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Abstract. We consider a special class of solutions of the BKP hierarchy which
we call T-functions of hypergeometric type. These are series in Schur Q-functions over
partitions, with coefficients parameterised by a function of one variable &, where the
quantities &(k), k € Z*, are integrals of motion of the BKP hierarchy. We show that
this solution is, at the same time, a infinite soliton solution of a dual BKP hierarchy,
where the variables &(k) are now related to BKP higher times. In particular, rational
solutions of the BKP hierarchy are related to (finite) multi-soliton solution of the dual
BKP hierarchy. The momenta of the solitons are given by the parts of partitions in
the Schur Q-function expansion of the t-function of hypergeometric type. We also
show that the KdV and the NLS soliton r-functions coinside the BKP t-functions of
hypergeometric type, evaluated at special point of BKP higher time; the variables &
(which are BKP integrals of motions) being related to KdV and NLS higher times.

2000 Mathematics Subject Classification. 35Q51, 35Q58, 0SE0S.

1. Introduction. The BKP hierarchy was introduced in [1, 2] as a particular
reduction of the KP hierarchy of integrable equations [1, 7]. Like the well-known
KP hierarchy, the BKP hierarchy possesses multi-soliton and rational solutions. In
[3, 4], the role of projective Schur functions (Q-functions) [6] in obtaining rational
solutions of the BKP hierarchy was explained. In fact, the Q-functions are polynomial
t-function solutions of the BKP hierarchy Hirota equations and these are connected
to the rational solutions through a change of dependent variables.

In [9], certain hypergeometric series in Q-functions (see (85) below) were shown to
be t-functions of the BKP hierarchy. These t-functions are series of the form

Tt £, ) = ) X150, (3t,)0i (3", (1)

reDP

where § = {§,, : m =1, 2,...} are arbitrary parameters, & = 0, Q, denote projective
Schur function, and the sum is over the set DP of all partitions A = (A1, A2, ..., Ag)
with distinct parts A; > Ay > --- > Ax > 0. Considered as a function of the variables
t, = (t1, 13, ...), series (1) is a BKP t-function, where the set t, are higher BKP times.
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The second set of parameters t; = (1], #3, ...) give the evolution in a second BKP

hierarchy.

REMARK 1. Consider a set S, which consists of distinct non-negative integers and
includes zero. By DPg we denote the subset of all strict partitions whose parts belong
to the set S. By the limiting procedure: e — 0 iff k does not belong to the set S, we
can restrict the sum in (1) to the set DPg. If S is a finite set, then (1) is a polynomial in
t, which describes a rational solution of the BKP hierarchy.

The typical choice of the BKP higher times is the following:

N N*

mt, = Z (xf(" — (—xk)m) , mt, = Z (yf - (—yk)m) . 2

k k

In this case the sum in (1) ranges over all partitions whose length do not exceed
k = min(N, N*).

We note that a special case of this series (1), where times were chosen as in (2), and
¢5n was chosen as a step function, was considered in [16] in a combinatorial context,
not related to integrable systems.

In the present paper, we will specialize the variables t as t., = (1,0,0,...), and
study the t-function (1) as a function of the variables &,,. We find that series (1) is
a multi-soliton t-function of a different integrable hierarchy, which we call the dual
BKP hierarchy. The variables &,, of (1) turn out to be linear combinations of the time
variables t, = (71, 73, . . .) of the dual BKP hierarchy. We observe that the variables &,,
(proportional to the times of the dual BKP hierarchy) are integrals of motion of the
original BKP hierarchy and, simultaneously, the times t, of the original BKP hierarchy
are integrals of motion of the dual BKP hierarchy. That is why we call these hierarchies
dual to one another.

The situation we will describe is closely related to corresponding results for the
hypergeometric t-functions of the KP hierarchy. These t-functions are described as
hypergeometric because they generalize some known hypergeometric functions of
many variables, see [18, 19]. We note that the KP hypergeometric t-functions yields a
perturbative asymptotic expansion for a set of known matrix integrals [10, 27]. They
were also used to construct new solvable matrix integrals [28, 29]. Other examples of
hypergeometric t-functions arise in supersymmetric gauge theories [20], [21], in the
problem of counting of Hurwitz numbers [22], in counting Gromov-Witten invariants
of P! [23] and in the computation of intersection numbers on Hilbert schemes [24]. In
references [30, 31], -functions, which were considered in the context of ¢ = 1 strings,
are also of hypergeometric type. The series for two dimensional QCD, considered in
[25, 26], may be related to the KP hypergeometric t-functions also. We anticipate that
applications of similar series in Q-functions are found also.

