
AN EXAMPLE OF A PLANE SHOCK OF
VARIABLE STRENGTH

by P. SMITH
(Received 11th June 1963)

Abstract
A particular solution of the equations of one-dimensional anisentropic

flow of a polytropic gas is linked by a shock to gas at rest in which the density
is non-uniform. The approach is inverse in that the density distribution is
derived from the position of the shock and the prescribed flow behind it. The
velocity and strength of the shock each vary with time. The result is an example
of the propagation of a shock through an inhomogeneous gas.

1. Introduction
Several examples of shocks of constant strength moving with variable

velocity have been discussed previously by Copson (1) and Mackie and Weir (2).
Although there occurs a jump in the entropy across the shock in these problems,
the entropy remains uniform (but at different levels) on both sides of the shock.
Thus the motion remains essentially homentropic, and the usual method of
characteristics for homentropic flow can be applied.

More general situations, in which a shock leaves a non-uniform distribution
of entropy behind it, usually require an approximate or numerical technique of
solution. The present paper contains a comparatively simple example of such
a flow. The solution described is purely illustrative; no general methods or
applications are suggested. As is usual in the construction of solutions of this
type, we start from known anisentropic flow and link this through a shock to
gas at rest. The state of the stationary gas is not known until the shock path
has been determined.

For the anisentropic flow behind the shock, we shall make the family of
exact solutions discovered by Weir (3) our starting point. The main part of the
paper concerns the matching of this flow to the stationary fluid so that the usual
shock relations are satisfied. '

2. Weir's solution
With viscosity and heat conduction neglected, the relevant equations for

one-dimensional anisentropic flow are

, = O, (1)
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Px+pu,+puux = 0, (2)

st + usx = 0, (3)

where p, p, s and u are respectively pressure, density, specific entropy and fluid
velocity. For a polytropic gas, the equation of state is

p = K/exp (s/cv), (4)

where y is the constant adiabatic index, cv the specific heat at constant volume
and Kis a dimensional constant.

We shall merely state Weir's solution; the details can be seen in the original
paper (3). It can be verified that equations (1) to (4) possess a solution

U l = 2oct+p, (5)

Px=f(X), (6)

Sl = cv\nU-2<£)->fl^-\, (8)

where the particle paths are given by

X = x-<xt2-pt, (9)

and X is the material variable. The suffix 1 is introduced to distinguish the
flow behind the shock. We note certain arbitrary features in the unspecified
constants a and /?, and the function/ (X). The pressure and density are constant
along the particle paths which are coaxial parabolas in the (x,0-plane. The
flow is one with constant acceleration.

3. The shock path
We shall now link the solution given in Section 2 to a state of rest through

the usual shock relations for a polytropic gas, namely:

= p2»2, (10)

Vl (11)

_l-+&22 (I2)

in equations (10), (11) and (12), v is the velocity of the gas relative to the
velocity of the shock and suffixes 01 and 2 are attached to the states immediately
behind and in front (the stationary gas) of the shock respectively.

These shock relations must be satisfied at the shock whose displacement is
taken as E, = £,{t'), where the prime has been added to the time / since we shall
subsequently use it as a parameter. From (9),

X = £(t>)-«t'2-pt', (13)
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on the shock. It then follows from (5), (6) and (7) that

«01 = 2af+fi, (14)

(15)

where
}

Furthermore
vol=2«t' + p-Z(t').

In front of the shock, we take the gas to be at rest so that u2 = 0 and
v2 = —i(f). Further, p2 = k, a constant, since by equation (2) the pressure
gradient must be zero.

