COHOMOLOGY OF INDUCED MODULES IN RINGS OF DIFFERENTIAL OPERATORS

by KENNETH A. BROWN and THIERRY LEVASSEUR

(Received 17th April 1986)

1. Introduction

1.1. Let K be a field of characteristic zero and let $\Delta = \{\delta_1, ..., \delta_n\}$ be a set of commuting K-derivations of the commutative Noetherian K-algebra R. Let $S = R[X_1, ..., X_n]$ be the corresponding ring of differential operators, so $[X_i, r] = X_i r - rX_i = \delta_i(r)$, and $[X_i, X_j] = 0$, for $1 \leq i, j \leq n$. Let M be a maximal ideal of R with R/M of finite dimension over K. The purpose of this note is to describe the groups

$$E^*:=\{\operatorname{Ext}_S^i(S/SM,S/SM): i \ge 0\}.$$

The dimension s over R/M of the subspace of $\operatorname{Hom}_{R/M}(M/M^2, R/M)$ generated by the image of Δ is called the differential codimension of M with respect to Δ [3, Proposition 2.1]. Let $V = \{v \in S: Mv \subseteq SM\}$, the idealiser of SM, and put $V_0 = V/SM$; note that the groups E^* are $(V_0 - V_0)$ —bimodules.

1.2. The result we shall prove is the following.

Theorem. Let the hypotheses and notation be as in 1.1.

- (i) Let M_1 and M_2 be distinct maximal ideals of R. Then $\text{Ext}_S^*(S/SM_1, S/SM_2) = 0$.
- (ii) V_0 is a polynomial algebra in (n-s) variables over R/M.
- (iii) There is a sequence $\{x_1, \ldots, x_s\}$ of elements of M, whose images in R_M form an R_M -sequence, such that, as right V_0 -modules,

 $\operatorname{Ext}^{i}_{S}(S/SM, S/SM) \cong \operatorname{Ext}^{i}_{\bar{R}}(R/M, R/M) \otimes_{R} V_{0},$

for all $i \ge 0$, where $\overline{R} = R/\langle x_1, \dots, x_s \rangle$. If R is M-adically complete, then \overline{R} is isomorphic to the centraliser in R of Δ .

1.3. There is a special case of the above result which is well-known, (although we have not been able to find an explicit statement of it in the literature). Namely, let X be a non-singular affine variety over an algebraically closed field K characteristic 0, let $R = \mathcal{O}(X)$ be the ring of regular functions on X, and let M be a maximal ideal of R. Let D be the ring of differential operators on X. Then $\operatorname{Ext}_{D}^{p}(D/DM, D/DM)$ is K for p=0, and 0 for p>0. For, we may replace R by its M-adic completion (as in 3.1); in doing so

we replace D by $\hat{D} = K[[X_1, ..., X_n]][\partial/\partial X_1, ..., \partial/\partial X_n]$ [2, Ch. 3, Lemma 1.5], and the result for \hat{D} can be obtained by a much simplified version of the proof given below—essentially only 2.1 and 3.1 are needed.

1.4. Routine arguments using Shapiro's Lemma [1, page 109] or [5, Theorem 11.65] show that, if $R/M \cong K'$, (so $\dim_K K' = m < \infty$ by hypothesis), we can, in proving 1.1 (ii) and (iii), replace R by $R' = K' \otimes_K R$ and S by $S' = K' \otimes_K S$, so that $K' \otimes_K (R/M)$ is the direct sum of m copies of K'. We leave the details of these reductions to the reader. We shall assume throughout Sections 3 and 4 that R/M = K.

1.5. The proof of the theorem is organised as follows. A result on injective hulls of simple R-modules is obtained in Section 2, and this is used to handle linearly independent derivations in Section 3, first for the easier case where R is complete, and then in general. The main result is proved in Section 4.