The series (1) can be studied in the context of random strict partitions. Series (1)
generalizes the sums over random partitions which are considered in [16].

With regard to notation used in this paper, we will use infinite sequences of higher
times

t=(t,t,t3,...), t'=({.6.45,..), 3)
t,=(t1,13,t5,...), €= 10516..), 4)
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and, when they appear as higher times in dual equations will be marked with a tilde.
Special cases of these, t,, and t,(¢), will be defined in (80) and (81) below.

2. KP and BKP z-functions. In this section we will summarise the essential facts
about t-functions for the KP and BKP hierarchies as given in [1]. The definitions of
terms related to symmetric functions may be found in [6].

2.1. Schur functions as KP z-functions. Let 4 be the complex Clifford algebra
generated by the charged free fermions v;, V¥, where i € Z with anticommutation

i

relations
[V, wj]+ = [1//,‘*7 1/fj*]Jr =0, [V wj*]+ = 4. (%)
Consider also the generators
V) =Y vk, v =) gt (6)
keZ keZ

The vacuum expectation value is a linear functional ( ): 4 — C. For linear and
quadratic elements in 4 it is defined by (y;) = (¥]) = (Y;¥;) = (Yry) =0 and

* 3, i<0
<¢iwj>={01 20

(Sl‘yj i>0

W) = {0 o )

For an arbitrary product of linear terms in 4, Wick’s Theorem gives

(Ofwy -+ - w2p11|0) = 0,

(Ofwy -+~ wal0) = Y sgn(0)(0]we (1) Wo)[0) -+ (O won-1yWo@n[0).  (8)
where wy are linear terms in A, and o runs over permutations such that o(1) <
0(2),...,02n—1)<o(2n),ando(l) <o(3) <---<o@n—1).

The connection between the anticommutation relations and the vacuum expect-

ation value is that [w, wa]y = (wiws) + (wowy).
For free fermion generators with |p| # |¢|,

1
W) =——:. ©)
P—4q
and for higher degree products, Wick’s Theorem gives

(W)Y (q1) - Y (p)¥™(gn)) = det((Y ()Y (4))))
_ 1 (i — p)(qi — q)) 10
_Hpi_‘Iil_[(Pi_‘Ij)((]i_pj). (1

i<j

Time evolution enters 4 via the hamiltonian

HO) = Y Huty, (11)

n=1
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where
Hy =Y Wi, (12)
keZ
For any a € A, we define
a(t) = e"Wae™HO = exp(ad H(1)) a, (13)

and it may be shown that

Y (p)(t) = expE(p. )Y (p), ¥ (9)t) = exp(—§(q. )Y (q), (14)

where &(p, t) = Y po ) Pt
Consider g € 4, which solves the following bilinear equation

[g@g, > wn@uﬂ;‘} =0, (15)

where the notation [, ] stands for the commutator, and ® is the tensor product. Then,
one has a r-function

T(t) = (g(1). (16)

The simplest type of t-functions correspond to multi-soliton solution of the KP
hierarchy. Taking g = exp(Z;’: I aiw(p[)w*(q[)) gives the n-soliton t-function

T(t) = det <8,-,_,» + i q_ef@f")ﬂ%’”) , (17)
i j

where
Ep )= pin (18)
m=1

Later, we will also need the soliton solution of the two-dimensional Toda lattice
equation (TL) [32], which is described by almost the same formula

t(n, t, %) = A(t, t*) det (51"]' n Aai qleé(p,‘,n,t,t*)f(l],‘,n,t,t*)) , (19)
i~ 4
where
E(p,n, t,t*) = i (Pt —p~"t3) + nlogp (20)
m=1
and
A(t, t°) = eXon= Ml (1)

which is usually omitted from the definition of the TL t-function [32] since the
transformation to nonlinear variables removes it from the TL solution. We will also
neglect this term for the same reason. It is well-known [32], that any TL z-function
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is a t-function of the pair of KP hierarchies with higher times respectively t and t*.
There exists a reduction to the one-dimensional TL, which yields also a reduction to
the nonlinear Schrodinger equation. This reduction is described by the demand that
the z-function of the two-dimensional TL (up to the irrelevant factor (21), depends
only on t + t*. It is provided by the condition ¢; = p; ! in (19) and we will use it in what
follows. We shall also use the reduction to KdV, namely the choice ¢; = —p; in (17).
The KdV r-function depends only on the odd index KP higher times, that is, on the
sequence t,.

