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Abstract. With the help of some p-adic formal series over p-adic number fields
and the estimates of character sums over Galois rings, we prove that there is a constant
C(n) such that there exists a primitive polynomial f (x) = xn − a1xn−1 + · · · + (−1)nan

of degree n over Fq with the first m = � n−1
2 � coefficients a1, . . . , am prescribed in advance

if q > C(n).

2000 Mathematics Subject Classification. 11T55, 11F85, 11L40.

1. Introduction. Let Fq be a finite field with q = pk elements, where p is a prime
number and k a positive integer. A monic polynomial f (x) ∈ Fq[x] of degree n is called
a primitive polynomial if the least positive integer T such that f (x)|xT − 1 is qn − 1. One
of the basic problems in computational number theory is to investigate the distribution
of the coefficients of primitive polynomials; that is, whether there exists a primitive
polynomial with one coefficient or several coefficients prescribed in advance. Based on
various tables, Hansen and Mullen [10] proposed the following conjecture about the
distribution of primitive polynomials with one coefficient prescribed.

Hansen-Mullen conjecture. For any given element a ∈ Fq, there exists a primitive
polynomial f (x) = xn − a1xn−1 + · · · + (−1)nan of degree n over Fq with the i-th
(0 < i < n) coefficient ai = a except when

(q, n, i, a) = (4, 3, 1, 0), (4, 3, 2, 0), (2, 4, 2, 1).

For i = 1, the Hansen-Mullen conjecture is true by the work of Davenport [3], Moreno
[17], Cohen [1], Jungnickel and Vanstone [11], etc. For i = 2, Han [6], [7] proved that
the Hansen-Mullen conjecture is true if

1. q is odd and n ≥ 7; or
2. q is even and (n, a) �= (4, 0), (5, 0), (6, 0).
As an asymptotic result, Fan and Han proved in [5] that there exists a primitive

polynomial of degree n over Fq with the m-th (0 < m < n) coefficient prescribed for
q large enough except when m = n + 1

2 if n is odd and m = n
2 , n

2 + 1 if n is even and p
exceeds the “non-p part” of n. It convinces us that the Hansen-Mullen conjecture is
actually true.

In an excellent survey paper on primitive elements and polynomials, Cohen [2]
discussed the distribution of primitive polynomials with multiple coefficients prescribed
in more detail and asked the following question.
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Cohen’s Problem. Is there some function c(n) such that there exists a primitive
polynomial of degree n with [c(n)] coefficients prescribed, where [·] is the round
function?

In fact, Han [6] proved that there is a primitive polynomial of degree n over Fq

with the first and second coefficients prescribed if q is odd and n ≥ 7. Furthermore,
Han [8] also obtained the following result.

THEOREM 1. [8]. For m < p, there exists a primitive polynomial over Fq of degree n
with the first m coefficients prescribed if q is large enough and n > 2m.

We can reformulate Theorem 1 in another way; that is, there exists a primitive
polynomial over Fq of degree n with the first � n − 1

2 � coefficients prescribed if n < 2p
and q is large enough. In other words, when the degree of the polynomial is small and
the characteristic of the finite field is large, there exists a primitive polynomial over Fq

with the first half of its coefficients prescribed for q large enough.
The main idea in the proof of Theorem 1 is that the m-th (0 < m < p) coefficient

of the primitive polynomial can be expressed in terms of traces of powers of primitive
elements. However, for m ≥ p we must cope with the inevitable problems relating to
the characteristic in handling the trace conditions. In this paper, we shall transfer
the working to the unramified extensions of the p-adic fields and their completions,
as well as the appropriate quotient rings, Galois rings so that we can translate the
existence of primitive polynomials into the existence of the primitive element solutions
of Teichmüller points of some system of trace equations with each equation over a
suitable Galois ring. To estimate the number of such primitive element solutions, we
need the estimates of characters sums over Galois rings [13] and over the Teichmüller
points of p-adic number fields [15].

In this paper, we investigate a varient of Cohen’s Problem with the help of some
p-adic formal series over p-adic number fields and the estimates of character sums over
Galois rings. We get the following main result.