The elimination of the unknown p2 between (10) and (11), and (10) and (12)
yields the following two equations:

P01-P2 = Poi«>oi(»2-»oi)> (17)

2y(j>oiVoi-P2V2) = (v-l)Poi«>oi(»2-»oi) (I8)

Direct substitution in (17) and (18) of the flow quantities given previously
produces

(2xt'+P)g+2ag-2ak = 0, (19)

k-g)t = 0. ..„ (20)

Solving the elementary differential equation (19), we have

where A is a constant. The elimination of g between (20) and (21) yields the
shock velocity

Z = B(2«t' + P)2 + l(y + l)(2«t'+p), (22)
where

B = kyl(A-kP) (23)
Integration of (22) provides the equation of the shock path, namely

(2rt'+/Q3+ y (2t'+p)2(2ort+/Q+ y~ (2*t'+p)
6a 8a

where C is a further constant. Thus the shock relations determine the shock
path and fix the flow quantities on both sides of the shock. In terms of the
spatial variables, the pressure and density behind the shock are given para-
metrically by

2a.kt'+A , . „
p, = , (24)

1 2t' + P y '
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= . A-kp

x-at2-pt = £(t')-<xt'2-pt', (26)

where (24) and (25) follow from (15) and (16), whilst (26) is obtained by eliminat-
ing X between (9) and (13).

For the stationary gas in front of the shock the pressure is uniform and the
density is given parametrically by

= A-kP

(2at'+p)3{B(2«t'+p)+i(y+l)}'
(28)

The calculation of p2 from (10) produces the density distribution as a function
of time on the shock path, namely equation (27). To obtain the density as a
function of x, we eliminate t' between (27) and the equation (28) of the shock
path. Finally, the entropy of the stationary gas can then be derived from the
equation of state (4) as a function of x.

A general point is worth noting here. It can be verified that equations (1)
to (4) have a solution

w = 0, p = p(x), p = constant,

in which the entropy is also a function of x determined by the equation of state.
Such a situation is possible in a perfect gas. In a real fluid, the influence of, for
example, thermal conduction would operate against the equilibrium of this
state.

4. Properties of the solution
The formal solution is now complete. Essentially, we have found a family of

solutions whose members depend on the choice of values for the various
constants. However, we must add certain physical requirements. We shall
simplify the ensuing discussion by assuming <x>0, )?>0 and restricting our
attention to t^.0. The shock must be compressive, that is, 0<p2<Pou o r

by (24). Thus A-kP>0 and all pressures are positive. Inspection of (25)
and (27) indicates that the densities are positive if y> 1.

Taking p0llp2 as a measure of the strength of the shock, we have

Poi = 2akt'+A
p2 k(2at'+P)

The shock strength has a maximum at t' = 0, and n -* 1 as t'-+ oo indicating that
the shock becomes infinitely weak. The shock velocity <*-> oo as t'-* oo from (22).
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At t = 0, p2->0 as x->oo. Since the temperature T2ccp2\p2, the latter statement
is equivalent to an unbounded increase in the temperature.

The total effect is that of a shock accelerating into a gas possessing a negative
temperature gradient.

Fig. 1 shows a typical configuration of the shock path and particle

0-7 I - '

05 -
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FIG. 1

trajectories in the (x, 0-plane. The lower part of the figure gives the density
ratio in the gas upstream of the shock; p0 is the density at x = 0, t = 0. The
values chosen for the various constants are as follows:

a = 0=
24

The motion can be considered as taking place in an infinite tube closed at
one end by a piston. At time t = 0 from x = 0, the piston is pushed into the
gas with displacement given by the particle trajectory which passes through the
origin. The initial motion of the piston is impulsive.

https://doi.org/10.1017/S0013091500025591 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025591


302 P. SMITH

5. Uniform compressive motion
Generally, the more interesting and physically reasonable problems are those

in which the gas ahead of the shock is at rest with constant density and tempera-
ture. From (27) this will be so only if a = 0 . The particle trajectories behind
the shock are then a family of straight lines with fluid velocity u = /?. The
shock velocity is also constant and is given by

i = s/P+Ky+W, (29)
from (22).

The special motion presented above is simply the uniform compressive
motion described by Courant and Friedrichs (4), where the shock velocity is
found to be

| = Kv + l)«i+VM+lV(V + l)2"?}, (30)
with c2 denoting the sound speed upstream of the shock. In our notation

from equations (23) and (27). Equation (29) can be recovered by substituting
for Mj and c2 in (30). This provides a partial check on our family of solutions.
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