Polynomial z-functions are obtained by considering expansions in the parameters
pi and g;. First, elementary Schur polynomials s;(t) are defined by

exp((p. 1) = Y _ si(t)p". (22)
k>0
Since
1 =expE(p, ) exp(—E(, ) = Y Y s j(Os;(—t)p', (23)
=0 j=0

we have the orthogonality condition
i
> s f(Os;(—t) = 8. (24)
Jj=0
For all non-negative integers we can define
b a
San(® = (=" sar1k®5- (=) = (= DY " 510501541 -£(—1). (25)
k=0 k=0

This is the Schur function for the partition (a + 1, /), which is written using Frobenius
notation as (a|b). This result is easily proved using the Jacobi-Trudi identity. For any
partition function written in Frobenius notation,

S(aras.ranlbrba.. ) () = det (S s))- (26)

Using this notation, (14) gives

Vi) =Y s OVik YO =D si(—0y7 (27)
k>0 k>0
Consequently,
i—j
WOV O) = Y skOse(—OWi k¥ ) = D s(Osij_x(—1). (28)
k=0 k=i+1
Hence we see that
San(® = (=D WOy, (1), (29)
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that is that s is the KP r-function for g = (—1)b“wawib_l. More generally, this
shows that an arbitrary Schur function S, ...q,s,.-5,), 1S @ KP t-function for

g= (_1)b1+‘..+bn+n¢al Wfbl—l . ‘/’a,ﬂﬂib,,—l-

2.2. QO-functions as BKP t-functions. The subalgebra of A4 invariant under the

symmetry
¥ < (D', (30)
is used in a similar way to determine BKP t-functions. There are two bases of neutral
free fermions
1 ‘ A i ;
i = T = i—i——lli[, i = =Y — _111‘, 31
) ﬁ(w (=DWZ). ¢ ﬁ(llf (=D'¥Z) (3D

where i € Z, each of which generates this subalgebra.
Using the results for charged free fermions, the anticommutation relations are

[¢i, djls = [, $le = (=18, [b1, djl4 =0, (32)

and, in particular, 3 = ¢ = 1. Similarly, the vacuum expectation values of quadratic
elements are given by

o (—1)1'5,"_] i<O0
(Biy) = (idy) = { 3870 i=0, (33)
0 i>0

and Wick’s Theorem is used for arbitrary degree products.
The neutral free fermion generator is defined by ¢(p) = >, ., p"¢». We have (for

Ipl # 1p'])
($PIP() = S 2L, (34)
and (¢(p")p(p)) = —(¢(p)P(p')). By Wick’s Theorem we get
. . 2-N2 Pi— N even
GENo) - (px)) = {ngJW»» = 5, o .69
0 otherwise

The connection between the charged and neutral free fermions can be expressed
in terms of the generators as

—qy PV (—q) + pY( @V (—p) = d(P)d(q) + ¢(P)d(q). (36)

In the BKP reduction, even times are set equal to zero and we define t, =
(11,0, 13,0, 5, ...), and the hamiltonian

Ho%t,)= Y HPi, 37

i>1, odd
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where

Hy =5 3= dip—i.

ieZ
For the fermion generating function one has
P(Pt,) = e Wp(p)e ") = Mg ple= ') = 1)),
Note also that
H(t,) = H"(t,) + A%(t,),  [H"(t,). H®(t,)] = 0.
Similar to the KP case, BKP t-functions are defined by

T8(t,) = (A(t,)),

155

(38)

(39)

(40)

(41)

where / is the Clifford algebra of the neutral free fermions ¢,. The n-soliton r-function

is obtained by the choice g = exp(}_r_; @id(p)d(q:))-
The Schur ¢g polynomials are defined by

expE(p, 1) = Y ai(to)p".

k>0
Thus
¢i(ty) = Z dk (%tu) Gitk-
k>0
We have
J
(@i(to)d(6)) = 34i (3t) 4 (3t) + Y _ (=D qrsi (3t) g (3t0) -
k=1
Since

(42)

(43)

(44)