MAIN RESULT. There is a constant C(n) such that there exists a primitive polynomial
f (x) = xn − a1xn−1 + · · · + (−1)nan of degree n over Fq with the first � n − 1

2 � coefficients
prescribed in advance if q > C(n).

The paper is arranged as follows. First we give a short review on p-adic number
fields and character sums over Galois rings. In Section 3, we set up a one-to-one
correspondence between the primitive polynomials over Fq and the lifting primitive
polynomials over Ok. Then we reduce the problem of the existence of the lifting
primitive polynomials over Ok to the existence of primitive element solutions of some
system of trace equations with each equation modulo suitable pe. We define several
p-adic formal series over Kk associated with the traces of powers of Teichmüller points
ξ ∈ �nk, the set of Teichmüller points in Knk, and discuss the properties of those formal
series under certain conditions, so that we get the relations between the coefficients of
the lifting primitive polynomial and the trace of powers of its roots, and then obtain
the reduction. In Section 4, we obtain the estimate of the number of primitive element
solutions in �nk of the system of trace equations by using the estimates of character
sums over Galois rings. We show that if q

n
2 −m > m2ω(qn−1), there exists a primitive

polynomial of degree n with the first m coefficients prescribed, where ω(qn − 1) is the
number of distinct prime factors of qn − 1. As an asymptotic result, we prove our main
result that there exists a primitive polynomial over Fq of degree n with the first � n − 1

2 �
coefficients prescribed for q large enough.
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2. Character sums over Galois rings.

2.1. p-adic number fields and Galois rings. Let p be a prime number. For r =
a
b ∈ �, a, b ∈ �\{0}, define the order of a ∈ � at p, denoted by ordpa, to be the largest
integer d such that pd |a and ordpr = ordpa − ordpb. The non-archimedean valuation
| |p on � can be defined by {

|0|p = 0,

|r|p = p−ordpr.

It is well known that | |p is a metric on �.

Let �p be the completion of � with respect to the metric | |p, Kk the unique
unramified extension of �p of degree k, Ok = {x ∈ Kk; x|p ≤ 1} the ring of integers of
Kk, �p the algebraic closure of �p and � the completion of �p. Denote by

�k = {
ξ ∈ Kk; ξ pk = ξ

}
the set of the Teichmüller points in Kk and �∗

k = �k\{0}. Then every element α ∈ Kk

can be written in a unique way as

α =
∞∑

i=i0

aipi, where ai ∈ �k, i0 ∈ �.

If α ∈ Ok, we have

α =
∞∑

i=0

aipi, where ai ∈ �k.

Define the canonical projective map φ from Ok to �k by

φ(α) = a0.

In fact, Ok is a local ring with unique maximal ideal Pk = pOk. For e ≥ 1, the
Galois ring Re,k is defined to be Ok/peOk. When e = 1, Re,k = Fq is a finite field with
q = pk elements and Fq = {ξ |ξ ∈ �k}, where ξ is the residue class mod p including ξ .
It is obvious that any element β ∈ Re,k can be uniquely expressed in the form

β =
e−1∑
i=0

bipi, where bi ∈ �k.

Let n > 0 be an integer and τk the Frobenius map of Knk over Kk given by

τk(z) =
∞∑

i=i0

apk

i pi

for z = ∑∞
i=i0 aipi ∈ Knk, where ai ∈ �nk, i0 ∈ �. As we know, τk is the generator

of the Galois group of Knk/Kk which is a cyclic group of order n. The trace map
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Tr(·) : Knk −→ Kk is defined via

Tr(x) = x + τk(x) + · · · + τ n−1
k (x)

for x ∈ Knk.

τk|Onk mod pe is the Frobenius map of Re,nk over Re,k. Later we also use τk to denote
τk|Onk mod pe. As we know, τk is the generator of the Galois group of Re,nk/Re,k which
is a cyclic group of order n. More precisely, we have

τk(z) =
e−1∑
i=0

apk

i pi

for z = ∑e−1
i=0 aipi ∈ Re,nk, where ai ∈ �nk, i = 0, 1, . . . , e − 1.

The map Tre,nk,k(·) = Tr(·)|Onk mod pe is the trace map from Re,nk to Re,k. More
precisely,

Tre,nk,k(x) = x + τk(x) + · · · + τ n−1
k (x)

for x ∈ Re,nk.

