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ABSTRACT

We consider the problem of claims reserving and estimating run-off triangles.
We generalize the gamma cell distributions model which leads to Tweedie’s
compound Poisson model. Choosing a suitable parametrization, we estimate
the parameters of our model within the framework of generalized linear mod-
els (see Jørgensen-de Souza [2] and Smyth-Jørgensen [8]). We show that these
methods lead to reasonable estimates of the outstanding loss liabilities.
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INTRODUCTION

Claims reserving and IBNR estimates are classical problems in insurance math-
ematics. Recently Jørgensen-de Souza [2] and Smyth-Jørgensen [8] have fitted
Tweedie’s compound Poisson model to insurance claims data for tarification.
Using the connection between tarification and claims reserving analysis (see
Mack [3]), we translate the fitting procedure to our run-off problem. Our model
should be viewed within the context of stochastic methods for claims reserv-
ing. For excellent overviews on this topic we refer to England-Verrall [1] and
Taylor [9].

The starting point of this work was the gamma cell distributions model
presented in Section 7.5 of Taylor [9]. The gamma cell distributions model
assumes that every cell of the run-off triangle consists of rij independent pay-
ments which are gamma distributed with mean tij and shape parameter g. These
assumptions enable the calculation of convoluted distributions of incremen-
tal payments. Unfortunately, this model does not allow one to estimate e.g.
the mean square error of prediction (MSEP), since one has not enough infor-
mation. We assume that the number of payments rij are realisations of random
variables Rij, i.e. the number of payments Rij and the size of the individual pay-
ments X (k)

ij are both modelled stochastically. This can be done assuming that
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Rij is Poisson distributed. These assumptions lead to Tweedie’s compound Pois-
son model (see e.g. Jørgensen-de Souza [2]). Choosing a clever parametrization
for Tweedie’s compound Poisson model, we see that the model belongs to the
exponential dispersion familiy with variance function V(m) = mp, p ∈ (1,2), and
dispersion ƒ. It is then straightforward to use generalized linear model (GLM)
methods for parameter estimations. A significant first step into that direction
has been done by Wright [11].

In this work we study a version of Tweedie’s compound Poisson model
with constant dispersion ƒ (see Subsection 4.1). This model should be viewed
within the context of the over-dispersed Poisson model (see Renshaw-Verrall
[6] or England-Verrall [1], Section 2.3) and the Gamma model (see Mack [3]
and England-Verrall [1], Section 3.3): The over-dispersed Poisson model and
the Gamma model correspond to the two extreme cases p = 1 and p = 2, resp.
Our extension closes continuously the gap between these two models, since
p ∈ (1,2). To estimate p we additionally use the information rij which is not
used in the parameter estimations for p = 1 and p = 2. Though we have one
additional parameter, we obtain in general better estimates since we also use
more information and have more degrees of freedom.

Moreover, our parametrization is such that the variance parameters p and
ƒ are orthogonal to the mean parameter. This leads to a) efficient parameter
estimations (fast convergence), b) good estimates of MSEP.

At the end of this article we demonstrate the method using motor insurance
datas. Our results are compared to several different classical methods. Of course,
in practice it would not be wise to trust in just these methods. It should be
pointed out that the methods presented here are all payment based. Usually
it is also interesting to compare payment based results to results which rely on
total claims incurred datas (for an overview we refer to Taylor [9] and the ref-
erences therein).

In the next section we define the model. In Section 3 we recall the defini-
tion of Tweedie’s compound Poisson model. In Section 4 we apply Tweedie’s
compound Poisson model to our run-off problem. In Section 5 we give an esti-
mation procedure for the mean square error of prediction (MSEP). Finally, in
Section 6 we give the examples.

2. DEFINITION OF THE MODEL

We use the following (well-known) structure for the run-off patterns: the acci-
dent years are denoted by i ≤ I and the development periods are denoted by
j ≤ J. We are interested in the random variables Cij. Cij denote the incremental
payments for claims with origin in accident year i during development period
j. Usually one has observations cij of Cij for i + j ≤ I and one tries to complete
(estimate) the triangle for i + j > I. The following illustration may be helpful.

Definition of the model:

1. The number of payments Rij are independent and Poisson distributed with
parameter lijwi > 0. The weight wi > 0 is an appropriate measure for the volume.
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2. The individual payments X (k)
ij are independent and gamma distributed with

mean tij > 0 and shape parameter g > 0.

