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DIVISIBLE S-SYSTEMS AND R-MODULES

by VICTORIA GOULD
(Received 2nd May 1985)

1. Introduction

Throughout this paper S will denote a given monoid and R a given ring with unity., A
set A is a right S-system if there is a map ¢: A x S— A satisfying

#(a,1)=a

and
#(a, st) = p(P(a, ), 1)

for any element a of 4 and any elements s,t of S. For ¢(a,s) we write as and we refer
to right S-systems simply as S-systems. One has the obvious definitions of an S-
subsystem, an S-homomorphism and a congruence on an S-system. The reader is
presumed to be familiar with the basic definitions concerning right R-modules over R. As
with S-systems we will refer to right R-modules just as R-modules.

A number of papers have been published which classify monoids by properties of
their S-systems, for example [3], [4], [6]. Many of the properties considered are
inspired by the corresponding work in ring theory. In a previous paper [5] the author
introduced a new concept of a coflat S-system, the definition used being a non-additive
analogue of that of a coflat module, as in Proposition 1.3 of [2]. Proposition 3.3 and
Corollary 3.4 of [5] together give a characterisation of a coflat S-system in terms of the
existence of solutions of certain consistent equations. This suggests it might be of
interest to study the connections between coflat and divisible S-systems.

It is easy to characterise monoids over which all S-systems are divisible. This we do
in Section 2. We then give a detailed construction of a divisible S-system 4 containing
any given S-system A. This construction enables us to classify those monoids for which
all divisible S-systems are coflat. In an ensuing paper we generalise this method in order
to characterise monoids over which all coflat S-systems are weakly f-injective and
monoids over which all weakly f-injective S-systems are weakly injective.

The connections between injectivity and divisibility properties of R-modules have
been well-researched (for example, [8]). In the last section we classify those rings R for
which the notions of a divisible R-module and a weakly p-injective R-module coincide,
using similar methods to those of Section 2. )

The relevant definitions for S-systems may be found in Section 2 and for R-modules
in Section 3.
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2. Divisible S-systems

As stated in the introduction, S will denote a fixed monoid. We remind the reader
that an element s in S is left (right) cancellable if sa=sb(as=bs), for any elements a,b of
S, gives that a=>b. Then an S-system A is said to be torsion free if, given any elements
a,b of A and any right cancellable element s of S, as=bs implies a=b. If 4= As for any
left cancellable element s of S, then A is divisible.

An S-system A4 is weakly (f—, p—) injective if, given any diagram of the form

A

§ +-——
1

where I is a (finitely generated, principal) ideal of S, 1:1—-S is the inclusion mapping and
0:1-A is an S-homomorphism, then there exists an S-homomorphism ¥:S—A such

that
A
¥ [ ¢
§ +—I

commutes.

We now give the definition of a coflat S-system, proposed in [5].

An S-system A is coflat if, given any elements a of A and s of S with a¢ As, there exist
elements h,k in S such that sh=sk but ah+ak.

Proposition 2.1. The following conditions are equivalent for an S-system A:

(i) A is coflat,
(i) A is weakly p-injective,
(iii) if the equation a=xs, where ac A and s€§ is soluble in some S-system B containing
A, then it has a solution in A.

This result follows from Proposition 3.3 and Corollary 3.5 of [5].

Let A be an S-system, ae A and se S, where s is left cancellable. It is immediate from
Lemma 3.2 of {§] that the equation a=xs has a solution in some S-system B containing
A. Hence, if A is coflat, then a=bs for some be A and it follows that 4 =As. Thus we
have proved
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Proposition 2.2. If A is a coflat S-system then A is divisible.

The next result is equally straightforward. Before stating it we recall that an element s
of S is left (right) invertible if there exists an element s’ of S such that s's=1 (ss'=1).

Proposition 2.3. The following conditions are equivalent for the monoid S.

(i) all right S-systems are divisible,
(i) all right ideals of S are divisible
(iii) S is divisible (as an S-system),
(iv) left cancellable elements of S are left invertible.