2. The injective hull of the residue field of a local ring

Lemma 2.1. Let K be a field, let X_1, \ldots, X_s be commuting indeterminates, and put $A = K[[X_1, \ldots, X_s]]$. Let $D = A[Y_1, \ldots, Y_s]$, where $[Y_i, Y_j] = 0$ and $[Y_i, a] = \partial a/\partial X_i$, for $1 \le i$, $j \le s$ and $a \in A$. Let M be the maximal ideal of A. Then D/DM is isomorphic to $E_A(K)$ as A-modules.

Proof. By [1, p. 173, ex. 32], $E_A(K)$ is isomorphic to $K[Y_1, \ldots, Y_s]$, where $X_j \cdot p(Y) = \partial_P / \partial Y_j$ for $1 \le j \le s$ and $p(Y) \in K[Y_1, \ldots, Y_s]$. Now D/DM has K-basis afforded by the monomials in $\{Y_1, \ldots, Y_s\}$; and if τ is one such monomial, $X_j(\tau + DM) = (-\partial \tau / \partial Y_j + DM)$ for $1 \le j \le s$. The result follows.

Lemma 2.2. Let R_1, R_2 be commutative Noetherian rings containing a subfield K. For i=1, 2, let M_i be an ideal of R_i with $R_i/M_i \cong K$, and set $E_i = E_{R_i}(R_i/M_i)$. Let $R = R_1 \otimes_K R_2$ and $E = E_1 \otimes_K E_2$ (so E is an R-module in the obvious way). Then $E = E_R(R_1/M_1 \otimes R_2/M_2)$.

Proof. Let $G = \operatorname{Hom}_{R_1}(R_1/M_1, -)$, so if X is an R-module, $GX = \{x \in X : M_1x = 0\}$, and G is a left exact functor from R-modules to R_2 -modules. Note that if X is R-injective, then GX is R_2 -injective. Let $F = \operatorname{Hom}_{R_2}(R_2/M_2, -)$, a left exact functor from R_2 -modules to abelian groups.

Apply the five term exact sequence of cohomology [5, Theorem 11.2] to obtain

$$\operatorname{Ext}_{R_2}^1(R_2/M_2, \operatorname{Hom}_{R_1}(R_1/M_1, E)) \to \operatorname{Ext}_R^1(R/I, E) \to \operatorname{Hom}_{R_2}(R_2/M_2, \operatorname{Ext}_{R_1}^1(R_1/M_1, E))$$

where $I = M_1 R + M_2 R$. The two outside groups are zero, and hence so is $Ext_R^1(R/I, E)$. Since E is clearly an essential extension of R/I, this is sufficient to ensure that E is injective, by the Artin-Rees theorem [6, p. 255, Theorem 4'].

Corollary 2.3. Continue with the notation of 2.2. Let $0 \rightarrow R_1/M_1 \rightarrow E_1^*$ be a minimal injective resolution of R_1 -modules. Then

(*)
$$0 \rightarrow R_1/M_1 \otimes_K E_2 \rightarrow E_1^* \otimes_K E_2$$

is a minimal R-injective resolution of E_2 , where E_2 is viewed as an R-module with $M_1E_2=0$.

Proof. Each term in E_1^* is a finite direct sum of copies of E_1 , so each term of $E_1^* \otimes E_2$ is R-injective by 2.2. The sequence (*) is exact because K is a field, so it is an *R*-injective resolution of E_2 . If $d_i: E_1^i \to E_1^{i+1}$, then socle $(E_1^{i+1}) \subseteq im d_i$ by hypothesis, so

socle $(E_1^{i+1} \otimes E_2) =$ socle $(E_1^{i+1}) \otimes E_2 \subseteq$ im $(d_i \otimes 1);$

hence (*) is a minimal resolution.

3. Linearly independent derivations

3.1. Throughout Sections 3 and 4 the notation will be that introduced in 1.1. As noted in 1.4, we shall assume that R/M = K. Moreover, let \hat{R} denote the M-adic completion of R. The derivations $\{\delta_i\}$ extend to a set of commuting derivations of \hat{R} , which we denote by the same notation. We can thus form the ring of differential operators $\hat{R}[\mathbf{X}; \Delta] := \hat{S}$.

