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The collapse of an initially spherical cavitation bubble near a free surface leads to the
formation of two jets: a downward jet into the liquid, and an upward jet penetrating the
free surface. In this study, we examine the surprising interaction of a bubble trapped in
a stable cavitating vortex ring approaching a free surface. As a result, a single fast and
tall liquid jet forms. We find that this jet is observed only above critical Froude numbers
(Fr) and Weber numbers (We) when Fr2(1.6 − 2.73/We) > 1, illustrating the importance
of inertia, gravity and surface tension in accelerating this novel jet and thereby reaching
heights several hundred times the radius of the vortex ring. Our experimental results are
supported by numerical simulations, revealing that the underlying mechanism driving the
vortex ring acceleration is the disruption of the equilibrium of high-pressure regions at the
front and rear of the vortex ring caused by the free surface. Quantitative analysis based on
the energy relationships elucidates that the velocity ratio between the maximum velocity
of the free-surface jet and the translational velocity of the vortex ring is relatively stable
yet is attenuated by surface tension when the jet is mild.
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1. Introduction

Free-surface jetting, a ubiquitous phenomenon observed in both nature and industries,
is often associated with bubbles, including bursting (Spiel 1995; Gañán Calvo 2017) or
pulsating (Chahine 1977; Kang & Cho 2019) ones. This phenomenon holds significant
implications, such as its potential to induce natural aerosols (Veron 2015; Gañán Calvo
2017), which exerts a profound influence on coastal ecosystems and global climate patterns
(Andreas et al. 1995; Lhuissier & Villermaux 2012). Additionally, there are applications
in printing techniques such as laser-induced forward transfer (Serra & Piqué 2019; Saade
et al. 2021) and needle-free injection (Tagawa et al. 2012; Kyriazis, Koukouvinis &
Gavaises 2019). The free-surface jet induced by the collapse of a transient cavitation
bubble is always accompanied by a downward jet that forms on the upper surface of the
bubble (Chahine 1977; Supponen et al. 2015). Both of the jets originate from the pressure
stagnation points that form between the bubble and the free surface (Blake, Taib & Doherty
1987; Kang & Cho 2019). The direction of the two jets is typically deterministic, always
aligned along a line and developing in opposite directions.

Different from the initially spherical cavitation bubble, the cavitating vortex ring
(Chahine & Genoux 1983) presents itself as a toroidal cavitation structure capable of
maintaining its bubble morphology steadily. This inherent stability in flow pattern paves
the way for the emergence of a highly directional free-surface jet. In this paper, we
highlight the formation of a vigorous free-surface jet resulting from the collision of a
cavitating vortex ring, as illustrated in figure 1. This phenomenon represents a notable
departure from previous reports on the vortex–free surface interaction (Yu & Tryggvason
1990; Ohring & Lugt 1991; Song, Bernal & Tryggvason 1992), where the free surface
impedes the upward motion of the vortex. The energy of the vortex ring is dispersed and
reaches extinction during this process (Lim & Nickels 1992; Song et al. 1992; Archer,
Thomas & Coleman 2009). The penetration of vortex rings, featuring maximum density
ratio 3 between the lower and upper fluids, was explored through numerical simulations in
Dahm, Scheil & Tryggvason (1989). However, experimental studies have been limited by
the strength of the vortex rings observed, and penetration of vortex rings typically occurs
when the difference of density between the upper and lower fluid layers is relatively small
(Olsthoorn & Dalziel 2017; Su, Wilhelmus & Zenit 2023). More recently, the penetration
behaviours of toroidal air bubbles at the interface of two immiscible liquids with maximum
density ratio approximately 1.3 (Moon, Song & Kim 2023) and gas–liquid interface (Bi
et al. 2024) were observed in experiments. An intriguing study by Saini et al. (2022)
demonstrated the unexpected formation of a robust vortex ring when a laser-induced
bubble collapses near a rigid wall. Their findings highlighted a remarkable case where
this vortex ring penetrated the water–air interface, generating a free-surface jet. However,
the underlying mechanisms driving this phenomenon remain poorly understood.

In this study, we generated vortex rings at scales ranging from millimetres to centimetres
using in-tube cavitation bubbles. To describe the interaction between inertia, gravity
and surface tension, we introduced two dimensionless parameters: the Froude number
(following Linden (1973), we define Fr ≡ vt/

√
gR, where vt, R and g represent the

translational velocity, radius of the vortex ring and gravitational acceleration, respectively)
and the Weber number (We ≡ ρv2

t R/σ , where ρ and σ represent the density and surface
tension coefficient of the water). This study focuses on the vortex ring’s penetration at the
free surface, and the subsequent acceleration of the free-surface jet. We provide a detailed
quantitative analysis of the maximum penetration depth and the underlying acceleration
mechanisms. Due to the high repeatability and directivity of the resulting jet, this approach
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Figure 1. Interaction between a cavitating vortex ring and the free surface. The time of each frame is indicated
in milliseconds. The black bar represents a length of 20 mm. The diameter of the cavitating vortex ring is
approximately 27.2 mm, and the translational velocity is approximately 6.56 m s−1.

holds promise for innovative methods of transporting liquid from a surface into the gas
phase.

The structure of this paper is organized as follows. In § 2, we describe the experimental
set-up and numerical model used in this study, along with a one-to-one comparison
between experimental observations and results from numerical simulations. In § 3, we
discuss the interaction patterns between the vortex ring and the free surface, explained
through a theoretical model that captures the interplay between inertia, gravity and
surface tension. The mechanism of jet formation is further elucidated through numerical
simulations. Finally, we summarize the study and present the conclusions in § 4.