3. Rij and X (k)
mn are independent for all indices. We define the incremental pay-

ments paid in cell (i, j) as follows

iij ij

ij
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(2.1)

Remarks:

• There are several different possibilities to choose appropriate weights wi, e.g.
the number of policies or the total number of claims incurred, etc. If one
chooses the total number of claims incurred one needs first to estimate the
number of IBNyR cases (cases incurred but not yet reported).

• Sometimes it is also convenient to define Rij as the number of claims with
origin in i which have at least one payment in period j.

• Yij denotes the normalized incremental payments in cell (i, j).

• One easily sees that conditionally, given Rij, the random variable Cij is gamma
distributed with mean Rijtij and shape parameter Rijg (for Rij > 0).

3. TWEEDIE’S COMPOUND POISSON MODEL

In this section we formulate our model in a reparametrized version, this has
already been done in the tarification problems of [2] and [8]. Therefore we
try to keep this section as short as possible and give the main calculations in
Appendix A.
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For the moment we skip the indices i and j. The distribution Y (for given
weight w) is parametrized by the three parameters l, t and g. We now choose
new parameters m, ƒ and p such that the density of Y can be written as, y ≥ 0,
(see (A.2) below and formula (12) in [2])

; , / , ; / , ,expz z
z

f y w p c y w p w y p pm
m m
1 2Y

p p1 2
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- -

^ ^ fh h p* 4 (3.1)

where c(y; ƒ /w, p) is given in Appendix A and

p = (g + 2) / (g + 1) ∈ (1, 2), (3.2)

m = l · t, (3.3)

ƒ = l1– pt 2– p / (2 – p). (3.4)

If we set q = m1– p / (1 – p) we see that the density of Y can be written as (see also
[2], formula (12))
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Hence, the distribution of Y belongs to the exponential dispersion family with
parameters m, ƒ and p ∈ (1,2) (see e.g. McCullagh-Nelder [5], Section 2.2.2).
We write for p ∈ (1,2)

, / .zY wED m( )p` ^ h (3.6)

For ( , / )zY wED m( )p` we have (see [2] Section 2.2)

E [Y ] = k�p(q) = m, (3.7)

Var(Y) = ( ) .
z z
w V wm mp$ = (3.8)

ƒ is the so-called dispersion parameter and V(·) the variance function with
p ∈ (1,2). For our claims reserving problem we consider the following situa-
tion:

Constant dispersion ƒ (see Subsection 4.1): p ∈ (1,2) and Yij are independent
with

ij i ij j, / .z
z

Y w E Y Y wED Varandm m m( )p
ij i i i

p
&` = = ijj` `j j8 B (3.9)
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Interpretation and Remarks:

• Tweedie [10] seems to be the first one to study the compound Poisson model
with gamma severeties from the point of view of exponential dispersion
models. For this reason this model is known as Tweedie’s compound Pois-
son model in the literature, see e.g. [8].

• p = (g + 2) / (g + 1) is a function of g (shape parameter of the single payments
distributions X (k)

ij ). Hence the shape parameter g determines the behaviour
of the variance function V(m) = mp. Furthermore we have chosen a parame-
trization (m, ƒ, p) such that m is orthogonal to (ƒ, p) in the sense that the Fisher
information matrix is zero in the off-diagonal (see e.g. [2], page 76, or [8]).
I.e. our parametrization focuses attention to variance parameters (ƒ, p) and
a mean parameter m which are orthogonal to each other. This orthogonality
has many advantages to alternative parametrizations. E.g. we have efficient
algorithms for parameter estimations which typically rapidly converge (see
Smyth [7]). Moreover the estimated standard errors of m, which are of most
interest, do not require adjustments by the standard errors of the variance
parameters, since these are orthogonal.

• Our model closes continuously the gap between the over-dispersed Poisson
Model (see Renshaw-Verrall [6] or England-Verrall [1], Section 2.3) where we
have a linear variance function (p = 1):

i j / ,zY wVar mi i$= j` j (3.10)

and the Gamma model (see Mack [3] and England-Verrall [1], Section 3.3)
where

i j / .zY wVar mi i
2$= j` j (3.11)

In our case p is estimated from the data using additionally the information
rij (see (4.6)). The information rij is not used in the boundary cases p = 1 and
p = 2.

• Naturally in our model we have p ∈ (1,2), since g > 0. We estimate p from
the data, so theoretically the estimated p could lie outside the interval [1,2]
which would mean that none of our models fits to the problem (e.g. p = 0
implies normality, p = 3 implies the inverse Gaussian model). In all our
claims reserving examples we have observed that the estimated p was lying
strictly within (1,2).