Let V [resp. \hat{V}] be the idealiser of SM in S [resp. of $\hat{S}M$ in \hat{S}], and let $V_0 = V/SM$ [resp. $\hat{V}_0 = \hat{V}/\hat{S}M$]. Using the fact that each element of S/SM is killed by a power of M, it is easy to check that $\hat{V} = V + \hat{S}M$, so that, as rings, $V_0 \cong \hat{V}_0$.

Lemma. Let the notation be as in 1.1 and above.

- (i) Let M_1 and M_2 be distinct maximal ideals of R. Then $\text{Ext}_S^i(S/SM_1, S/SM_2) = 0$.
- (ii) As left R- and right V_0 -modules,

$$\operatorname{Ext}_{S}^{*}(S/SM, S/SM) \cong \operatorname{Ext}_{R}^{*}(R/M, S/SM)$$
$$\cong \operatorname{Ext}_{R}^{*}(\widehat{R}/\widehat{R}M, \widehat{S}/\widehat{S}M)$$

$$\cong \operatorname{Ext}_{\hat{R}}^{*}(\hat{R}/\hat{R}M, \hat{S}/\hat{S}M)$$

$$\cong \operatorname{Ext}^{*}_{S}(\widehat{S}/\widehat{S}M, \widehat{S}/\widehat{S}M).$$

Similar identifications can be made with $S_M := R_M[X;\Delta]$ in place of \hat{S} .

Proof. By [1, p. 109] or [5, Theorem 11.65].

 $\operatorname{Ext}_{S}^{i}(S/SM_{1}, S/SM_{2}) \cong \operatorname{Ext}_{R}^{i}(R/M_{1,R}|S/SM_{2}).$

Each element of the right hand module is annihilated by M_1 and by some power of M_2 , so (i) follows at once. The above isomorphism also yields the first and third isomorphisms of (ii). Since

$$\operatorname{Ext}_{\hat{R}}^{*}(\hat{R}/\hat{R}M,\hat{S}/\hat{S}M)\cong\hat{R}\otimes_{R}\operatorname{Ext}_{R}^{*}(R/M,\hat{S}/\hat{S}M)$$

$$\cong \operatorname{Ext}_{R}^{*}(R/M, S/SM),$$

by [5, Theorem 11.65] for the first isomorphism and the comments above the statement of the lemma for the second, we also obtain the second isomorphism of (ii).

3.2. Each $\delta_i \in D$ induces an element δ_i^* of $\operatorname{Hom}_R(M/M^2, R/M)$. Let $s = \dim_K \operatorname{span} \{\delta_i^*: 1 \le i \le n\}$; this is the differential codimension of M with respect to Δ [3, Proposition 2.1]. Renumber Δ so that $\delta_1^*, \ldots, \delta_s^*$ are linearly independent, and put $T = R[X_1, \ldots, X_s]$. Choose $x_1, \ldots, x_s \in M$ with images in M/M^2 forming part of a dual basis to $\delta_1^*, \ldots, \delta_s^*$. Put

 $I = \{r \in R : cr \in \langle x_1, \dots, x_s \rangle$, for some $c \in R \setminus M\}$, and $\overline{R} = R/I$.

Proposition. Ext^{*}_T $(T/TM, T/TM) \cong Ext^*_{R}(R/M, R/M)$.

Proof. Assume first that R is complete. Put $R_1 = \{r \in R: \delta_i(r) = 0, 1 \le i \le s\}$. Since char K = 0, $R = R_1[[x_1, \ldots, x_s]]$ by [4, Section 4, Theorem 2 and remark at end of section]. Being an image of R, R_1 is a complete local ring with maximal ideal M_1 , say. Put $Q = M_1 R$.