2. Methodology

2.1. Experimental set-up
In the experiments, we generated a series of cavitating vortex rings at centimetre (ring
radius R ∼ O(10 mm)) and millimetre (R ∼ O(1 mm)) scales using electrical discharge
(Han et al. 2022) and laser pulse (Reese et al. 2022; Li et al. 2024) experimental systems.
Both systems feature a tube that restricts the expansion of an initially high-pressure
bubble and creates a cavitating vortex ring near its nozzle. By adjusting the energy
generating the in-tube bubble, we were able to produce vortex rings of varying strength.
Take the electrical discharge experiment system, for example. Figure 2(a) shows an
elementary diagram of the experimental apparatus, in which the generator of the vortex
ring consists of a spark-induced bubble system and a rigid tube. A 400 μF capacitor,
charged within the range 400–1500 V, serves as the power supply. Two 0.23 mm diameter
wires, connected to positive and negative electrodes, pass through holes (approximately
1 mm in diameter) located on the sidewall near the bottom of the tube. These wires
overlap and form a cross near the centre of the tube bottom. Upon discharge, the water
surrounding the overlapping point undergoes rapid heating, resulting in the initiation and
rapid expansion of a vapour bubble. In the free field without confinement, the cavitation
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bubble expands and collapses nearly spherically. At normal temperatures (∼25 ◦C) and
pressures (atmosphere pressure ∼101 300 Pa), the maximum radius of the spark-induced
bubble is approximately 6–18 mm, with the discharge voltage in the range 400–1500 V.
When the bubble is generated in a tube sealed at one end, its maximum size is slightly
reduced compared to that in an open environment due to the constraints imposed by
the tube walls. In this set-up, the expanding bubble acts as a piston pushing water out
of the tube from the nozzle, which leads to the formation of a vortex ring. When the
local pressure in the vortex core dropped below the saturated vapour pressure, a toroidal
cavitation bubble was formed. The cavitation of a vortex ring correlates with its intensity,
which can be characterized by either the circulation or the translational velocity of the
vortex ring. In our experiments, where vortex ring radii range from 5 to 15 mm, cavitation
becomes visually detectable when the translational velocity of the vortex ring (moving
away from the nozzle) exceeds approximately 1.8 m s−1. For vortex rings that do not
induce cavitation, we employed the dye-tracing method to track their motion (Maxworthy
1977; Saini et al. 2022). All the experiments were undertaken in a transparent water tank
200 mm × 200 mm × 450 mm in size, filled with degassed water at room temperature
(∼25 ◦C). The surface tension coefficient σ of water is approximately 0.07 N m−1.
Various-sized tubes (inner diameter 5–22 mm) were fixed at the base of the tank to generate
vortex rings with various radii (5–14 mm). Equipped with a NIKKOR lens (50 mm, F1.8,
Japan), a high-speed camera (Phantom V2012, USA) was positioned in front of the water
tank to record the experimental phenomena. The camera operated at 16 000–39 000 frames
per second (fps) with an exposure time setting at 1 μs. For a more detailed observation of
the local interaction between the vortex ring and the free surface, the lens was substituted
with a telephoto one (LAOWA, 100 mm, F2.8, China). Illumination for all experiments
was provided by a 1500 W diffused light source. To generate vortex rings at millimetre
scales (R ∼ O(1 mm)), we use a laser pulse to create millimetre-sized cavitation bubbles
within smaller tubes (for more details, see Appendix A).

Since the subsequent expansion of the in-tube bubble after the first cycle is significantly
weakened (Zhang et al. 2024), and the distance between the nozzle and the free surface
exceeds 10 times the radius of the vortex ring in our experiments, we treat the free
surface and the vortex-ring-generating device as an independent system (as illustrated
in Appendix B), disregarding the influence of the in-tube bubble and other tube-related
factors on the vortex ring–free surface interaction.

2.2. Numerical simulation
To explore the mechanisms behind the vortex ring–free surface interaction, we conducted
numerical simulations using the finite-volume method in the open source platform
OpenFOAM to solve the incompressible Navier–Stokes equations (Weller et al. 1998). The
computational domain consists of two phases (gas and liquid), which are incompressible
and immiscible Newtonian fluids. The interface of the two phases is captured by
the volume of fluid method. To reduce the computational effort, an axisymmetric
computational domain was constructed, as shown in figure 2(b). The simulations focused
on the specific interaction between a vortex ring and a free surface, disregarding the
formation process of the vortex ring. Therefore, we initialized the vortex ring with a
predefined function of velocity (Cheng, Lou & Luo 2010)

U0 = Γ

2πr
[1 − exp(−(r/a)2)] n, (2.1)
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Figure 2. (a) Schematic of electrical discharge experimental set-up. (b) Numerical set-up.

where Γ is the circulation of the vortex ring, r is the radial distance between the
point of interest and the vortex core centre, a is the vortex core radius, and n is the
unit vector of the angular coordinate. To make the initialized flow field more closely
resemble the three-dimensional situation, the locally induced velocity field incorporates
the contribution of the mirror image vortex of the initial vortex with respect to the axis
of symmetry. Under these conditions, the discrepancy in the translational velocity of the
vortex ring between our numerical simulations and the theoretical predictions by Saffman
(1970) was found to be approximately 1 %. After introducing the free surface, the initial
distance between the vortex ring and the free surface is set to at least three times the radius
of the vortex ring R, corresponding to the condition where the free surface remains flat in
experimental observations. In the region of vortex ring motion and jet formation, the mesh
size is approximately 1/120 of the vortex ring radius, ensuring mesh convergence.