4. APPLICATION OF TWEEDIE’S MODEL TO CLAIMS RESERVING

4.1. Constant dispersion parameter model

We assume that all the Yij are independent with Yij ∼ED(p) (mij,ƒ/wi), i.e. Yij belongs
to the exponential dispersion family with p ∈ (1,2), and
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We use the notation m = (m00,…, mIJ)�. Given the observations {(rij, yij), i + j ≤ I,

i rj ij! > 0}, the log-likelihood function for the parameters (m, ƒ, p) is given by
(see Appendix A and [2], Section 3)
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Formula (4.2) immediately shows that given p the observations yij = cij /wi are
sufficient for MLE estimation of mij (one does not need rij). Moreover, for con-
stant ƒ, the dispersion parameter has no influence on the estimation of m.

Next we assume a multiplicative model (often called chain-ladder type struc-
ture): i.e. there exist parameters �(i) and f ( j) such that for all i ≤ I and j ≤ J

( ) ( ).� i f jmi $=j (4.3)

After suitable normalization, � can be interpreted as the expected ultimate
claim in accident year i and f is the proportion paid in period j. It is now
straightforward to choose the logarithmic link function

( ) ,log xj m bi i i= =j j j (4.4)

where b = (log �(0),…, log�(I), log f(0),…,log f(j))� and X = (x00,…,xIJ) is the
appropriate design matrix.

Parameter estimation:

a) For p known. We deal with a generalized linear model (GLM) of the form (4.1)-
(4.4). Hence we can use standard software packages for the estimation of m.

b) For p unknown. Usually p and g, resp., are unknown. Henceforth we study
the profile likelihood for g (here we closely follow [2] Section 3.2): For m and
p given, the MLE of ƒ is given by (see (4.2))
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From this we obtain the profile likelihood for p and g, resp., i >r 0j ij!a k as

Lm(p) = L(m, p, ƒ̂p) = ( ) logr
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Given m, the parameter p is estimated maximizing (4.6).

c) Finally we combine a) and b). The main advantage of our parametrization
is (as already mentioned above) the orthogonality of m and (ƒ, p). m can be
estimated as if (ƒ, p) were known and vice versa. Alternating the updating
procedures for m and (ƒ, p) leads to an efficent algorithm: Set initial value
p(0) and estimate m (1) via a). Then estimate p(1) from m (1) via (4.6), and iterate this
procedure. We have seen that typically one obtains very fast convergence of
(m (k), p(k)) to some limit (for our examples below we needed only 4 iterations).

4.2. Dispersion modelling

So far we have always assumed that ƒ is constant over all cells (i, j). If we con-
sider the definitions (3.3) and (3.4) we see that every factor which increases l
increases the mean m and decreases the dispersion ƒ because p ∈ (1,2). Increas-
ing the average payment size t increases both the mean and the dispersion.
Changing l and t such that l1–p t2–p remains constant has only an effect on the
mean m. Hence it is necessary to model both the mean and the dispersion in
order to get a fine structure, i.e. model mij and ƒij for each cell (i,j) individually
and estimate p. Such a model has been studied in the context of tarification
by Smyth-Jørgensen [8].

We do not further follow these ideas here since we have seen that in our sit-
uation such models are over-parametrized. Modelling the dispersion parame-
ters while also trying to optimize the power of the variance function allows
too many degrees of freedom: e.g. if we apply the dispersion modelling model
to the data given in Example 6.1 one sees that p is blown up when allowing
the dispersion parameters to be modelled too. It is even possible that there is no
unique solution when modelling ƒij and p at the same time (in all our examples
we have observed rather slow convergence even when choosing “meaningful’’
initial values which indicates this problematic).

5. MEAN SQUARE ERROR OF PREDICTION

To estimate the mean square error of prediction (MSEP) we proceed as in
England-Verrall [1]. Assume that the incremental payments Cij are independent,
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and Cij
% are unbiased estimators depending only on the past (and hence are

independent from Cij). Assume jij is the GLM estimate for jij = log mij, then (see
e.g. [1], (7.6)-(7.7))
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The last term is usually available from standard statistical software packages,
all the other parameters have been estimated before. The first term in (5.1) denotes
the process error, the last term the estimation error.