2.2. Characters over Galois rings. Let e, k, n ∈ �>0. Now we give a few basic facts
on the additive characters over Galois rings Re,k and multiplicative characters over �∗

nk.

2.2.1. Additive characters over Galois rings. An additive character of Re,k is a
homomorphism from the additive group of Re,k to �∗, the multiplicative group �{0}.
Define ψ(c) = e2π iTre,k,1(c)/pe

for c ∈ Re,k. It is easily seen that ψ is an additive character
of Re,k; indeed it is the so-called canonical additive character. For a ∈ Re,k, define
ψa(c) = ψ(ac), c ∈ Re,k. As in the case of finite fields, we can prove that ψa is also an
additive character. In fact, we have the following result.

LEMMA 2. {ψa}a∈Re,k
consists of all the additive characters of Re,k.

Proof. It is obvious that we only need to prove that a = 0 if and only if ψa is trivial,
that is, the principal character. Suppose a �= 0, a = plu, where u ∈ R∗

e,k, 0 ≤ l ≤ e − 1
such that Tre,k,1(ac) = 0, for all c ∈ Re,k. We have plTre,k,1(uc) = 0, for all c ∈ Re,k.
Hence plTre,k,1(c) = 0, for all c ∈ Re,k. Since Tre,k,1(·) : Re,k → �pe is surjective, there
exists c′ ∈ Re,k such that Tre,k,1(c′) = 1. This gives pl = 0, a contradiction. �

LEMMA 3. Let a ∈ Re,k and ψ be the canonical additive character of Re,k. We have

∑
c∈Re,k

ψc(a) =
{

qe if a = 0;

0 if a �= 0.

Proof. This is a special case of Theorem 5.4 in [16].

LEMMA 4. Let a ∈ Re,k and ψ be the canonical additive character of Re,k. We have

∑
c∈Rd,k

ψc(pe−da) =
{

qd if a = 0 mod pd ;

0 otherwise,

where 1 ≤ d ≤ e.
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Proof. This more general result is easily deduced from Lemma 3.

2.2.2. Multiplicative character over Teichimüller points. The set �∗
nk forms a

multiplicative group with order qn − 1. Let g be a primitive element (i.e generator)
of �∗

nk. The canonical multiplicative character χ can be defined by χ (gl) = e2πil/(qn−1)

for 0 ≤ l ≤ qn − 2. For 0 ≤ j ≤ qn − 2, define χj(gl) = χ (glj). The χj’ s are all the
multiplicative characters of �∗

nk and form a cyclic group with order qn − 1. It is well
known that the order of each character χj is a divisor of qn − 1.

LEMMA 5. Let n be a positive integer and ξ ∈ �∗
nk. We have

∑
d|qn−1

µ(d)
ϕ(d)

∑
χ (d)

χ (d)(ξ ) =
{ qn−1

ϕ(qn−1) if ξ is a primitive element of �∗
nk;

0 otherwise,

where µ(d) is the Möbius function, ϕ(d) is the Euler function and χ (d) runs through all
the ϕ(d) multiplicative characters over �∗

nk with order d.

Proof. In the following formula, γ runs through all the distinct prime factors of
qn − 1:

∑
d|qn−1

µ(d)
ϕ(d)

∑
χ (d)

χ (d)(ξ ) =
∏

γ |qn−1


1 + µ(γ )

ϕ(γ )

∑
χ (γ )

χ (γ )(ξ )


 .

If ξ is a primitive element of �∗
nk, then

∏
γ |qn−1


1 + µ(γ )

ϕ(γ )

∑
χ (γ )

χ (γ )(ξ )


 =

∏
γ |qn−1

(
1 + 1

ϕ(γ )

)
= qn − 1

ϕ(qn − 1)
.

Otherwise, there exists a prime number γ | qn−1
order(ξ ) such that

∑
χ (γ ) χ (γ )(ξ ) = ϕ(γ ).

Hence

∏
γ |qn−1


1 + µ(γ )

ϕ(γ )

∑
χ (γ )

χ (γ )(ξ )


 = 0.