2.3. Comparison of experiment and numerical simulations
In this subsection, we validate our numerical model by directly comparing experimental
observations with simulation results, focusing on the free-surface morphology and vortex
ring displacement. Figure 3 illustrates the interaction between the vortex ring and the free
surface in both the spark-induced bubble experiment and the corresponding simulation.
The vortex ring’s initial circulation is Γ = 0.0377 m2 s−1, with radius R = 7.33 mm
and vortex core diameter a = 1.47 mm. As the vortex ring rises, it elevates the free
surface, as shown in figures 3(a,b), leading to the formation of a free-surface jet.
At the same time, the vortex ring’s radius gradually decreases. While the overall jet
morphology predicted by the numerical simulations aligns well with the experimental
observations, some discrepancies appear in the development of jet instability between the
axisymmetric simulations and the experiments, particularly in figures 3(e, f ). Furthermore,
figure 3(g) reveals a marked acceleration in the free-surface jet, with the jet’s peak velocity
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Figure 3. Comparison of vortex ring–free surface interaction between a spark-induced bubble experiment
and the corresponding simulation (Fr = 4.66 and We = 163). (a–f ) Comparison of jet morphology: in each
frame, the left-hand side shows the simulation results, while the right-hand side presents the experimental
observations. In the simulation, the flow field is coloured by the magnitude of vorticity, |Ω| = |∂ur/∂z −
∂uz/∂r|. The time of each frame is indicated in milliseconds. In this and subsequent figures, unless otherwise
specified, time t = 0 corresponds to the initial moment of the numerical simulation. In this case, at the initial
time, the dimensionless distance between the vortex ring and the free surface is 5.5. The dashed line in each
frame represents the initial free-surface position. The black bar in (a) indicates a length of 20 mm. (g) The time
history of the vertical position of vortex ring and free surface peak. The coordinates are scaled by the initial
radius of the vortex ring. Diamond and circle markers represent the vertical positions of the vortex ring and the
free surface in the experiment, respectively, while the dashed and solid black lines show their positions in the
simulation.

reaching approximately 4.9 times the vortex ring’s translational velocity. This acceleration
phenomenon will be discussed in greater detail in subsequent sections. On the whole,
both the jet morphology (figures 3a–f ) and the displacements of the vortex ring and jet
tip (figure 3g) demonstrate remarkable consistency between the numerical simulations
and our experimental observations, indicating the reliability of our model. To further
validate the model at millimetre scales, we compared a laser-induced bubble experiment
with the numerical simulations (see Appendix A). In that case, surface tension plays a
more important role, suppressing jet instabilities, which leads to an even better agreement
between the experiments and simulations.
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3. Results and discussion

3.1. Three patterns of vortex ring–free surface interaction
Intuitively, the interaction between the vortex ring and free surface is dominated primarily
by the combined effect of inertia and gravity, encapsulated by the Froude number Fr.
Regarding its definition, two main approaches are commonly employed, based on the
circulation (Dahm et al. 1989; Moon et al. 2023) and translational velocity (Linden
1973; Wang & Feng 2022) of the vortex ring. These definitions can be conveniently
interconverted through the relationship between translational velocity and circulation.
In this study, we regard the fluid entrapped by the vortex ring primarily as a whole
translating ellipsoid, and consequently define Fr using the translational velocity of the
vortex ring.

Figures 4(a)–4(c) illustrate three distinct patterns of interaction between a vortex ring
and a free surface, manifesting as a ripple, mound or jet formation under different
Fr. At low Fr, the vortex ring–free surface interaction only causes ripples on the
surface. During this process, offspring vortex structures are generated due to baroclinicity
(figure 4a). The vortex ring experiences radial expansion, and its vorticity gradually
diminishes. As Fr increases, the rising vortex ring elevates the free surface into a water
mound. In this scenario, the hindrances posed by the water mound and secondary vortex
prevent the vortex ring from expanding radially, compelling it to hover within the mound
(figure 4b). With further increases in Fr, the vortex ring penetrates through the free surface,
generating a jet that entrains the vortex ring within it (figure 4c). Here, the jet pattern is the
scenario where the water carried by the vortex ring can break away from the free surface,
or, quantitatively, where the maximum height of the water jet exceeds the diameter of the
vortex ring. Figure 4(d) illustrates the temporal evolution of the vortex core position for
these three distinct scenarios. A vortex ring with low Fr approaching a free surface results
in radial expansion, but the vortex core does not reach the height of the free surface.
As Fr increases, the vortex rings tend to penetrate the free surface, and their radii exhibit
a decreasing trend.

3.2. Criterion of vortex ring penetration
This subsection aims to establish the criteria for jet formation resulting from vortex ring
penetration of the free surface at different length scales. At smaller scales, the influence
of surface tension, which plays a critical role, will be assessed using the Weber number.
Figure 5 summarizes our simulation and experimental results, along with data from Song
et al. (1992). As shown, for centimetre-scale vortex rings, the critical Froude number (Fr)
that distinguishes between the penetration and no-penetration regimes is approximately 1.
However, in millimetre-scale experiments, surface tension becomes a significant barrier
that vortex rings must overcome to penetrate the free surface. When the Weber number
(We) is of the order of 1, even with Fr values reaching 5 or higher, the vortex ring is still
unable to break through the free surface.

To quantitatively describe the role of gravity and surface tension during this process, we
proposed a model based on energy relationships. The translational kinetic energy of the
vortex ring is expressed as Ek,t = 2/3πρv2