The estimation of the MSEP for several cells (i, j) is more complicated since
we obtain correlations from the estimates. We define D to be the unknown tri-
angle in our run-off pattern. Define the total outstanding payments
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The evaluation of the last term needs some care: Usually one obtains a covari-
ance matrix for the estimated GLM parameters log �(i) and log f ( j). This
covariance matrix needs to be transformed into a covariance matrix for j with
the help of the design matrices.

6. EXAMPLE

Example 6.1.

We consider Swiss Motor Insurance datas. We consider 9 accident years over
a time horizon of 11 years. Since we want to analyze the different methods
rather mechanically, this small part of the truth is already sufficient for drawing
conclusions.

338 MARIO V. WUTHRICH

https://doi.org/10.2143/AST.33.2.503696 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503696


Remark: As weights wi we take the number of reported claims (the number of
IBNyR claims with reporting delay of more than two years is almost zero for
this kind of business).

a) Tweedie’s compound Poisson model with constant dispersion.

We assume that Yij are independent with Yij ∼ ED(p) (mi j, ƒ/wi) (see (4.1)). Define
the total outstanding payments C as in (5.2). If we start with initial value
p(0) = 1.5 ∈ (1,2) and then proceed the estimation iteration as in Subsection 4.1,
we observe that already after 4 iterations we have sufficiently converged to
equilibrium (for the choice of p one should also have a look at Figure 1):
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TABLE 6.2

OBSERVATIONS FOR THE NORMALIZED INCREMENTAL PAYMENTS Yij = Cij /wi.

yij Development period j

AY i 0 1 2 3 4 5 6 7 8 9 10

0 157.95 65.89 7.93 3.61 1.83 0.55 0.14 0.22 0.01 0.14 0.00
1 176.86 60.31 8.53 1.41 0.63 0.34 0.49 1.01 0.38 0.23
2 189.67 60.03 10.44 2.65 1.54 0.66 0.54 0.09 0.19
3 189.15 57.71 7.77 3.03 1.43 0.95 0.27 0.61
4 184.53 58.44 6.96 2.91 3.46 1.12 1.17
5 185.62 56.59 5.73 2.45 1.05 0.93
6 181.03 62.35 5.54 2.43 3.66
7 179.96 55.36 5.99 2.74
8 188.01 55.86 5.46

TABLE 6.3

NUMBER OF PAYMENTS Rij AND VOLUME wi.

rij Development period j

AY i 0 1 2 3 4 5 6 7 8 9 10 wi

0 6’229 3’500 425 134 51 24 13 12 6 4 1 112’953
1 6’395 3’342 402 108 31 14 12 5 6 5 110’364
2 6’406 2’940 401 98 42 18 5 3 3 105’400
3 6’148 2’898 301 92 41 23 12 10 102’067
4 5’952 2’699 304 94 49 22 7 99’124
5 5’924 2’692 300 91 32 23 101’460
6 5’545 2’754 292 77 35 94’753
7 5’520 2’459 267 81 92’326
8 5’390 2’224 223 89’545
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Figure 1: Profile likelihood function Lm(p) (see (4.6)).

For p = 1.1741 the GLM output is as follows: Dispersion ƒ̂ = 29’281 and para-
meter estimates:
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TABLE 6.4

ESTIMATION OF p.

Iteration k 0 1 2 3 4

p(k) 1.5000 1.1743 1.1741 1.1741 1.1741
Outstanding payments C (k) 1’431’266 1’451’288 1’451’300 1’451’299

TABLE 6.5

PARAMETERS � AND f FOR p = 1.1741.

j 0 1 2 3 4 5 6 7 8 9 10

( )log� j% –5.862 –5.825 –5.762 –5.782 –5.777 –5.819 –5.792 –5.837 –5.809

( )log f j% 11.01 9.90 7.79 6.78 6.45 5.51 5.13 5.08 4.17 4.16 0.00

Altogether this leads to the following result:
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The results in Table 6.6 show that there is considerable uncertainty in the
reserve estimates, especially in the old years where the outstanding payments
are small. This comes from the fact that we have only little information to esti-
mate f (j) for large j and it turns out that the parameter estimation error lives
on the same scale as the process error. For young accident years we have on
the one hand a lot of information to estimate f (j) for small j and on the other
hand f(j) for j large has a rather small influence on the overall outstanding pay-
ments estimate for young accident years in our example. Therefore the relative
prediction error is smaller for young accident years

b) Over-dispersed Poisson and Gamma Model.