Thus TQ = QT is an ideal of T and $R = R_1 \otimes_K R_2$ where $R_2 = R/Q = K[[x_1, \dots, x_s]]$, so that $T/TQ = K[[x_1, \dots, x_s]] [X_1, \dots, X_s]$. Let M_2 be the ideal $\langle x_1, \dots, x_s \rangle$ of R_2 . By 2.1, TTM is the $K[[x_1, \dots, x_s]]$ -injective hull of $K = R_2/M_2$. Therefore, in the notation of 2.3,

$$\operatorname{Ext}_{T}^{*}(T/TM, T/TM) = \operatorname{Ext}_{R}^{*}(R/M, T/TM), \quad \text{by [5, 11.65]},$$

$$= \operatorname{socle}(\mathbf{E}_{1}^{*} \otimes_{K} T/TM), \quad \text{by 2.3}$$

$$= \operatorname{socle}(\mathbf{E}_{1}^{*} \otimes_{K} K)$$

$$= \operatorname{Ext}_{R_{1}}^{*}(R_{1}/M_{1}, R_{1}/M_{1}). \quad (1)$$

Now drop the hypothesis that R is complete. The elements x_1, \ldots, x_s of \hat{R} chosen above can be taken in R, so that $R\langle x_1, \ldots, x_s \rangle \cap R = I$ [6, p. 257, Corollary 2]. Thus the subring R_1 of \hat{R} defined above is just the $M/\langle x_1, \ldots, x_s \rangle$ -adic completion of \bar{R} [6, p. 258 Corollary 2], and so

$$\operatorname{Ext}_{R_{1}}^{*}(R_{1}/M_{1}, R_{1}/M_{1}) = \operatorname{Ext}_{R}^{*}(R/M, R/M).$$
(2)

The result follows from (1), (2) and 3.1.

4. The main result

4.1. We retain the next three paragraphs the notations of 1.1, 3.1 and 3.2. For $s+1 \le i \le n$, $1 \le j \le s$ there exist elements r_{ii} of K such that

$$\delta_i^* = \sum_{j=1}^s r_{ij} \delta_j^*.$$

Set $Y_i = X_i - \sum_{j=1}^{s} r_{ij} X_j \in S$, for $s+1 \leq i \leq n$. Since

$$\left(\delta_i - \sum_{j=1}^s r_{ij}\delta_j\right)(M) \subseteq M,\tag{3}$$

for $i \ge s+1$,

$$[Y_i, M] \subseteq M. \tag{4}$$

It follows that the subring $U = \langle SM, Y_{s+1}, \dots, Y_n \rangle$ of S is contained in the idealiser V of SM. Since the monomials $\{X^I: I = (i_1, \dots, i_s) \in \mathbb{N}^s\}$ form a free right generating set for S/SM as a right U/SM-module, it follows easily that

$$V = \langle SM, Y_{s+1}, \ldots, Y_n \rangle$$

so that

$$V_0 := V/SM = K[Y_{s+1}, \dots, Y_n]$$

is a polynomial algebra over K (proving (ii) of the theorem).

Lemma 4.2. (i) With the notation of 4.1,

$$S/SM \cong T/TM \otimes_{K} V_0 = T/TM \otimes_{R} V_0$$

as $(T - V_0)$ -bimodules.

(ii) Let W be a finitely generated left T-module. Then, as right V_0 -modules,

 $\operatorname{Ext}_{T}^{*}(W, T/TM) \otimes_{R} V_{0} \cong \operatorname{Ext}_{S}^{*}(S \otimes_{T} W, S/SM).$

Proof. (i) It is easily checked that the map $\psi: S/SM \to T/TM \otimes_K V_0$ given by $\psi((X^I + SM)v) = (X^I + TM) \otimes v$, $(v \in V_0)$, is a well-defined bimodule isomorphism. The second equality holds since T/TM and V_0 are annihilated by M.

(ii) Let C be a left T-module. Define a map

$$\Theta$$
: Hom_T(C, T/TM) $\otimes_R V_0 \rightarrow$ Hom_S(S $\otimes_T C$, S/SM)

K. A. BROWN AND T. LEVASSEUR

by setting, for $s \in S$, $v \in V_0$, $c \in C$ and $f \in \text{Hom}_T(C, T/TM)$,

$$\Theta(f \otimes v)(s \otimes c) = s\psi^{-1}(f(c) \otimes v).$$

Routine checks confirm that im Θ consists of S-homomorphisms, and that Θ is a homomorphism of right V_0 -modules.