t (αR)3, where α is the ratio of the equivalent
spherical radius of water transported by the vortex ring to its radius, set at 1.1 (Sullivan
et al. 2008). Setting R/a = 5, the overall kinetic energy possessed by a vortex ring is
approximately 4.8 times Ek,t, i.e. Ek,o = 4.8Ek,t (Sullivan et al. 2008). Assuming that
the water transported by the vortex ring breaks away from the free surface, it possesses
gravitational potential energy Ep = 4/3πρghb(αR)3, where hb is the centre of mass of
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Figure 4. The interaction pattern between a vortex ring and a free surface. (a–c) Three distinct interaction
patterns obtained from numerical simulation, i.e. the ripple, mound and jet patterns, respectively. The free
surface is coloured by the velocity magnitude, and the vortex is coloured by the vorticity. The time of each frame
is indicated in milliseconds. (d) The trajectory of the vortex core in (a–c). The grey dashed line represents the
initial position of the free surface. The vortex rings in the three cases have the same geometric parameters, while
different translational velocities, hence varying Froude numbers, are achieved by adjusting the circulation. The
coordinates are non-dimensionalized with the initial radius of the vortex ring.
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Figure 5. The phase diagram of the interaction mode between the vortex ring and free surface according to
Fr and We. The results originally reported by Song et al. (1992) have been reorganized in accordance with
the criteria outlined in this work. The two dashed lines stand for the contour lines 1/2 Fr2(β − 6/(αWe)) = 1
when β = 1 and 4.8, respectively, and the red solid line represents the contour line when β = 3.2.
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the water bulk carried by the vortex ring. Meanwhile, the increase in surface energy is
Es = 4πσ(αR)2. Once the kinetic energy of the vortex ring surpasses the gravitational
potential energy and the surface energy, i.e. Ek > Ep + Es, a jet is formed. By introducing
Ek = βEk,t, we establish that β = 1 corresponds to the translational kinetic energy, while
β = 4.8 corresponds to the total kinetic energy. Here, Ek,o and Ek,t serve as the upper and
lower bounds for the left-hand side of the inequality, respectively. Thus we arrive at

hb

R
<

1
2

Fr2
(

β − 6
α We

)
. (3.1)

It should be noted that due to the deformable nature of fluids, in contrast to the rigid
body assumption, the term hb/R on the left-hand side of the inequality serves more as an
indicator of penetration potential rather than a precise threshold. Ideally, a ratio hb/R =
1 signifies the vortex ring’s penetration. Here, we present the theoretical prediction of
the penetration threshold obtained from hb/R = 1 in figure 5 with the blue band. The
two dashed lines are the contour lines 1/2 Fr2(β − 6/(α We)) = 1 when β = 1 and 4.8,
respectively. Setting β = 3.2, this model aligns closely with our numerical simulations
and experimental findings across various scales. The analysis highlights that both gravity
and surface tension act as barriers to vortex ring penetration, albeit at different magnitudes
depending on the scale. For vortex rings larger than a centimetre in water, gravity poses the
primary challenge, necessitating a critical Fr of approximately 0.8. In contrast, for vortex
rings on the millimetre scale or smaller, surface tension predominantly hinders penetration,
with critical We approximately 1.7, below which the vortex ring is unable to penetrate the
free-surface.

3.3. Maximum height of the free-surface jet
Let us now delve into the penetration depth of the free surface by the vortex
ring. In a classical vortex–interface interaction problem (Linden 1973), the interface
separates upper and lower fluids, characterized by densities ρ1 and ρ2, respectively.
The equilibrium between the kinetic and potential energies of the interface deformation
yields g 	ρ H ∝ ρ2U2

in, where 	ρ = ρ2 − ρ1 is the density difference between the upper
and lower fluids, H is the maximum penetration depth (i.e. the maximum height of
the deformed interface), and Uin is the translational velocity of the vortex ring as it
surpasses the initial height of the interface. Assuming that Uin is directly proportional to
the translational velocity of the vortex ring, and disregarding the density of air (	ρ ≈ ρ2),
we arrive at

H∗ = H
R

∝ v2
t

gR
= Fr2. (3.2)

According to the finding in Linden (1973), where interaction patterns are primarily ripple
and mound, the constant of proportionality is approximately 1.72. As illustrated in figure 6,
it shows favourable agreement with our numerical simulation at low Fr, whose interaction
patterns are consistent with Linden (1973), while for vortex rings at high Fr, more efficient
energy conversion between the kinetic and potential energies makes the height of the
penetration exceed the theoretical value gradually. In our experiments, the free-surface
jet can reach heights up to 500 times the radius of the vortex ring and above.

At smaller scales, the penetration depth falls significantly below the theoretical
prediction and deviates from the scaling law H/R ∝ Fr2, as shown in figure 6. To explain
the differing trends observed between our laser-induced bubble and spark-induced bubble
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Figure 6. Maximum penetration height of the free-surface jet as a function of Fr2 for different scales. The
diamond and triangle markers represent the spark-induced bubble (Fr = 0.62–14.28) and laser-induced bubble
(Fr = 6.57–14.18) experiments. The square markers represent the simulation results, where the vortex ring
radii are 10 and 0.5 mm, corresponding to the spark-induced bubble and laser-induced bubble experiments.

experiments, we developed a new model for the maximum penetration depth of the vortex
ring during its interaction with the free surface, based on energy relationships.

Assuming that the water transported by the vortex ring breaks away from the free
surface, it gains gravitational potential energy given by Ep = 2/3πρgH(αR)3, where H
is the maximum height of the jet. If we disregard jet breakup and treat the jet as a cylinder,
which is a reasonable assumption for relatively gentle jets, then the increase in surface
energy can be approximated as Es = 2πRjHσ , where Rj =

√
4(αR)3/3H is the radius of

the cylindrical jet. We assume that when the jet reaches its maximum height, the kinetic
energy of the vortex ring is fully converted into gravitational potential energy and surface
energy, i.e. Ek = Ep + Es. Thus we arrive at

H∗ +
√

12
α3 Bo2 H∗1/2 = 4.8 Fr2, (3.3)

where Bo = ρgR2/σ . Specifically, with R = 0.5 mm, consistent with our numerical
simulation, we determined that Bo = 0.035. It is worth noting that the prefactor of the
Fr2 term reflects the full conversion of the vortex ring’s kinetic energy into the jet’s
gravitational potential energy. Consequently, this value is significantly higher than 1.72,
as this coefficient corresponds to cases where the vortex ring’s energy does not fully
convert into the jet’s gravitational potential energy, resulting in patterns of ripples and
mounds. This relationship is illustrated by the blue line in figure 6, showing excellent
agreement with both the simulation and experimental results. This concurrence implies
that at identical Fr numbers, the variations in the dimensionless jet height across
different scales can be ascribed to the effects of surface tension. The discrepancy between
theoretical predictions and both simulations and experiments may arise from inaccuracies
in predicting surface energy, due to the simplified jet morphology assumed in the
theoretical model. Additionally, when the jet reaches its maximum height, internal flow
may not be entirely stagnant, potentially introducing some deviations.