�

2.3. Estimates of character sums over Galois rings. Let k, n ≥ 1 and h(x) be a
polynomial over Re,nk with h(0) = 0 and h(x) not identically 0. Let

h(x) = h0(x) + h1(x)p + · · · + he−1(x)pe−1

be the p-adic expansion of h(x), where hi(x) is a polynomial of degree di with coefficients
in �nk for i = 0, 1, . . . , e − 1. Define the weighted e-degree of h(x) by

De(h(x)) = max(d0pe−1, d1pe−2, . . . , de−1).
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DEFINITION 6. Let h(x) ∈ Re,nk[x] be a polynomial and hi(x) = ∑di
j=0 hi,jxj, hi,j ∈

�nk as above. h(x) is called nondegenerate if

hi,j = 0, if j ≡ 0 (mod p), 0 ≤ j ≤ di, 0 ≤ i ≤ e − 1.

Various kinds of character sums over Galois rings are investigated. See for example
[13], [15], etc. Here we give two theorems from [15] in a slightly different form for our
later use. These results are analogous to Weil estimates on character sums over finite
fields.

THEOREM 7. [13], [15]. Let f (x) ∈ Re,nk[x] be nondegenerate with weighted e-degree
De(f (x)) and ψe,n a nontrivial additive character of Re,nk. Then

∣∣∣∣∣∣
∑
ξ∈�nk

ψe,n(f (ξ ))

∣∣∣∣∣∣ ≤ (De(f (x)) − 1)qn/2.

On the other hand, we have the following result.

THEOREM 8. [15]. Let f (x) ∈ Re,nk[x] be nondegenerate with weighted e-degree
De(f (x)), ψe,n a nontrivial additive character of Re,nk and χ a nontrivial multiplicative
character of �∗

nk. Then

∣∣∣∣∣∣
∑
ξ∈�∗

nk

ψe,n(f (ξ ))χ (ξ )

∣∣∣∣∣∣ ≤ De(f (x))qn/2.

3. Problem reduction. In this section, we shall reduce the existence of primitive
polynomials over Fq to the existence of primitive element solutions in �∗

nk of some
system of trace equations with each equation over a suitable Galois ring Re,k.

Let f̃ (x) ∈ Ok[x] be a monic polynomial of degree n. We call f̃ (x) a basic irreducible
polynomial over Ok if f̃ (x) mod p is an irreducible polynomial of degree n over Fq.

DEFINITION 9. Let f̃ (x) ∈ Ok[x] be a basic irreducible polynomial of degree n. We
call f̃ (x) a lifting primitive polynomial over Ok if there exists a positive integer T such
that f̃ (x)|xT − 1 and the least positive integer T = qn − 1.

In fact, the set of primitive elements of �∗
nk ( all the generators of �∗

nk as a cyclic
multiplicative group) is the same as the set of roots (in Knk ) of all lifting primitive
polynomials of degree n in Ok[x]. In the rest of the paper, we shall identify them
without explanation.

If f̃ (x) is a lifting primitive polynomial over Ok, it is easily seen that f (x) = f̃ (x) mod
p is a primitive polynomial over Fq. On the other hand, if f (x) is a primitive polynomial
over Fq, then by Hensel’s Lemma there exists a unique polynomial f̃ (x) ∈ Ok[x] such
that f (x) ≡ f̃ (x) mod p and f̃ (x) is a lifting primitive polynomial over Ok. Hence the
primitive polynomials over Fq and the lifting primitive polynomials over Ok are in
one-to-one correspondence.

By the discussions above, the coefficients of primitive polynomials over Fq and
the lifting primitive polynomials over Ok are closely related, so that we only need to
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consider the lifting primitive polynomials over Ok. We reformulate Cohen’s Problem
using p-adic number fields.

Cohen’s problem over p-adic number fields. Let q = pk and φ be the canonical
projective map from Ok to �k. Is there some function c(n) so that there exists a lifting
primitive polynomial f (x) = xn − σ1xn−1 + · · · + (−1)nσn over Ok of degree n with m =
�c(n)� coefficients such that φ(σi1 ) = a1, . . . , φ(σim ) = am, for any given a1, a2, . . . , am ∈
�k?