1= exp(2&(p, t,)) exp(—28(p, ) = Y qilto)gj-i(—t) = Y (=17 qilto)gj—(to)p,

ij ij
for all n > 0 we have
> (= 1)qi(t))gn—i(t,) = 0.
i=0

This is trivial if n is odd and if n = 2m is even then it gives

Gn(t0)” +2 D (=1 g x(to)gm-i(t,) = 0.
k=1

We can also define

b

qa,b(to) = qa(to)Qb(to) +2 Z(_l)kQa-‘rk(to)qb—k(to)-
k=1

https://doi.org/10.1017/50017089505002363 Published online by Cambridge University Press

(45)

(46)

(47)

(48)


https://doi.org/10.1017/S0017089505002363

156 J.J.C. NIMMO AND A. YU. ORLOV

If follows from the orthogonality condition (46) that

qa.b(to) = —qb.4(t,), (49)
and in particular, ¢, ,(t,) = 0. Comparing (44) and (48), it is clear that
Qa,b(%to) = 2(¢a(to)Pn(t,)). (50)

Now consider A = (A1, Ay, - -+, A2y) Where A; > Ay > -+ Ao > Ay, > 0. Note
that this is a partition with an extra trivial part 0 included if necessary to ensure that
the number of parts is even. The set of such strict, or distinct part, partitions is denoted
DP. For A € DP we define

0:(3t) = Pf (93, (3t))- (5D
This is the Schur Q-function. By Wick’s theorem,

05 (3t0) = PEQ{gy,(t)s, (t))) = 2" (b3, (t) i, (8) - - - b, (8)).

2.3. Hypergeometric 7-functions. These t-functions were introduced by one of
the authors in the KP case [8] and the BKP case [9].

In the KP case, let r be a function of one variable and for any partition A, let
r(x) = H(i, Hen r(x — i +j), the product being over all vertices in the Young diagram.
Then

T(n, 6, €)=Y 1 (ms(Os,(t) (52)
A

where t = (11, 12, t3,...), t* = (#], 5, 15, .. .), is the KP hypergeometric r-function.

In the BKP case, r, has a different definition: if A = (Aq,..., Ax) then ry, =
TS, (()rQ2) - - (). If we introduce new variables r(k) = ¢ %1, &, =0 then
7 = 1_[6()‘) eé»\i
A i=1

With these definitions,

20

Tl £,6) = 3 270, (5t) 0 (36) = D 2 V[ 0i(3t) 2:(3t)
reDP reDP i=1

(53)

is the BKP hypergeometric t-function. By Remark 1 one can restrict sum (53) to the
sum which ranges over DPg.
It can be show that this is a T-function since

Tty &, 1) = [0St oot g0V 0013 it o 1 ) (54)
3. Main results.

3.1. KP infinite soliton solution. Let

g =exp ( > ai,jw(pi)w*(qj)) (55)

ij=0
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Then
o= (g°(1) .
- Zj Py @GO + %‘l(m”'“’w — @) ) @ ()Y (@) (o)
=1+ Z () = APH=6a.0
+:%:z (k ’> (pi— q])l(pk — 1) EZ Zf))((tj]] png F T O o
where

y
(k’ z)’ (57)

denotes the 2 x 2 minor of the infinite matrix (a;;) containing the ith and jth rows and
the kth and /th columns.
If a;; = s((t*) then the coefficients can be written as

(1) (58)

for all partitions A.

3.2. KdV soliton solution. The KdV reduction of the KP soliton solution (17),

84y = exp (Z aipilﬂ(Pi)lﬂ*(—Pi)> ; (59)

>0

gives rise to the following soliton t-function, which depends only on the higher KP
times with odd numbers t, = (#1, t3, ts, .. .),

tsol — gsol (t ) det (5 4 aipi 5 (pisto)— &(=pi. to))
KdVv < Kdv\te > b Di +pj

1 (pi— _
= 1+Z e’h+222 o +p)2 et (60)

) 1 (pi = p)(pi = P)* (0 = Pi)’ I 4

i>j=k 3 (pl +pj)2(P1 +Pk)2(P/ +Pk)2

where

o0
ni=2Y twap" +loga;, i=0,12 ... (61)
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REMARK 2. We note that the fractional linear transformation of the (complex)
plane of spectral parameters p; € C

i+ b
> PED 420, b0 or ad#£0, b=c=0., i=12 ..
cpi+d
(62)
leaves invariant the factors
(Pi_Pj)2 ..
= j=12,.... (63)
(pi +p)?