3.4. Mechanism of vortex ring acceleration
Acceleration is a distinct characteristic exhibited by vortex rings at high Fr during
their interaction with the free surface. A numerical model was employed to explore the
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Figure 7. The evolution of the vorticity and pressure fields during the interaction between a vortex ring and
a free surface (Fr = 4.66, We = 163). (a,b) The vorticity and pressure fields at t = 10 ms and t = 30 ms,
respectively, with the free surface indicated by green lines. (c) A time–space map of the dynamic pressure
along the centreline throughout the interaction, where the dashed and solid lines represent the vertical positions
of the vortex ring and the free surface, respectively. (d) The dynamic pressure along the centreline at various
time points, with the dashed line indicating the initial position of the free surface, and the arrow indicating the
translational direction of the vortex ring.

underlying mechanism behind this acceleration phenomenon. Figures 7(a) and 7(b) exhibit
the resulting contours of vorticity magnitude and pressure obtained from the numerical
simulation. Moreover, to offer a more comprehensive perspective on the acceleration
process, we present the time–space map of the dynamic pressure (Pd) along the centreline
in figure 7(c).

When a vortex ring translates through the bulk liquid, it induces high-pressure zones at
its front and rear, known as the leading pressure maximum (LPM) and trailing pressure
maximum (TPM) (Lawson & Dawson 2013; Schlueter-Kuck & Dabiri 2016), respectively.
These high-pressure zones are arranged symmetrically around the vortex ring, facilitating
a nearly uniform motion for the ring (figures 7a,c). To estimate the magnitude of the
LPM and TPM, we can treat the vortex ring and the fluid trapped within it as a rigid
sphere translating at a stable velocity in a free field, resembling a Hill sphere vortex. This
approximation is based on the flow dynamics past a sphere, where Pd ∝ v2

t . However,
when a vortex ring at high Fr encounters the free surface, the high-pressure region in front
of the vortex ring diminishes due to its proximity to the atmosphere, which exerts a lower
pressure compared to the zone behind the ring (figure 7b). Consequently, a downward
pressure gradient is created, accelerating the vortex ring. This acceleration, in turn,
amplifies the magnitude of the TPM, as illustrated in figure 7(d), further enhancing the
acceleration. In this specific case, the TPM rises quickly from 0.75 kPa to approximately
2.37 kPa before gradually decreasing. This positive feedback loop ultimately gives rise to
the formation of an accelerated jet.

3.5. Velocity ratio between the free-surface jet and vortex ring
In figure 8(a), we present the displacement data of the vortex ring and the tip of the
free-surface jet collected from three different experiments. Intuitively, the results suggest
a correlation between the translational velocity of the vortex ring beneath the free surface
and the maximum velocity of the jet tip. More comprehensively, we conducted over
one hundred spark-induced bubble experiments using tubes with different diameters
(5–20 mm) and varying discharge voltages (400–1500 V), and plot the data with blue
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Figure 8. Acceleration ratio of the free-surface jet driven by the vortex ring. (a) Displacement data of the
vortex ring (�) and the peak of the free surface (•) at different discharge voltages under tube diameter 17 mm.
(b) Translational velocity of vortex rings underwater, and the maximum peak velocity of the free surface. The
dashed blue line stands for the results after correcting for deviations between the theoretical model and the
actual kinetic energy of the jet, without taking into account the influence of surface tension.

circles in figure 8(b). It shows that the ratio between the maximum velocity of the jet and
the translational velocity of the vortex ring remains relatively stable, in the range 2.9–4.5.

We will now describe quantitatively the velocity ratio between the free-surface jet and
the vortex ring based on energy relationships. First, we documented the vertical velocity
distribution along the jet’s axis and surface at the instant when the jet attains its maximum
velocity, as obtained from our numerical simulation, illustrated in figure 9(b). The results
show that the velocity near the base of the jet is nearly zero, and the velocity distribution
follows a quadratic relationship with the jet height, expressed as v = vmh2/h2

m, where
hm is the height of the jet when its peak reaches the maximum velocity vm. Based on
mass conservation, which requires that vr2 remains constant across different horizontal
cross-sections of the jet, we derived a relationship between the jet’s radius and its vertical
position as r = rmhm/h, where rm is the radius at the jet’s peak. To prevent an infinitely
large jet volume resulting from this profile, a correction was applied to the jet radius,
expressed as r = rmhm/(h + ηhm), as shown in figure 9(a). Here, we assume that the radius
of the jet’s base cross-section equals the radius of the vortex ring, implying that η = rm/R.
With this adjustment, the volume of the jet can be calculated as

Vjet =
∫ hm

0
π

r2
mh2

m

(h + ηhm)2 dh = πr2
mhm

η(1 + η)
, (3.4)

and the kinetic energy of the jet can be expressed as

Ek,jet =
∫ hm

0

πρv2
mr2

m

2h2
m

h4

(h + ηhm)2 dh = πρv2
mr2

mhm

2

∫ 1

0

h∗4

(h∗ + η)2 dh∗, (3.5)

with h∗ = h/hm. Equating (3.4) to the volume of the jet obtained from the numerical
simulation and experimental data, we approximate η to be approximately 0.33 here.
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Figure 9. Validation and comparison of the models at the length scale of the spark-induced bubble experiment
(R = 7.33 mm). (a) Comparison of jet profiles in the numerical simulation and present model. (b) Velocity
distribution along the interface and centreline of the jet compared with that obtained using both the linear and
present models. (c) Kinetic energy per unit length ek along the height of the jet. The light and dark red lines
represent the kinetic distribution calculated based on the interface and centreline velocity presented in (b). The
dashed line represents the result obtained from a linear velocity distribution and cylindrical jet profile model,
and the solid black line corresponds to the present model.