As in [6, 8], we need to find the relation between the coefficient σm (0 < m < n)
of the lifting primitive polynomial of degree n and the traces of powers of its roots
in Knk, the extension field of Kk of degree n. Then we can reduce the existence of the
lifting primitive polynomials over Ok with the images of the first m coefficients under
the canonical projective map prescribed to the existence of primitive element solutions
of some system of trace equations with each equation modulo suitable pe.

For this reason, we first consider the relations between the coefficients of lifting
primitive polynomial over Ok and the traces of powers of its roots.

LEMMA 10. [12]. Let A be an n × n matrix with entries in �. We have the following
identity of formal power series in �[[x]]:

det(1 − Ax) = exp

(
−

∞∑
s=1

Tr(As)xs/s

)
, (1)

where Tr(As) is the trace of the matrix As(s = 0, 1, . . .).

Let f̃ (x) ∈ Ok[x] be a lifting primitive polynomial of degree n and ξ ∈ Knk be a
root of f̃ (x). Then ξ ∈ �nk and ξ, ξ q, . . . , ξ qn−1

are all the roots of f̃ (x) in Knk.

PROPOSITION 11. Let f̃ (x) = xn − σ1xn−1 + · · · + (−1)nσn ∈ Ok[x] be a lifting
primitive polynomial of degree n, ξ a root of f̃ (x) in Knk. We have

xnf̃
(

1
x

)
= exp

(
−

∞∑
s=1

Tr(ξ s)xs/s

)
. (2)

Proof. Let A = (aij)1≤i≤n,1≤j≤n, where

aij =
{

0 if i �= j,

ξ qi−1
if i = j.

By expanding the left hand and right hand sides of equation (1), respectively, we get
equation (2). �

THEOREM 12. [4] (Dieudonné’s Theorem). Let F(x) = 1 + a1x + a2x2 + · · · ∈
1 + xKk[[x]]. Then

F(x) ∈ 1 + xOk[[x]]
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if and only if

F(x)p

F τ (xp)
∈ 1 + pxOk[[x]],

where τ is the Frobenius map of Kk over Qp.

COROLLARY 13. Let a ∈ Ok and a ≡ 0 mod pe, (t, p) = 1. Let

Ft,e(x) = exp

(
−

∞∑
s=e

aτ s
xtps

tps

)
.

Then

Ft,e(x) ∈ 1 + xOk[[x]].

Proof. It is easy to check that

Ft,e(x)p

F τ
t,e(xp)

= exp
(

−p
aτ e

tpe
xtpe

)
∈ 1 + pxOk[[x]].

By Dieudonné’s Theorem, we have

Ft,e(x) ∈ 1 + xOk[[x]].

�
Now we consider the existence of the lifting primitive polynomials over Ok with

the images of the first m coefficients under the canonical projective map prescribed.
For 0 < t, l ≤ m, (t, p) = 1, let e(t, l) be the largest integer such that tpe(t,l)−1 ≤ l; that
is, e(t, l) = [logp( l

t )] + 1. For brevity, we denote e(t, m) by e(t). Now we consider the
following system of trace equations:

Tr(xt) = dt mod pe(t), for 1 ≤ t ≤ m and (t, p) = 1, (3)

where

dt = dt,0 + pdt,1 + · · · + pe(t)−1dt,e(t)−1 (4)

and dt,j ∈ �k for 1 ≤ t ≤ m , (t, p) = 1, 0 ≤ j ≤ e(t) − 1.

THEOREM 14. Assume that the system of equations (3) has one primitive element
solution ξ ∈ �∗

nk for any given dt,0, dt,1, . . . , dt,e(t)−1 ∈ �k, where (t, p) = 1 and 1 ≤ t ≤ m.
Then there exists a lifting primitive polynomial over Ok of degree n with the images of
the first m coefficients under the canonical projective map prescribed in advance.

Before we prove Theorem 14, we observe a simple result.