3.3. NLS and one-dimensional Toda lattice soliton z-function. Let us consider
the reduction of the TL soliton t-function (19) to the one-dimensional Toda lattice
(1DTL) reduction, which is ¢; = p;'!, see [32]. If, in addition, |p;| = 1, then, it is also
a reduction to the nonlinear Schrodinger equation (NLS). For the multi-soliton tau
function we have

€ibrL = exp (Z %(Pi —pil)llf(pi)w*(pil)) (64)

=0

TRt ) = Ti0p (n, t+ t7) =

~1
ai\pi — D; ) —E(p bt
— (g?%n(”v t, t*)) — det (31_,]_ + ’( ! il)eé(pl,n,t,t )—&(p; .t ))

2(p,- -p)
i 1 (p[ [+ j
= 1+Z e +§22(pp _1)2e" g
=)’ Pi =P (P =P e
+ et 4 (65)
,>,Z>k 2 (Psz = D*(pipi = D*(pipr — 1
Wheret:(llatZa t35"')7 _(t15t27t37‘ ')’ and

ni= > (P! = pi")(tm+ 1) + 2nlogp; +loga;, i=0,1,2,... (66)

m=1

For the nonlinear Schrodinger equation the n-dependence of the t-function is
irrelevant.

REMARK 3. Here, the fractional linear transformations

api+b
bpi+a

P+ . i=01,2,... (67)

where a = 0 or b = 0, but not both, leave invariant the factors

(pi— l’j)2

my i,j:0,1,2,.... (68)
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3.4. BKP infinite soliton solution. Now writing ¢; = —p; and choosing skew-
symmetric matrix entries a;; = —a;; in (55) gives
gl =exp | Y ai(—py (v (=p) + pir(pp)V(=p) | - (69)
0<i<j

By (36) this may be rewritten as
gl =exp | D aii(d(p)(p) + S(p)d(p) | - (70)
0<i<j
Since [¢;, ¢3j]+ =0, [Pk, (/3_,-(131] = 0 and so we can factorize as g = hh where
h=exp | Y ayo(pd(p) |. h=exp | aid(p)d(p) | (71)
i<j i<j
Then, we have

() = (h(t,)) = (A(t,))
=1+ > aij¢(p)o(p)(t))

0<i<j
+ > (aars — aiays + aiia) e (pd(p)$(POB(p()) + - -
O<i<j<k<l
=1+ Z (i’j)%%eii(m,u)+§(ﬁj,tn)
0<i<j

.. 1 (pi = P)(Pk = D1 ¢yt t t
+ (l,_], k, l)— g ei"([h, u)+§(1’/!tu)+§([7ks o) TE(pt,) + e
Z 22 (pi+p)(pi + p1)

0<i<j<k<l

(72)
where
@i, j, k, D), (73)

denotes the pfaffian minor of the infinite skew-symmetric matrix (a;;) containing the
ith, jth, kth and /th lines. Using (40) gives

TSOI(to) = T}_!S;)l(to)z' (74)

Ifa;; =q; j(%tz) then the coefficients can be written as

0, (5t%) (75)
for all partitions A into distinct parts.
REMARK 4. The factors
)PP kD (pi = PPk — p1) ’
Pi+p; (i + p)(pr + p1)
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in (72), are invariant under the transformation

ap; +b

P — , 1=0,1,2,..., 76
? cpi+d (76)
dij —> ydij , l,] = 0, 1,2, ey (77)
where a, b, ¢, d are complex numbers such that a=d =0,b, c A0 ora,d #0, b=
c=0
ad+bc
T =y(=%D) (78)

REMARK 5. Although the free fermion generator is not defined if its parameter is
0, i.e. ¢(0) does not make sense, the limit

pl,ig})(qﬁ(pw(p')) =3 (79)

as given by (35), is well defined.

3.5. Useful Lemma. Let us introduce the following notation:

tew =(1,0,0,0,...), (80)
and

to(q) = (11(q9), 13(q), 15(q), - - ), Tam—1(q) = W
f =0, m=1,2, ... 31)

REMARK 6. Let us notice that t,, can be viewed as given by (2), where we take
X]=Xxy=---=xy=N""and N — oo. Similarly, t,(¢) is given by (2), where x; =
¢ k=1,2,.... As for t, if f satisfies f(ct1, 13, ts,...) = f (11, 13, 5, ...) for
some d € Z, we have hf(t,(q)) — f(ts) as h :=logg — 0. In that sense (80) may be
considered as a limit of (81) as ¢ — 1.