The kinetic energy of a vortex ring can be expressed as (Sullivan et al. 2008)

Ek,vortex = 1
2

ρΓ 2R
(

ln
8R
a

− 2.04
)

, (3.6)

where Γ is the vortex ring circulation. Substituting the translational velocity relation of a
vortex ring (Sullivan et al. 2008) vt = (ln(8R/a) − 0.558)Γ/(4πR) into (3.6) leads to

Ek,vortex = 8ρ

(
πvt

Λ − 0.558

)2

R3(Λ − 2.04), (3.7)

where Λ = ln(8R/a). Assuming that the maximum velocity of the free-surface jet marks
when the energy of the vortex ring bubble is entirely converted into the kinetic energy of
the free-surface jet, and the dominant velocity of the jet is vertically upwards, we equate
the kinetic energy of the jet Ek,jet to that of the vortex Ek,vortex, thus arriving at

vm

vt
= 4

√
πR3(Λ − 2.04)

λ1(Λ − 0.558)2rm2hm
, (3.8)

where λ1 = ∫ 1
0 (h∗4/(h∗ + η)2) dh∗ ≈ 0.16.

Considering the volume of the jet from (3.4), (3.8) can be reformulated as

vm

vt
= 4

√
π2(Λ − 2.04)

λ1(Λ − 0.558)2η(1 + η)

(
R3

Vjet

)
. (3.9)

The term R3/Vjet in (3.9) can be handled through the relationship between the volume of
the water entrapped by the vortex ring and the jet volume. The volume of entrapped water,
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which is spheroid in shape, can be calculated as Vvortex = 4
3πR3

vortexγ , where Rvortex is the
length of the long axis of the water entrapped by a vortex ring, and γ represents the ratio of
semi-minor to semi-major axes. Therefore, the following relation is found (Sullivan et al.
2008):

R
Rvortex

=
[
γ (1 + k)

Λ − 0.558
3π

]1/3

, (3.10)

where we define k as the coefficient of added mass, which is approximately 0.67 (§ 80
in Loitsyanskii 1966). From our numerical simulation across Fr = 4 ∼ 14, we found that
the volume of the jet is larger than the volume of the vortex ring, with the relation Vjet =
λ2Vvortex, for λ2 ≈ 1.6. Finally, (3.9) takes the form

vm

vt
= 2

√
(Λ − 2.04)(1 + k)

λ1λ2η(1 + η)(Λ − 0.558)
. (3.11)

Equation (3.11) reveals a weak correlation between the velocity ratio and the slenderness
ratio (ε = R/a) of the vortex tube: specifically, the ratio increases by approximately 7%
when ε doubles from 5 to 10. Setting ε = 5, we achieve a ratio 5.6, which exhibits
a clear deviation from our experimental results. This could be explained mainly by
the fact that this model underestimated the kinetic energy of the jet by 20 %–30 %, as
illustrated in figure 9, which inflates the predicted velocity ratio beyond its actual value.
Specifically, in this case, this model predicts kinetic energy approximately 5.1 × 10−3 J for
the jet, while the kinetic energy in the numerical simulation is approximately 6.7 × 10−3 J,
resulting in an error approximately 24 %. Taking this discrepancy into consideration, the
theoretically predicted velocity ratio drops to 4.9, as shown by the blue dashed line in
figure 8(b). Although surface tension has a minimal effect on the free-surface jet at the
centimetre scale under intense interaction conditions, an increase in surface energy still
influences energy distribution when the vortex ring is mild (with translational velocity
vt < 1 m s−1). Considering the increase of surface energy, the energy relationship then
becomes Ek,vortex = Ek,jet + Es,jet. In the context of a jet profile described by a quadratic
function, the increase in surface energy at its maximum velocity can be estimated as

Es,jet =
∫ hm

0
2πrσ dh =

∫ hm

0
2π

rmhm

h + ηhm
σ dh = 2πRhmση ln

1 + η

η
, (3.12)

which leads (3.11) to become

vm =
√
λ2v2

t − 4σ

λ1ηρR
ln

1 + η

η
. (3.13)

Here, λ represents the velocity ratio when surface tension is disregarded, with value 4.9 as
discussed above, and R = 5 mm. We plot the result of (3.13) in figure 8(b) with a blue solid
line, showing improved alignment with experimental findings at lower velocities (vt <

1 m s−1).
Despite these considerations, this model still shows considerable discrepancies from

experimental data when the vortex ring’s translational velocity is high. We deem that this
can be attributed mainly to the following reasons. First, in experiments, the emergence
of instabilities in three-dimensional scenarios poses a challenge to the jet in achieving
the high velocity ratios predicted theoretically. In situations with high Fr, the jet is more
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Figure 10. Validation and comparison of the models at space scale of the laser-induced bubble experiment
(R = 0.54 mm). (a) Comparison of jet profiles in the numerical simulation and present model. (b) Velocity
distribution along the interface and centreline of the jet compared with that obtained using both the linear and
present models. (c) Kinetic energy per unit length ek along the height of the jet. The light and dark red lines
represent the kinetic distribution calculated based on the interface and centreline velocity presented in (b). The
dashed line represents the result obtained from linear velocity distribution and cylindrical jet profile model, and
the solid black line corresponds to the present model.

violent and intense, leading to pronounced fragmentation. This not only disrupts the
acceleration mechanism driven by the TPM, but also induces radial velocity components
that hinder the axial acceleration of the jet. In milder jet conditions (as depicted in figure 3),
the velocity ratio can reach approximately 4.5 in experiments and 4.8 in numerical
simulations, demonstrating reasonable alignment with theoretical prediction despite minor
deviations. Additionally, this model overlooks the increase in gravitational potential energy
during jet formation, which could introduce minor inaccuracies if the Froude number is
less than 1.