LEMMA 15. Let (t, p) = 1 and ξ ∈ �nk. We have

Tr(ξ tpi
) = τ i(Tr(ξ t)),

where τ i is the Frobenius map of Kk over Qp, for i = 0, 1, . . . .
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To illustrate the relations between the existence of the lifting primitive polynomials
with the images of the first m coefficients under the canonical projective map prescribed
and the existence of primitive element solutions ξ of (3) in �∗

nk, we define a formal series
over Kk similar to the Artin-Hasse exponential series (see [5]) associated with the traces
of powers of ξ for our later use; that is

Et,e(x) = exp

(
−

∞∑
s=e

c(t, s)xtps

tps

)
,

where (t, p) = 1 , e ≥ 0 and

c(t, s) = Tr
(
ξ pst) − dτ s

t .

By Lemma 15,

c(t, s) = c(t, 0)τ
s

for s ≥ 0. Hence Et,0 ∈ 1 + xOk[[x]]. On the other hand, from Corollary 13,

Et,e(t)(x) ∈ 1 + xOk[[x]]. (5)

Later we shall denote Et,0(x) by Et(x).

LEMMA 16. Let Et(x) be defined as above,

Et(x) = 1 + a1x + · · · + alxl + · · · .
Then we have

al ∈ pOk if tpe(t) � l

Moreover al ∈ pOk, for 1 ≤ l ≤ m.

Proof. We rewrite Et(x) as

Et(x) = exp


−

∞∑
s=e(t)

c(t, s)
tps

xtps


 e(t)−1∏

s=0

exp
(

−c(t, s)
tps

xtps
)

.

Since the first term (i.e Et,e(t)[[x]]) is in 1 + xOk[[x]] and the second term of the right
hand side is in 1 + pxOk[[x]], the only possible terms al’s such that al /∈ pOk are the
terms in the expansion of Et,e(t). Hence we must have tpe(t)|l. Moreover, we have al ∈ pOk

for 1 ≤ l ≤ m since t · pe(t) > m by the definition of e(t). �
Next we define two formal series associated with Et(x). Let

Et,+(x) = exp

(
−

∞∑
s=0

Tr
(
ξ tps)

xtps

tps

)

and

Et,−(x) = exp

(
−

∞∑
s=0

dτ s

t xtps

tps

)
.
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PROPOSITION 17. Let at,l and bt,l be the coefficients of xl in Et,+(x) and Et,−(x),
respectively. Then

at,l ≡ bt,l mod p

for 1 ≤ l ≤ m.

Proof. It is easy to see from Dieudonné’s Theorem that

Et,+(x), Et,−(x) ∈ 1 + xOk[[x]].

Furthermore

Et(x) · Et,−(x) = Et,+(x)

in Ok[[x]]. From Lemma 16, we have

at,l ≡ bt,l mod p

for 1 ≤ l ≤ m. �

Now we consider the coefficient of xl in Et,−(x) for 1 ≤ l ≤ m.

LEMMA 18. For any given integers t, l such that 1 ≤ l, t ≤ m and (t, p) = 1, let bt,l

be the coefficient of xl in Et,−(x). We have

bt,l ≡ g
(
dt,0, . . . , dt,e(t,l)−1

)
mod p.

In particular, if t ·pe(t,l)−1 = l, then

bt,l ≡ g1
(
dt,0, . . . , dt,e(t,l)−2

) − 1
t

· dpe(t,l)−1

t,e(t,l)−1 mod p,

where g is a polynomial of dt,0, . . . , dt,e(t,l)−1 over Ok, g1 is a polynomial of
dt,0, . . . , dt,e(t,l)−2 over Ok.

Proof. We only need to consider the coefficient of xl in

exp


−

e(t,l)−1∑
s=0

dτ s

t xtps

tps


 = exp


−

e(t,l)−1∑
s=0

dps

t,0xtps

tps


 exp


−p

e(t,l)−1∑
s=0

dps

t,1xtps

tps




. . . exp


−pe(t,l)−1

e(t,l)−1∑
s=0

dps

t,e(t,l)−1xtps

tps




= exp


−

e(t,l)−1∑
s=0

dps

t,0xtps

tps


 exp


−p

e(t,l)−1∑
s=0

dps

t,1xtps

tps




. . . exp

(
−dpe(t,l)−1

t,e(t,l)−1

xtpe(t,l)−1

t

)
mod p.
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For 1 ≤ i ≤ l and r = 0, . . . , e(t, l) − 1, the coefficient of xi in

exp


−pr

e(t,l)−1∑
s=0

dps

t,rxtps

tps




is the same as the coefficient of xi in

exp

(
−pr

∞∑
s=0

dps

t,rxtps

tps

)
,

and so it must belong to Ok. Hence

bt,l ≡ g
(
dt,0, . . . , dt,e(t,l)−1

)
mod p.