Proof. (i)=>(ii)=(iii). Clear.

(iii)=(iv). Let seS be left cancellable. Then as S is a divisible S-system there exists
an element s’ of S with 1 =¢'s. Thus s is left invertible.

(iv)=>(i). Let a be an element of an S-system 4 and let s be a left cancellable element
of S. From (iv) there is an element s’ of S with 1 =s's. Then

a=al =a(s's)=(as)s.

Hence 4= As and A is divisible.
In Theorem 2.2 of [6] Knauer and Petrich show that all right S-systems are torsion
free if and only if all right cancellable elements are right invertible. Hence

Corollary 2.4. All right S-systems are divisible if and only if all left S-systems are
torsion free.

For an S-system A and a subset H of Ax A we denote by p(H) the congruence
generated by H, that is, the smallest congruence v over 4 such that Hcv.

Lemma 25.(10]. The ordered pair (a,b) is in p(H) if and only if a=b or there exists a
natural number n and a sequence

a=c iy, d1t1=(32t2,...,d,,_1l,,_1 =Cpln, dntn‘:b’

where t,,...,t, are elements of S and for each i€{1,...,n} either (c;,d;) or (d;,c;) is in H.

A sequence as in Lemma 2.5 will be referred to as a p(H)-sequence of length n. For
any congruence p on A, the set of congruence classes of p can be made into an §-
system, with the obvious action of S. We write A/p to denote this S-system and [a],, or
simply [a] where p is understood, for the p-class of an element a of A.

We say that an element s of the monoid S is almost regular if there exist elements
FaFiseeostmy Si,5...,5, Of S and left cancellable elements c,,...,c, of S such that

(AR) s=srsy, €;8;=FSi41, (i=1,...,m—1), Cp,Spy=TpS.

If se S in regular, then taking m=1, s, =s, ¢;=r, =1 and r=¢ for some inverse s’ of s
it is clear that s is an almost regular element. However, we note that non-regular
elements may be almost regular. For example, a left cancellable element s of a monoid
need not be regular but putting m=1, r=s,=r, =1 and ¢, =s one sees that s is almost
regular.
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If all elements of S are almost regular, then we say that S is an almost regular
monoid.

We make immediate use of the above ideas in the next proposition, which classifies
those monoids for which the notions of a divisible S-system and a coflat S-system
coincide.

We point out that in view of the remarks above, all regular monoids and all left
cancellative monoids have this property.

Proposition 2.6. Al divisible S-systems over the monoid S are coflat if and only if S is
almost regular.

Proof. Assume that S is an almost regular monoid. Let A be a divisible S-system
and 6:sS—A be an S-homomorphism from a principal right ideal sS of § to 4. By
hypothesis s is an almost regular element and so there exist elements
PaPiseees¥msS1y---,Sm Of S and left cancellable elements c,,...,c, of S satisfying (AR).
Then

0(s) =0(srs,)=06(sr)s,
and as A is divisible, 8(sr) =a, ¢, for some element a, of A. Hence
0(s)=(a;c1)s,=a,(cy51)=ay(rs;)=(a,r)s,.

Again by the divisibility of A there is an element a, in A such that a,r,=a,c,. This
gives

0(s) =(azc3)s, =a,(c252) = as(ry53) =(ayr2)s;.
Continuing in this manner we obtain
0() = Gpn(CrmSm) = (T mS) = (AT ).
Hence 0 is given by left multiplication with an element of A; it is easy to see from this
that A must be weakly p-injective. Thus A is coflat by Proposition 2.1.
To prove the converse we begin by detailing a construction of a divisible S- system A
containing an arbitrary given S-system A.