We have the following result.

LEMMA 1. Let & = (Aq, ..., Ax) be a strict partition. Then
ko
0. TTTTESS
and
ko Aok L
0, (3t.(9) = 1 qu; . H ((qf]’q gfzx , (83)
where
(P @m =1 =p)(1=pg)--- (1 =pg"") (84)
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3.6. Hypergeometric functions related to the projective Schur functions. We
consider hypergeometric t-functions (1), where we specialize the variable t respectively

by (80) and (81):
Z(A)
T(ty, &, too) = Z He% (85)
reDPg
1 )
(t,, &, t,(q) = 5 (A)H*(q) ]‘[ i (86)
reDPg
where
=0 (3tw) . Hi(@ = 0 (3t(9) ™ (87)

are respectively so-called product-of-shifted-hook-length [6], which generalize the
notion of the factorial for strict partitions and its g-analog (shifted hook polynomial).
We took into account Remark 1, to restrict sums over all strict partitions to the subset
DPg.

In the case that DPyg is the set of all strict partitions, namely, DP, the series (85)
and (86) may be considered as multi-variable generalization of hypergeometric function
(respectively, basic hypergeometric function), which we obtain when £(1) = 1 and t, is
of form (2) where N; = 1.

The notation Q(x™) below will be used for Q(%’), where t, is defined by (2). Let
all parameters by be not equal to negative integers. Let in (85) we choose

P D(ai+ml(a)™ T2 (@)

e = f = =5 (88)
[To TGi+mlkd)= Tz (bn
Then tau function (85) defines the following hypergeometric function
[Tii(@)s 0 (x™)
)Ev ay, ..., a ;blw- by;x(N) 2 2 s_ * B (89)
P ! Z [Tici(b)  H;
LA=N
which generalizes the hypergeometric function of one variable
(ak)n
S, .. ayiby, ... b xV) = o [T (@ (90)

Hk 1 (bk)n ”'

The function (89) was introduced in [9]. Here we introduce the g-deformed version
of (89). If in (86) we choose

o — i (0"

= = ; (2]
[Ti1(d”: @)
tau function (86) defines the hypergeometric function
P Af - x(N)
pq)s(als'“sap;blv-" X(N) Z 2= E(A)szl (q aq))L Q)L( ) (92)

reDP H;C:l (qb/\; q))L H;:(q) ’

LA=N
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which generalizes the basic hypergeometric function of one variable

oo

P ak.) X"
Fy(ai,....ayby, ... ,buxV) = i1 (4 4q),
e o ) gﬂizl (4" 4), (@ @n

93)

Hypergeometric functions (89) and (92) may be also considered as multisoliton tau
functions, see next subsection.

3.7. Soliton solutions and rational solutions. Let us recall, that in Remark 1 the
set of the partitions DPg was defined via a set of distinct non-negative integers S which
includes zero.

THEOREM 1. Let T(t,, &, ts) be defined by (85), and t5°\(%, ¥*) be defined by (72),
where

_am+b

m= T3> S 94
P cm+d me ©4)

(in particular, one can take integer momentum p,, = m), with a, b, ¢, d such that a =
d=0,b,c#00ra,d#0,b=c=0,

ad + bc
=y, 95
ad—be 7 ©3)
and
aij = v4i; (3t) (96)
Let for a given set of the numbers p,,, m € S, the variables ¥, t* are related to the variables
& as
Em=Y_ (kT — p,T5) + logml. ©7)
k=1
Then we have
D) = T(ty, &, too). (98)

Proof. Let us compare (85) and (72). First replace t, with f, in (72). Then a typical
term on the right hand side is

k
(I/[l , oy ey ”lk) 27]( 1—[ M eé(]’ni»to)’ (99)
pn,’ +pnj i=1

i<j

where 0 <n) <my <--- <mn and k is even. We can set £(py, t,) = &, choose the
parameters p; = k and the pfaffian elements to be (for i < j)

24/‘(%%) i—0
(i.j) = o , (100)

‘Ij.i(%to)

il

i>0
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so that
k
21T n%; 0 (5t) m=0
(i, m, ... ) = r o | (101)
Hi:l n—k, Q)L (Zto) ny > 0
where A is the partition into distinct parts (n, nx_1, ..., 11).

