
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Proof. Just note that

EQ1(L2
n)

P(maxk≤t+(b) X̃
(n)
k − nµk ≥ nb)

≤
[ ∑t+(b)

k=0 P(X̃
(n)
k − nµ(k) ≥ nb)

maxk≤t+(b) P(X̃
(n)
k − nµ(k) ≥ nb)

]2

≤ t+(b)2.

Before providing the proof of Lemma 4 and closing the section, let us provide some words
about an important distinction between the many-sources and the large-buffer environments.
A distinction that might explain why the performance of our estimator is different when applied
to each of these settings. In the many-sources scaling setting, we can typically compute
k∗ (independent of n) such that α̃(nb) = P(X̃

(n)
k∗ − nµk∗ > nb)(1 + o(1)) as n ↗ ∞ (see

Likhanov and Mazumdar (1999)). So, asymptotically, the infinite horizon problem effectively
translates into a finite horizon problem which in fact involves only a single marginal distribution,
namely, that of k∗. This situation is not at all applicable to the large-buffer scaling setting.

We close the section with the proof of Lemma 4.

Proof of Lemma 4. Once again, the calculation boils down to

P(maxk>t+(b)

∑n
j=1[X(j)

k − µk] > nb)

P(max1≤k<∞
∑n

j=1[X(j)
k − µk] > nb)

≤
∑

k>t+(b) P(
∑n

j=1[X(j)
k − µk] > nb)

max1≤k<∞ P(
∑n

j=1[X(j)
k − µk] > nb)

.

Since

P

( n∑
j=1

[X(j)
k − µk] > nb

)
= 1 − �(

√
ng(k; b)),

we know (once again appealing to Lemma 2) that

max
1≤k<∞ P

( n∑
j=1

X
(j)
k − nµk > nb

)
≥ 1 − �(

√
nh(b))

≥ (n−1/2h(b)−1 − n−3/2h(b)−3) exp

(
−n

2
h(b)2

)
,

where h(·) is defined in Lemma 1. Similar to the argument in the proof of Theorem 2, we have

∞∑
k=t+(b)+1

P

( n∑
j=1

X
(j)
k − nµk > nb

)
<

1√
2πnh(b)

∫ ∞

t+(b)

exp

(
−n

2
gL(t)2

)
dt.

Using Lemmas 1 and 3, we obtain∫ ∞

t+(b)

exp

(
−n

2
gL(t)2

)
dt <

2η−1λ

(Hµ − Hσ − 2δ)nη
exp

(−n(t+(b)/λ)2(Hµ−Hσ −2δ)

2

)
<

2η−1λ

(Hµ − Hσ − 2δ)n
exp

(−n(t+(b)/λ)2(Hµ−Hσ −2δ)

2

)
.
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Consequently, we have

P(maxk>t+(b)

∑n
j=1 X

(j)
k − nµk > nb)

P(max1≤k<∞
∑n

j=1 X
(j)
k − nµk > nb)

<
2η−1λ

(Hµ − Hσ − 2δ)n

1√
2πnh(b)

exp(−n(t+(b)/λ)2(Hµ−Hσ −2δ)/2)

1 − �(
√

nh(b))

<
2η−1λ

Hµ − Hσ − 2δ

exp(−n|log((1 − h(b)−2)(Hµ − Hσ − 2δ)ε/2η−1λ)|)
n − h(b)−2

<
1 − h(b)−2

n − h(b)−2 ε

≤ ε.

5. Complexity analysis per replication and a numerical example

We have proved the statistical efficiency of our estimator (in terms of the relative mean
squared error). Nevertheless, the actual computational complexity also involves the number
of function evaluations required to implement a single replication of our estimator. In this
section we study the number of function evaluations and provide comparisons to other existing
algorithms in the setting where there exist alternative methods, namely, in the many-sources
scaling setting. As we mentioned in the introduction, in our discussion below a function
evaluation corresponds to a single addition, a multiplication, a comparison, the generation of a
single Gaussian random variable, and the evaluation of the Gaussian CDF.

We concentrate on Algorithm 1. The highest computational burden corresponds to steps 3
and 4 in terms of generating the sample (Xk : k ≤ τ), which involves a matrix inversion
(necessary to compute the conditional variance given the observed value Xk when τ = k).
Such an inversion procedure requires O(t+(b)3) function evaluations. Another contribution
corresponds to the calculation of our importance sampling estimator

Lt+(b) =
∑t+(b)

k=0 P(Xt > b)∑t+(b)
k=T (b) P(Xk ≥ b | XT (b))

,

where XT (b) = (X1, X2, . . . , XT (b))
�. A convenient feature is that the numerator is constant

across all replications. Therefore, we only consider the evaluation of the denominator, which
involves the following conditional Gaussian calculation:

EQ[Xk] = V T
k �−1

T (b)XT (b) = µ̃k, varQ[Xk] = var[Xk] − V T
k �−1

T (b)Vk = σ̃k.

Here
Vk = cov(Xk, XT (b)) and �T (b) = cov(XT (b), XT (b)).

These calculations take O(t+(b)3) function evaluations. We summarize our observations in
the form of a proposition.