In particular, if t ·pe(t,l)−1 = l, the least non-constant term in

exp

(
−dpe(t,l)−1

t,e(t,l)−1

xtpe(t,l)−1

t

)

is xl and the corresponding coefficient is − 1
t · dpe(t,l)−1

t,e(t,l)−1, so that if t ·pe(t,l)−1 = l, then

bt,l ≡ g1
(
dt,0, . . . , dt,e(t,l)−2

) − 1
t

· dpe(t,l)−1

t,e(t,l)−1 mod p.

This finishes the proof. �
PROPOSITION 19. Let 1 ≤ l ≤ m, l = tlpe(tl ,l)−1, (tl, p) = 1 and e(tl, l) ≥ 1. Let bl be

the coefficient of xl in
∏

(t,p)=1 Et,−(x). We have

bl ≡ g∗({dt,i|(t, p) = 1, tpi < l }) − 1
tl

· dpe(tl ,l)−1

tl ,e(tl ,l)−1 mod p,

where g∗ is a polynomial of {dt,i|(t, p) = 1, tpi < l} over Ok.

Proof. This result follows from Lemma 18.

Proof of Theorem 14. Let ξ be a primitive element solution of (3) in �nk and

f̃ (x) = (x − ξ )(x − ξ q) · · · (x − ξ qn−1)
= xn − σ1xn−1 + · · · + (−1)nσn

be the minimal polynomial of ξ over Ok. By Proposition 11,

xnf̃
(

1
x

)
= exp

(
−

∞∑
s=1

Tr(ξ s)xs/s

)

=
∏

(t,p)=1
t>0

Et,+(x).
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Furthermore, from Proposition 17, we only need to consider the coefficient of xl

(1 ≤ l ≤ m) in ∏
(t,p)=1

Et,−(x).

Consider 1 ≤ l ≤ m, l = tlpe(tl ,l)−1, (tl, p) = 1 and e(tl, l) ≥ 1. From Proposition 19 we
have

(−1)lσl ≡ g∗({dt,i|t · pi < l}) − 1
tl

· dpe(tl ,l)−1

tl ,e(tl ,l)−1 mod p.

For any given {dt,i|(t, p) = 1 and t · pi < l}, φ(σl) runs across �k if dtl ,e(tl ,l)−1 runs across
�k. This finishes the proof of Theorem 14.

4. Estimates and calculations. We now estimate the number of primitive element
solutions of (3) in �∗

nk.
Let e be the largest integer such that pe−1 ≤ m. Denote

Sl = {t|(t, p) = 1; l is the largest integer such that t · pl−1 ≤ m}
for l = 1, . . . , e and

� = {
(ct)(t,p)=1; ct ∈ Rl,k for t ∈ Sl, l = 1, · · · , e

}
.

Let W = #�. We have W = q
∑e

l=1 l#Sl = qm.
Let Nm be the number of primitive element solutions of (3) in �∗

nk, ψ the canonical
additive character of Re,k , ψe,n = ψ ◦ Tre,nk,k the canonical additive character of
Re,nk and let χ (d) run through all the multiplicative characters over �∗

nk with order d.
From Lemma 3, Lemma 4 and Lemma 5,

Nm = δ
∑
ξ∈�∗

nk

e∏
l=1

∏
t∈Sl

∑
ct∈Rl,k

ψ(pe−l(ct(Tr(ξ t) − dt))) ·
∑

d|qn−1

µ(d)
ϕ(d)

∑
χ (d)

χ (d)(ξ )

= δ
∑

d|qn−1

µ(d)
ϕ(d)

∑
χ (d)

∑
(ct)(t,p)=1∈�

ψ

(
−

e∑
l=1

pe−l
∑
t∈Sl

ctdt

)
· �

(
(ct)(t,p)=1, χ

(d)),
where

δ = ϕ(qn − 1)
(qn − 1)

q−m

and

�
(
(ct)(t,p)=1, χ

(d)) =
∑
ξ∈�∗

nk

ψe,n

(
e∑

l=1

pe−l
∑
t∈Sl

ctξ
t

)
χ (d)(ξ ).