We note next that

when
$$C = T^{(n)}$$
 is free, Θ is an isomorphism. (6)

For in this case, as right V_0 -modules,

 $\operatorname{Hom}_{T}(C, T/TM) \otimes_{R} V_{0} \cong (T/TM \otimes_{R} V_{0})^{(n)},$

and

$$\operatorname{Hom}_{S}(S \otimes_{T} C, S/SM) \cong (S/SM)^{(n)},$$

and one sees that Θ is just the sum of *n* copies of the isomorphism of (i).

The proof now continues along familiar lines. Let W be a finitely generated left T-module, and let

$$\mathbf{F}_{\star} \to W \to 0 \tag{7}$$

be a resolution of W by finitely generated free T-modules. Apply $\operatorname{Hom}_T(-, T/TM) \otimes_K V_0$ to (7); as K is a field the resulting complex has cohomology

$$\operatorname{Ext}_{T}^{*}(W, T/TM) \otimes_{K} V_{0}.$$
(8)

On the other hand, if we apply $\operatorname{Hom}_{S}(S \otimes_{T} - S/SM)$ to (7), then since S is a free T-module we get the complex $\operatorname{Hom}_{S}(S \otimes F_{*}, S/SM)$, with cohomology

$$\operatorname{Ext}_{S}^{*}(S \otimes_{T} W, S/SM).$$
(9)

Notice that the groups (8) can be denoted

$$\operatorname{Ext}_{T}^{*}(W, T/TM) \otimes_{R} V_{0}, \tag{10}$$

because $\operatorname{Hom}_{T}(\mathbf{F}_{*}, T/TM)M = \operatorname{Ext}_{T}^{*}(W, T/TM)M = MV_{0} = 0$. The desired isomorphism now follows from (9), (10) and the isomorphism

$$\operatorname{Hom}_{T}(\mathbf{F}_{*}, T/TM) \otimes_{R} V_{0} \cong \operatorname{Hom}_{S}(S \otimes_{T} \mathbf{F}_{*}, S/SM)$$

of right V-modules given by Θ .

46

4.3. Proof of Theorem 1.2. Parts (i) and (ii) have already been proved in 3.1(i) and 4.1. By Lemma 4.2(ii) and Proposition 3.2,

$$\operatorname{Ext}_{S}^{*}(S/SM, S/SM) \cong \operatorname{Ext}_{T}^{*}(T/TM, T/TM) \otimes_{R} V_{0}$$

$\cong \operatorname{Ext}_{R/I}^*(R/M, R/M) \otimes_R V_0,$

where $I = \{\tau \in R : c\tau \in \langle x_1, \dots, x_s \rangle, c \in R \setminus M\}$, and these are isomorphisms of right V_0 -modules. Moreover, both $\operatorname{Ext}_{R/I}^*(R/M, R/M)$ and $\operatorname{Ext}_{R}^*(R/M, R/M)$ are isomorphic to $\operatorname{Ext}_{R_M}^*(R_M/M_M, R_M/M_M)$, so (iii) follows.

Acknowledgement. Most of this work was carried out while the second author was visiting the University of Glasgow in July 1985, with financial support from the U.K. S.E.R.C. and the Centenary Fund of the Edinburgh Mathematical Society.

REFERENCES

1. N. BOURBAKI, Algèbre Commutative, Chapter X (Masson, Paris, 1983).

2. J.-E. BJORK, Rings of Differential Operators (North-Holland, Amsterdam, 1979).

3. K. GOODEARL and T. H. LENEGAN, Krull dimension of differential operator rings IV—multiple derivations, Proc. London Math. Soc. (3) 47 (1983), 306–336.

4. J. LIPMAN, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874-898.

5. J. ROTMAN, An Introduction to Homological Algebra (Academic Press, New York, 1979).

6. O. ZARISKI and P. SAMUEL, Commutative Algebra, Volume II (Van Nostrand, Princeton, 1960).

DEPARTMENT OF MATHEMATICS University of Glasgow Glasgow G11 5HF Scotland DEPARTEMENT DE MATHÉMATIQUES Université de Paris VI Tour 45-46-5° 4 place Jussieu Paris France