Proposition 2. The number of function evaluations required to terminate a single replication
of Algorithm 1 is O(t+(b)3). In turn, as indicated in (7), we have

t+(b) = o(b1/Hµ+ξ + log(ε−1)1/(Hµ−Hσ +2ξ))

for each ξ > 0 as b, ε−1 ↗ ∞. Finally, since the acceptance ratio in step 3 of Algorithm 2 is
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O(t+(b)), we conclude that the expected number of function evaluations required to generate
a single replication of Algorithm 2 is O(t+(b)2).

We now test the performance of our target bridge sampler and compare it against other
existing methods in the multisource setting. We consider the four algorithms discussed in Dieker
and Mandjes (2006). The first algorithm is called single twist, which is a direct derivation of
the large deviation principle; the second algorithm is called cut-and-twist, which is developed
in Dieker and Mandjes (2006) based on a partitioning approach of Boots and Mandjes (2002);
the third algorithm is called random twist, which is an adaptation of Sadowsky and Bucklew
(1990); the fourth algorithm is called sequential twist, which is based on the ideas of Dupuis
and Wang (2004). Among them, cut-and-twist, random twist, and sequential twist were proved
to be weakly efficient under the many-sources scaling. Single-twist is shown in Dieker and
Mandjes (2006) not to be efficient generally.

Example 1. (Fractional Gaussian noise.) If we set cov(Xk, Xj ) = (k2Hσ + j2Hσ − |k −
j |2Hσ )/2 and µk = k, then we obtain fractional Gaussian noise increments with negative linear
drift.

In particular, in this numerical example, we choose the parameter as Hσ = 0.8, b = 0.3.
It is easy to see from the proofs that we can set δ = 0 and M(0) = 1. Therefore, for
b ≥ (Hµ − Hσ )/Hσ = 1

4 ,

h(b) = (2−8/5 + 23/5)b1/5,

t+(b) =
⌈

(3.5)

(
h(b) + 1

h(b)

∣∣∣∣log

(
(1 − h(b)−2)ε

5 · 23/2
(3.5)

)∣∣∣∣)5⌉
.

We implemented our Algorithm 2, which we denote by TBS in Tables 1 and 2. We follow
Dieker and Mandjes’ (2006) performance comparison criterion. That is, each algorithm is kept
running until the output confidence interval shrinks to 20% relative to the estimated value.
The estimated value, the number of simulations runs needed for each particular algorithm to
achieve the criterion, and the corresponding CPU times are reported in Table 1 and Table 2. We
also report the asymptotic approximation obtained in Likhanov and Mazumdar (1999) as LM
asymptotics. This asymptotic value corresponds to [1 − �((0.3 + 0.1 × k∗) × n1/2/(k∗)0.8)]
with k∗ = 12. The simulation runs for the first five rows were obtained using the codes of
Ton Dieker, who kindly shared them with us for these experiments. The row Benchmark was

Table 1: Simulation results for Example 2 with n = 300, b = 3, and Hσ = 0.8.

Cost of each CPU time
Algorithm replication Estimator Simulation runs (in seconds)

Naive O(b3) 6.12 × 10−4 627 101 960
Single twist O(b3) 4.84 × 10−4 3964 6.32
Cut-and-twist O(b4) 5.72 × 10−4 640 641
Random twist O(b3) 5.50 × 10−4 3315 5.13
Sequential twist O(nb3) 6.39 × 10−4 668 432
TBS O(b3) 5.85 × 10−4 27 1.27
Benchmark — 5.75 × 10−4 — —
LM asymptotics — 1.86 × 10−4 — —
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Table 2: Simulation results for Example 2 with n = 1000, b = 3, and Hσ = 0.8.

Cost of each CPU time
Algorithm replication Estimator Simulation runs (in seconds)

Naive O(b3) — — —
Single twist O(b3) 1.03 × 10−10 8132 3.62
Cut-and-twist O(b4) 1.37 × 10−10 959 61.8
Random twist O(b3) 1.38 × 10−10 3875 2.27
Sequential twist O(nb3) 1.41 × 10−10 1365 758
TBS O(b3) 1.36 × 10−10 25 0.16
Benchmark — 1.37 × 10−10 — —
LM asymptotics — 4.08 × 10−11 — —

obtained by running 1000 replications of our algorithm. All the codes were run in the same
computing environment, AMD 2218HE at 2.6 GHz.

It is seen from the simulation results that the TBS compares favorably to the rest of the
algorithms. A single replication TBS is somewhat more expensive, mostly due to the Cholesky
factorization procedure which we perform in our implementation but is avoided in the codes of
Dieker and Mandjes (2006) because they take advantage of a so-called ‘circulant embedding’
of the covariance matrix. This type of embedding exploits the stationary structure of the
underlying process. The method that we used for sampling τ in Algorithm 2 is also a naive one,
without resorting to any efficient acceptance–rejection procedure. We note however that our
method achieves a similar level of relative error with fewer than 5% as many replications as the
closest competitor. This may not be surprising given the fact that theoretically our algorithm is
strongly efficient, while the others are at most weakly efficient. It should be pointed out that in
Section 5.5 of Dieker and Mandjes (2006) it is stated that the random twist and the cut-and-twist
methods lead to bounded relative error (strongly efficient) estimators. This claim is incorrect; in
fact, the squared coefficient of variation of these estimators would typically grow at rate cn1/2

for some c ∈ (0, ∞). Finally, we note that the asymptotic approximations appear to converge
slowly, incurring an error of the order of 70%, so Monte Carlo indeed appears to be a natural
approach.
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