Thus the typical term may be written as

£3)

2=t l_[ o 0, (%t()) 0, (%too) , (102)

i=1

for any partition into distinct parts. The partitions into an odd number of distinct parts
come from those terms for which n; = 0. The extra factors of 2 in the pfaffian element
in (100) and (101) are needed because in the case n; = 0, the length of the partition
£(r)is k — 1 not k.

This establishes the connection between (85) and (72). ]

The hypergeometric function (89) is an example of multi-soliton tau function of
the dual BKP hierarchy, evaluated at special values of times {,, see (88) and (97).

THEOREM 2. Tau functions t(t,, &, tso) and rls("d'\,(f(,) are defined respectively by (85)

and by (60). Let us choose p,, in (60) by
am+b
m = ;> S, 103
pm=_ . ME (103)
where a, b, ¢, d are such thata =d =0,b,c #0o0ra,d #20,b=c=0,

(in particular, one can choose integer momentum p,, = m, m € S). Let the numbers &,

in (85) be related to n(t,, p,,) in (60) by

&, —logm! = n,, = 22172" Ty (104)
k=1
Then
‘Kf{(gv(f ) = t(tom &, too)~ (105)
The hypergeometric function (89), where x; = x, = --- = N-'and N — oo, is an

example of multi-soliton KdV tau function, evaluated at special values of times %,, see
(88), (104) and Remark 6.

THEOREM 3. Tau functions t(t,, &, t,(q)) and rlsl")lTL(ﬁ, t, t) are defined respectively
by (86) and by (65). Let p,, in (65) be chosen by
ag™+b
m =t S 106
p bpia " € (106)
where a = 0 or b = 0, but ab # 0,(in particular, p,, = q", m € S). Let the numbers &,, in
(86) be related to n(t,, py) in (65) by

. 00
&, — log (GDm =2 (ph, = py) Gk + 1) + 2t log p, (107)
k=1

(—C]; q)m
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Then

L (i E 4 ) = T(t(q). €, t(9)- (108)
For the particular choice p,, = m, m € S, this is also NLS multi-soliton tau function.

The hypergeometric function (92), where x; = qk_l, k=1,2,...and N — o0, is
an example of multi-soliton 1DTL tau function evaluated at special values of times
t+ t*, see (91), (107) and Remark 6.

REMARK 7. In case S is a finite set, the polynomial t-function of type (85) (and
(86)) is related to the soliton r-function with a finite number of solitons.

REMARK 8. We note that the higher times t, of the BKP hierarchy we started with
are integrals of motion for (solitonic) t-function (72) of the second BTL hierarchy.
Simultaneously, the higher times 7, t, ¥* play the role of integrals of motion for the
original BKP hierarchy. We therefore call these hierarchies dual to each other.

REMARK 9. An oo-soliton solution with spectral parameters lying on a lattice
appeared in [12-14] in a different way and in a different context. Other links between
soliton and rational solutions of the KP hierarchy were found in [15].

4. Conclusions. An interesting problem is to study the asymptotic behaviour of
hypergeometric t-functions. We hope to apply methods of soliton theory to conduct
this study. We note that the asymptotic behaviour of infinite soliton 7-functions, similar
to those considered in the present paper, was studied in [13].

We hope to apply the series (1) to certain problems.

(1) Let us consider an integral

o1 N(Zi—zj)(zf_zj)
I(N,to’to)_m/./;,”.fv/rl:J[(Zi‘i‘Zj)m
N

i

x [TeXme- Gt uzz*dzdz;, (109)
k=1

where I' is a integration domain in each (z, zf) plane (k=1,...,N), and p is a

function such that
// w(zz")"dzdz" = // w(zz9)z"dzdz* = 8,0, (110)

r r
and
// w(z 292" 2" dzdz* = 26, e (111)
r

The series (1) (in the case that the sum ranges over partitions of length £(A) < N)
yields the asymptotic expansion for the integral (109) [9]

IN G 6)= Y 2WeZH40, (1t,) 0, (1E). (112)

1€DP,I(A)<N

The restriction £(A) < N makes the difference between the r.h.s. of (112) and z(t,. &, t).
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In the limit N — oo (which is typical for applications), the restriction £(1) < N is
irrelevant for the perturbation series related to (109), and therefore, this series coincides
with (1). Also, in the case that at least one of the sets t,, t* has the form of

N N

miy =Y (= (=x1)") = (0 — (") (113)

k k

then by the bosonization formulae and Wick’s Theorem we get that
0, (3t,)=0, ¢O)>N (114)

Therefore, in this case, the integral /(N, t,, t¥) is the BKP r-function z(t,, &, t’

It may be interesting to apply (1) to matrix models and to statistical models where
partition functions reduce to integrals (109), see, for instance, [11] for examples of
integrals similar to (109).