We first compare our result to the two boundary cases p = 1 and p = 2. These
models are described in Renshaw-Verrall [6] or England-Verrall [1], Section 2.3
(over-dispersed Poisson model) and Mack [3] or England-Verrall [1], Section 3.3
(Gamma model). We also refer to (3.10)-(3.11). We obtain the following results:
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TABLE 6.6

ESTIMATED OUTSTANDING PAYMENTS FROM TWEEDIE’S COMPOUND POISSON MODEL.

Tweedie constant z = 29’281 and p = 1.1741

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 326 2’636 808.9% 1’867 1’860
2 21’565 26’773 124.2% 15’584 21’770
3 40’716 35’515 87.2% 19’122 29’927
4 89’278 53’227 59.6% 25’940 46’479
5 138’338 65’977 47.7% 30’529 58’489
6 204’269 80’815 39.6% 35’191 72’751
7 360’117 111’797 31.0% 45’584 102’082
8 596’690 149’775 25.1% 61’212 136’695

Total 1’451’299 271’503 18.7% 179’890 203’355

TABLE 6.7

ESTIMATED OUTSTANDING PAYMENTS FROM THE OVER-DISPERSED POISSON MODEL.

Over-dispersed Poisson model with z = 36’642 and p = 1

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 330 4’947 1500.7% 3’520 3’475
2 21’663 34’776 160.5% 20’386 28’174
3 41’007 46’070 112.3% 24’896 38’763
4 88’546 65’229 73.7% 31’786 56’961
5 140’150 80’795 57.6% 37’316 71’662
6 204’157 95’755 46.9% 41’089 86’491
7 362’724 125’433 34.6% 49’421 115’286
8 602’784 161’023 26.7% 61’978 148’618

Total 1’461’360 371’208 21.7% 216’965 231’403
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Conclusions: It is not very surprising that the over-dispersed Poisson model
gives a better fit than the Gamma model (especially for young accident years
we have a huge estimation error term in the Gamma model, see Table 6.8).
Tweedie’s compound Poisson model converges to the over-dispersed Poisson
model for p → 1 and to the Gamma model for p → 2. For our data set p = 1.1741
is close to 1, hence we expect that Tweedie’s compound Poisson results are close
to the over-dispersed Poisson results. Indeed, this is the case (see Tables 6.6 and
6.7). Moreover we observe that the estimation error term is essentially smaller
in Tweedie’s model than in the over-dispersed Poisson model. Two main reasons
for this fact are 1) For the parameter estimations in Table 6.6 we additionally
use the information coming from the number of payments rij (which is used for
the estimation of p). 2) In our model, the variance parameters (ƒ, p) are orthog-
onal to m, hence their uncertainties have no influence on the parameter error
term coming from Var(m ).

c) Mack’s model and log-normal model.

A classical non-parametric model is the so-called chain-ladder method where
we apply Mack’s formulas (see Mack [4]) for the MSEP estimation. We apply
the chain-ladder method to the cumulative payments

i .D C w Yi i i k
k

j

k

j

00

= =
==

j k !! (6.1)

We choose the chain-ladder factors and the estimated standard errors as fol-
lows (for the definition of f (j) and s2

j = �2
j we refer to Mack [4], formulas (3)

and (5)). Of course there is unsufficient information for the estimation of s10.
Since it is not our intention to give good strategies for estimating ultimates
(this would go beyond the scope of this paper) we have just chosen a value
which looks meaningful.
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TABLE 6.8

ESTIMATED OUTSTANDING PAYMENTS FROM THE GAMMA MODEL.

Gamma model with z = 29’956 and p = 2

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 447 346 77.3% 255 233
2 20’248 13’602 67.2% 8’527 10’597
3 40’073 20’127 50.2% 13’178 15’213
4 122’899 56’984 46.4% 37’465 42’936
5 121’740 50’091 41.1% 35’106 35’730
6 221’524 91’174 41.2% 66’731 62’126
7 331’115 147’730 44.6% 107’386 101’451
8 527’988 250’816 47.5% 194’155 158’784

Total 1’386’034 336’842 24.3% 265’771 206’950
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This leads to the following result:
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TABLE 6.10

ESTIMATED OUTSTANDING PAYMENTS FROM MACK’S MODEL.