Let

h(x) =
e∑

l=1

pe−l
∑
t∈Sl

ctxt.
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It is obvious that h(x) is nondegenerate if h(x) �= 0 with

�
(
(ct)(t,p)=1, χ

(d)) =
∑
ξ∈�∗

nk

ψe,n(h(ξ ))χ (d)(ξ ).

Now we estimate Nm.

1. If h(x) = 0, that is, ct = 0 ∈ Rl,k for t ∈ Sl and l = 1, . . . , e, then

ψ

(
−

e∑
l=1

pe−l
∑
t∈Sl

ctdt

)
= 1.

(a) When d = 1,

µ(d)
ϕ(d)

= 1,

and

�
(
(ct)(t,p)=1, χ

(1)) = qn − 1.

(b) When d > 1,

�
(
(ct)(t,p)=1, χ

(d)) = 0.

We have

∑
d|qn−1

µ(d)
ϕ(d)

∑
χ (d)

∑
(ct )(t,p)=1∈�

h(x)=0

ψ

(
e∑

l=1

pe−l
∑
t∈Sl

ctdt

)
· �

(
(ct)(t,p)=1, χ

(d))

= qn − 1.

2. If h(x) �= 0, that is, ct �= 0 ∈ Rl,k for some t ∈ Sl and some l = 1, . . . , e, then in
this case h(x) is nondegenerate.

(a) When d = 1, from Theorem 7 we obtain∣∣�(
(ct)(t,p)=1, χ

(1))∣∣ ≤ (De(h(x)) − 1)qn/2 + 1

≤ De(h(x))qn/2.

(b) When d �= 1, from Theorem 8 we obtain∣∣�(
(ct)(t,p)=1, χ

(d))∣∣ ≤ De(h(x))qn/2.

In the above De(h(x)) is the weighted degree of h(x) and De(h(x)) ≤ m. Since the total
number of multiplicative characters χ (d) is ϕ(d), we have∣∣∣∣∣∣∣

∑
d|qn−1

µ(d)
ϕ(d)

∑
χ (d)

∑
(ct )(t,p)=1∈�

h(x)�=0

ψ

(
e∑

l=1

pe−l
∑
t∈Sl

ctdt

)
· �

(
(ct)(t,p)=1, χ

(d))
∣∣∣∣∣∣∣

≤ 2w(qn−1) · m · (qm − 1) · qn/2,
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so that

Nm ≥ δ
{
(qn − 1) − 2ω(qn−1)mq

n
2 (qm − 1)

}
, (6)

where ω(qn − 1) is the number of the distinct prime factors of qn − 1.

THEOREM 20. Nm > 0 if

q
n
2 −m > m2ω(qn−1), (7)

where ω(qn − 1) is the number of the distinct prime factors of qn − 1.

Proof. By (6), it is easily seen that Nm > 0 if

q
n
2 > m2ω(qn−1)qm.

�
Following the method introduced by Lenstra and Schoof [14], the inequality (7)

holds for q large enough if m < n
2 . Therefore we prove the following result.

THEOREM 21. There is a constant C(n) depending on n such that there exists a
primitive polynomial over Fq of degree n with the first � n − 1

2 � coefficients prescribed in
advance if q > C(n).

Proof. From Theorem 20 and the method introduced by Lenstra and Schoof, there
exists a constant C(m, n) such that for 1 ≤ m < n

2 , Nm > 0 when q > C(m, n). Let

C(n) = max
1≤m<n/2

C(m, n).

The present theorem now follows from Theorem 14. �
REMARK 22. In this paper, we have proved that there exists a primitive polynomial

over Fq with the first � n − 1
2 � coefficients prescribed for q large enough. It is still

unknown whether there is a positive integer s > � n − 1
2 � such that there exists a primitive

polynomial over Fq with s coefficients prescribed for q large enough.
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