It is interesting to compare integrals (109) with supersymmetric matrix models
[33].

(2) The series (1) can be studied also in the context of random (strict) partitions.

Random strict partitions were considered in [16] and, in particular, the “shifted”
measure Q;(x)0;(y) on (strict) partitions, were considered in [16]. In this paper, the
series (1), where all £, = 0, and where A; does not exceed a certain given number was
studied.

Let us remark that the expression

) :

1 — 1\ o
EZ“ & Q)L(too)QA(too) — 1_165, l_[ " A - A — (ﬁ) gzg:l fm" (1 15)
A

i<j

(where H; is known to be related to the number of shifted tableau of the shape A, see
[17], [6]) in the case

“;:}’l:o? n:051127"' (116)
may be considered as the analogue of the Plancherel measure [34], while in the case

& = @l = 2 (z)nzr(lff;”), n=0,12,... (117)

as an analog of the so-called (z)-measure on random partitions (see [34]).

(3) Finally, we note that KdV soliton solutions with integer momenta was
first considered in [12]. Each KdV solution of this type yields a wave operator
97 — Agy—1 —u, where the potential u = 207 7i%y(f1), which satisfies the so-called

generalized Huygens principle.

5. Appendix: Integral representations of scalar product (, )., and of z(t, &, t*) [8].
Consider a function p of one variable with the property

[[ [ nteaaas = [ [ uteasie = s e

https://doi.org/10.1017/50017089505002363 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089505002363

166 J.J.C. NIMMO AND A. YU. ORLOV

(As an example one can consider the case, when the variable z* is the complex
conjugated to z, and T" is the whole complex plane).
Let us consider p having only diagonal non-vanishing moments

/ / w(z 22" 2" dzdz* = 28, e (119)
r

Examples:

(1) The variable z* is the complex conjugated to z, and I' is the whole complex
plane. u decays more rapidly then any power

(2) T is a product of unit circles § §, u is a Laurent series

(3) I is a product of real and imaginary lines, j(zz*) = €7

Using

1 M
- /F /F ¢<zM)...¢(zl>|o><0|¢(zf)...¢(z;4)gu,(ziz¢)dzidz;

= Z 2P0 (A, (120)

AeDP,t()<M

where for A = (A1, ..., Ag)

12) = ¢, - - #,10), (121)
we obtain for partitions A, u (both partitions have length £(1), £(u) < M)
1 M
il f . / A(Z)A(Z*)Q)\(Z)QM(Z*) l_[ Mr(ZkZ*k)dedZ}: = 21()0”)\5)\”, (122)
) k=1
where
M
— ) (zf = z)
A =[] 2 A =[]—~——% (123)
H Gi+z) [1 (zF +2)

l<_]

The relation (122) yields the integral representation for the inner product

(O, Os), = 2"M138,5, (124)

With the help of equalities

e il it > 270" 0. (125)

AeDP,i(\)<M

X DL it — Z 270, (@) 0 (t)) (126)

AeDP,t()<M

we evaluate the integral

M
l o0 n Sk gk
L(M, t,,t) = ﬁ/-~-fA(Z)A(Z*)H@Z”:‘v3~---(2kf”+‘k ’n),u,.(zkz*k)dzkdz}: (127)
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We finally obtain
t, th
M= Y 20 (%) 0 (%) (128)
AeDP,I()<M

The restriction £(A) < M causes the difference between the right-hand side of (128)
and 7,(t, &, t¥).
However, in case at least one of the sets t,, t* has the form of

Ny Ny
mip =Y (= (=x0)"), miy =Y (= ()" (129)
k k

with N or N’ no more then M, then
0, (3t) =0, ) >M (130)
Therefore, in this case, the integral 1,(M, t,, t) is the BKP t-function ,(t,, t}).
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