Chain-ladder estimates

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 330 3’740 1134.6% 2’661 2’627
2 21’663 19’903 91.9% 11’704 16’099
3 41’007 30’090 73.4% 15’954 25’512
4 88’546 57’012 64.4% 26’295 50’585
5 140’150 71’511 51.0% 31’476 64’212
6 204’157 75’522 37.0% 31’746 68’526
7 362’724 138’915 38.3% 49’300 129’872
8 602’784 156’413 25.9% 54’293 146’688

Total 1’461’360 286’752 19.6% 177’616 225’120

TABLE 6.9

CHAIN-LADDER PARAMETERS IN MACK’S MODEL.

j 1 2 3 4 5 6 7 8 9 10

f (j) 1.3277 1.0301 1.0107 1.0076 1.0030 1.0020 1.0019 1.0008 1.0008 1.0000
sj 157.28 34.16 14.17 23.31 5.70 7.78 8.67 3.89 3.00 0.50

A look at the results shows that Tweedie’s compound Poisson model is close to
the chain-ladder estimates. For the outstanding payments this is not surpris-
ing since for p = 1.1741, we expect that Tweedie’s estimate for the outstanding
payments is close to the Poisson estimate (which is identical with the chain-ladder
estimate). For the error terms it is more surprising that they are so similar.
The reason for this similarity is not so clear because we have estimated a dif-
ferent number of parameters with a different number of observations. Further-
more, MSEP is obtained in completely different ways (see also discussion in [1],
Section 7.6).

An other well-known model is the so-called parametric chain-ladder method,
which is based on the log-normal distribution (see Taylor [9], Section 7.3). We
assume that

j j/ ,log D D z sN, ,i j i j1
2++` `j j and are independent. (6.2)

This model is different from the one usually used in claims reserving, which
would apply to incremental data (see e.g. [1], Section 3.2). We have chosen the
model from Taylor [9] because it is very easy to handle.
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Living in a “normal’’ world we estimate the parameters as in Taylor [9], for-
mulas (7.11)-(7.13): i.e. since we assume that the parameters only depend on
the development period, we take the unweighted averages to estimate zj and
the canonical variance estimate for s2

j . This implies:
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TABLE 6.11

PARAMETER ESTIMATES IN THE LOG-NORMAL MODEL.

j 1 2 3 4 5 6 7 8 9 10

z(j) 0.2832 0.0293 0.0106 0.0077 0.0030 0.0020 0.0019 0.0008 0.0008 0.0000
sj 0.0274 0.0067 0.0027 0.0046 0.0011 0.0015 0.0016 0.0007 0.0004 0.0001

The prediction errors are estimated according to Taylor [9], formulas (7.29)-
(7-35). This leads to the following result:

TABLE 6.12

ESTIMATED OUTSTANDING PAYMENTS FROM THE LOG-NORMAL MODEL.

Log-normal model

AY i Outst. payments MSEP1/2 in % Estimation error Process error

1 330 3’905 1183.7% 2’761 2’761
2 21’603 14’297 66.2% 8’412 11’561
3 40’814 26’680 65.4% 13’991 22’717
4 88’535 53’940 60.9% 25’130 47’728
5 140’739 69’027 49.0% 30’676 61’836
6 205’396 71’506 34.8% 31’043 64’416
7 367’545 131’216 35.7% 49’386 121’568
8 608’277 147’156 24.2% 54’163 136’826

Total 1’473’238 271’252 18.4% 170’789 210’733

The log-normal model gives estimates for the outstanding payments which are
close to the chain-ladder estimates, and hence are close to Tweedie’s estimates.
We have very often observed this similarity. One remarkable difference between
Tweedie’s MSEP estimates and log-normal MSEP estimates is, that the Tweedie
model gives more weight to the uncertainties for high development periods
where one has only a few observations. This may come from the fact that for
the chain-ladder model we consider cumulative data. This cumulation has
already some smoothing effect.

CONCLUSIONS

Of course, we start the actuarial analysis of our claims reserving problem by
the chain-ladder method. The chain-ladder reserve can very easily be calculated.
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But we believe that it is also worth to perform Tweedie’s compound Pois-
son method. Using the additional information rij one obtains an estimate for
the variance function V(m) = m p. If p is close to 1, Tweedie’s compound Pois-
son method supports that the chain-ladder estimate. Whereas for p different
from 1 it is questionable to believe in the chain-ladder reserve, since Tweedie’s
model tells us that we should rather consider a different model (e.g. the Gamma
model for p close to 2).

A. REPARAMETRIZATION

We closely follow [2]. We skip the indices i, j. The joint density of (Y, R) is
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Hence the density of Y can be obtained summing over all possible values of R:
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This proves that Y belongs to the exponential dispersion family ED(p)(m, ƒ /w).
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