At smaller spatial scales, the jet will exhibit a more stable morphology. In such
scenarios, it can be expected that a better alignment between the theoretical framework and
experimental results will be achieved. Notably, in our laser-induced bubble experiment,
the vortex ring typically spends over 3 ms below the free surface, causing the vortex core
radius to exceed a ∼ √

4νt ≈ 0.126 mm (Saffman 1970; Sullivan et al. 2008; Das, Bansal
& Manghnani 2017). Consequently, the slenderness ratio ε = R/a drops to 4 or below.
For example, in the experiment illustrated in figure 9, ε is approximately 3. This will
significantly modify the velocity distribution within the jet, as depicted in figure 10. To
account for this, we modelled the jet as a cylinder with a radius of rj, obtaining a kinetic
energy distribution that closely matched the results from numerical simulations, as shown
in figure 10. Specifically, the model predicts kinetic energy approximately 6.3 × 10−6 J for
the jet, while the kinetic energy in the numerical simulation is approximately 5.7 × 10−6 J,
resulting in an error approximately 10 %. Therefore, the total kinetic energy of the jet can
be expressed as

Ek,jet =
∫ hm

0

πρv2
mr2

j h4

2h4
m

dh =
πρv2

mr2
j hm

10
. (3.14)
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In this context, the velocity ratio can be expressed in the form

vm

vt
= 2

√
5(Λ − 2.04)(1 + k)
λ2(Λ − 0.558)

. (3.15)

Setting λ2 = 1.6, we find vm/vt ≈ 3.1. Considering the influence of surface tension on
millimetre-scale vortex rings, as the surface energy increases with Es,jet = 2πhmrjσ , (3.15)
transforms into the form

vm =
√
λ2v2

t − 20σ

rjρ
, (3.16)

where λ represents the right-hand side of (3.15), equal to 3.1 here. The radius of the jet is
approximately 0.3 mm. As shown in figure 8, the theoretical prediction agrees well with
the numerical simulation and experimental data. It turns out that our theoretical model is
more suitable for describing the laser-induced bubble experiments, where the instability
of the jet is largely suppressed by surface tension. This model not only suggests that the
process of jet acceleration involves the conversion of kinetic energy from the vortex ring
to the jet, but also underscores the significance of the surface energy of the jet during this
process, particularly in scenarios involving small-scale vortex rings.

4. Summary and conclusions

This study investigated the interaction between a cavitating vortex ring and a free surface
through experimental, numerical and theoretical approaches. Our findings reveal a unique
interaction pattern: when the upward translating vortex ring approaches the free surface, it
contracts in radius and undergoes significant vertical acceleration due to the asymmetric
pressure field above and below the ring. This results in a highly energetic interface jet
capable of propelling water to heights hundreds of times the vortex ring radius. The roles
of inertia, gravity and surface tension in shaping the vortex ring–free surface interaction
were examined thoroughly. The main conclusions are drawn as follows.

The interaction between a vortex ring and a free surface is highly dependent on the
Froude number (Fr) and Weber number (We), and it can be categorized into three
distinct patterns based on the evolution of free-surface morphology: ripple, mound and
jet. Successful penetration of the free surface, resulting in the formation of an interface
jet, requires overcoming the combined effects of gravity and surface tension, with the
relative influence of each varying across different length scales. We established criteria
for vortex ring penetration through the free surface as Fr2 (1.6 − 3/(α We)) > 1, where α

is the ratio of the equivalent spherical radius of water transported by the vortex ring to its
radius, equal to 1.1 in this work.

In experiments at the centimetre scale, surface tension has a minor influence. Here, the
maximum height of the free-surface jet, resulting from the impact of vortex rings at lower
Fr (�1), follows the scaling law H∗ ∝ Fr2. As Fr increases, however, the maximum jet
height diverges from this relationship, shifting towards higher values. For millimetre-scale
experiments, surface tension plays a significant role, causing a noticeable reduction in
maximum jet height at the same Fr. This behaviour can be modelled by the equation
H∗ +

√
12/(α3Bo2) H∗1/2 = 4.8 Fr2 where Bo = ρgR2/σ is the Bond number.

Once a centimetre-scale vortex ring penetrates the free surface, we observed that
the ratio of the maximum jet velocity to the translational velocity of the vortex
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ring remains relatively stable. To uncover the mechanism behind this, we developed
a theoretical model to predict this velocity ratio based on energy relationships. Our
model slightly overestimates the velocity ratio, likely due to the onset of instabilities
in three-dimensional experimental conditions. For laser-induced vortex rings at the
millimetre scale, the influence of surface tension not only reduces this velocity ratio but
also suppresses instability formation at the jet surface, resulting in improved alignment
between our theoretical predictions and experimental observations. Future studies utilizing
laser-induced bubble experiments under depressurized conditions are anticipated to
effectively bridge the gap between the large Weber number regime and the regimes where
surface tension plays a significant role in jet dynamics.

We anticipate that these findings will shed new light on vortex ring dynamics and open
up possibilities for efficient energy and material transport within liquid environments and
from liquids into a gas phase, which has implications for various applications, including
fluid mixing, bioprinting and aerosol generation.
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Appendix A. Laser-induced bubble experiment

Figure 11(a) shows the experimental set-up used for the laser-induced bubble experiment.
A millimetre-scale cavitation bubble was generated by focusing a frequency-doubled
Nd:YAG laser (Nimma-900, with pulse duration 8 ns, wavelength 532 nm, and pulse
energy ranging from 45 to 70 mJ) into deionized water (DI water, Huake, China) at
room temperature (approximately 25 ◦C). To minimize refraction effects and enhance laser
focusing, a 0.3 mm thick sapphire glass window was embedded in a 33 mm diameter
aperture on the bottom wall of a 100 mm × 100 mm × 100 mm tank. A transparent acrylic
tube, of inner diameter 1 mm and wall thickness 0.5 mm, was mounted on a holder. The
pulsed laser beam was focused through the sapphire glass window and transparent holder
using a microscope objective lens (M Plan Apo L 10×, numerical aperture NA = 0.28),
resulting in a concentrated laser point within the tube. At the focal point, the energy
levels exceeded the liquid’s breakdown threshold, initiating a transient process known as
avalanche ionization. Consequently, this resulted in the generation of a shock wave and
the formation of a high-pressure plasma cavity. As the shock wave propagated, a cluster
of cavitation bubbles formed inside the tube. Along with the laser-induced bubble, these
bubbles collectively expelled water from the tube, generating a vortex ring at the nozzle.
For consistent background illumination, we used a continuous 300 W LED light source
(LINGXU, China), diffused through matte glass to ensure even lighting. A high-speed
camera (Phantom V2012, USA), fitted with a macro lens (LAOWA, 100 mm, F2.8, China),
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Figure 11. Experimental set-up for the laser-induced bubble and a typical observation. (a) Schematic of the
laser bubble experimental set-up. (b) Millimetre-scale formation of the free-surface jet. The black bar in the
first frame indicates length 5 mm.
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Figure 12. Comparison of millimetre-scale vortex ring–free surface interaction between experiment and
simulation (Fr = 25.65, We = 26). (a–f ) Jet morphology comparison. The left-hand half of each frame shows
the simulation results, colour-coded by vorticity magnitude, while the right-hand half shows the corresponding
experimental results. The time for each frame is given in milliseconds. The black bar in (a) represents length
1 mm. (g) Time–space map of dynamic pressure along the centreline during the vortex ring–free surface
interaction. The vertical displacement is scaled by the initial radius of the vortex ring. Diamond and circle
markers indicate the vertical positions of the vortex ring and free surface in the experiment, respectively, while
dashed and solid black lines represent their positions in the simulation.

was synchronized with the laser to capture the transient evolution of the laser bubble
and the resulting jet formation. The high-speed camera captured the process at resolution
256 × 800 pixels, recording at 50 000 fps with exposure time 20 μs.
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Figure 13. Three jet regimes at different distances between the tube nozzle and the free surface. The black
bars represent length 10 mm, with the inner radius of the tube nozzle being 10 mm. The time in each frame is
indicated in milliseconds. Time t = 0 represents the moment when the in-tube bubble is generated. (a) Single
jet regime, δ = 7.5. (b) Jointed jet regime, δ = 1.34. (c) Umbrella jet regime, δ = 0.

Figure 11(b) shows key moments from the laser bubble experiment and the subsequent
development of the free-surface jet. After the laser was triggered, a shock wave and
cavitation bubble were generated. The combined action of the laser-induced bubble and
secondary cavitation bubbles expelled water through the tube nozzle. Flow separation near
the nozzle resulted in the formation of a vortex ring, while the low pressure at the vortex
core caused cavitation. The first cycle of the laser-induced bubble lasted approximately
0.48 ms. After approximately ten bubble cycles, the vortex ring reached the free surface,
initiating the formation of a jet. Surface tension contributed to a more regular shape and
a smoother surface for the jet, distinguishing it from the free-surface jets generated by
spark-induced bubbles.

As discussed in § 2.3, we also compared the laser-induced bubble experiment with a
numerical simulation at the millimetre scale. Here, the vortex ring’s initial circulation is
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Figure 14. Characteristics of vortex rings generated by tubes with varying wall thickness. (a) Variation of
vortex ring radius as a function of in-tube bubble length L. (b) Variation of vortex ring translational velocity as
a function of in-tube bubble length L.

Γ = 0.00328 m2 s−1, with radius R ≈ 0.54 mm and vortex core diameter a ≈ 0.18 mm.
In the laser bubble experiment, surface tension helps to suppress the development of
instabilities on the jet surface, leading to improved agreement between the numerical
simulation and experimental results, as shown in figure 12. In the experiment, the velocity
ratio vm/vt is approximately 3.0, which closely matches the numerical simulation value of
approximately 3.1. This further validates the numerical model, as well as the velocity and
energy distributions within the jet derived in the theoretical model.

Appendix B. Effect of nozzle-to-free-surface distance

We conducted a series of experiments controlling the distance between the nozzle and
the free surface. During the interaction between the in-tube bubble system and the free
surface, we identified three distinct jet regimes: single jet, jointed jet and umbrella-shaped
jet. These regimes are characterized by the dimensionless distance parameter (δ = d/Rn,
where d is the distance between the nozzle and the free surface, and Rn is the nozzle
radius), as illustrated in figure 13.

When the nozzle is far from the free surface, the interaction is characterized by a solitary
jet, driven by a single isolated primary vortex ring (figure 13a). As the nozzle moves
closer to the free surface, secondary vortices trailing behind the primary vortex begin to
interact with the surface, leading to the formation of a joint-like structure along the jet
(figure 13b). When the nozzle is level with the free surface (δ = 0), the in-tube bubble no
longer generates vortex rings, and the free-surface jet is driven directly by the expansion of
the in-tube bubbles, taking on an umbrella shape. In the main part of this study, we focus on
cases where the nozzle-to-free-surface distance exceeds 10 times the nozzle radius. Under
these conditions, we can treat the free surface and vortex ring generator as independent
systems, ignoring the influence of the in-tube bubble and secondary vortices on the vortex
ring–free surface interaction.

Appendix C. Effect of nozzle thickness on the vortex ring features

We investigated the influence of tube wall thickness on vortex ring features through a
series of experiments. To quantify this effect, we focused on two key parameters that
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capture the kinetic properties of vortex rings: the radius (R) and translational velocity (vt).
Adjusting the length of the in-tube bubble L, we obtained vortex rings with varying radii
and translational velocities. As illustrated in figure 14, vortex rings produced by tubes with
varying wall thicknesses exhibit similar radii and velocities. This indicates that the vortex
ring properties are largely insensitive to changes in tube wall thickness, at least within the
range examined in this study.
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