First we let C be the set of left cancellable elements of S and define £, Fo, K, and
A, as follows:

EO=CXA,

F, is the free S-system on the set {x,:0€X,}, that is is Fo= U x,S,

aezo
Ko={(x,c,a):0=(c,a)€Z,},

A;=(A v Fo)/p(Ko).
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Suppose now that a,,a,€A and [a,]=[a,] in A,. Thus a,=a, or a; and a, are
connected via a p(K,)-sequence, which it is easy to see must be of even length. If

a,=byt,, d;t,=byt, dyt,=a,

is a p(Ky)-sequence, then b, € A and d, =x,c for some o=(c,b,)eZ,. Thus b,=Xx,c and
d,=b,. From d, t,=b,t, it follows that ct,=ct, and so t;=t, as c is left cancellable.
Hence

a,=bt,=b,t,=d,t,=a,.

We now choose neN, n>0 and make the induction assumption that if m,,m, are
elements of A connected by a p(K,)-sequence of (necessarily even) length less than 2n,
then m; =m,.

Suppose that

a1=b1t1, dltl =b2t2,...,d2"t2"=a2

is a p(K,)-sequence connecting a, and a,. As above, a, =d,t, and so
al=b3t3, d3t3=b4t4,...,d2"t2"=a2

is a p(K,)-sequence of length 2(n=1) connecting a, and a,, thus a,=a, by the
induction assumption. Hence A is embedded in 4, and we may identify the element a of
A with the element [a] of A4,.

In a similar manner one constructs a sequence 4, €A, S A< ... using £,,%,,...,
F,,F,,... and K,,K,,... where ¥,, F; and K; are defined using A, in the same way that
o, Fo and K, are defined in terms of A. Although Z,&X, < ... at each stage we choose
a basis for F; which is disjoint from the bases used for Fg,F,,...,F;_,. For ease of
notation we make the convention that for neN the p(K,)-class of an element a of
A, u F, will be denoted by [a],.

Now put A=|J;.n4;, where A, is identified with A. We claim that 4 is divisible.

Let de A and ceC. Then ae A4, for some neN and so o=(c,a)eX, and (y,c,a)eK,,
where {y,:0€X,} is the basis for F,. In 4,,,,

a= [5]11 = [yac]n = [ya]nc'

Now [y,], is an element of A,,, and hence of 4. Thus 4 is a divisible S-system
containing A.

We now assume that all divisible S-systems are coflat. Let s be an element of S. We
wish to show that s is almost regular.

The S-system sS is divisible and hence is coflat by assumption. Thus the inclusion
mapping 1:sS—sS can be extended to an S-homomorphism ¥:S—sS. This gives that

s=1(s)=y(s)=¢(1)s.

Now (1) e(sS), for some neN. If n=0 then s is a regular element, hence s is almost
regular. Thus we may assume that n>1.
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From the construction of (sS),, ¥(1) is either of the form Y(1)=[z,r,],_; where
v=(Cpa,_,), VEX,_,, 1,€S and {z,:veZ,_,} is the basis of F,_,, or the form y(1)=
[m,-1],-, where m,_, €(sS),—_;. In this latter case we note that 1=(1,m,_,)eZ,_,
and so Y(1)=[x.],_,, hence we may assume that (1) is of the first form.

Thus [s],-, =[z,r,s]),-, for some 6=(c,,a,-,)€X,_, and r,€S. As s#z,r,s there is a
p(K, _{)-sequence

Zar,,S=b1t1, d1t1=b2t2,...,dptp=s

connecting z,r,s and s in (sS),_, U F,_;. Hence b,=z,c, and so r,s=c,t,. Further,
d,=a,_, and as a,_t,, s are both in (sS),_, and any two p(K,_,)-related elements
in (s8),-, are equal in (sS),_,, it follows that a,_,t, =s.

Either n=1 and so a,.,=sr for some reS, or n>1. In the latter case we obtain as
above a,_,€(sS),-2, t;, r,-1 €S and ¢,_.,€C such that r,_,t,=c,_ t,, a,_,t;=s.
Clearly we may continue in this manner to obtain s=a,t, where a,esS and t,eS. Thus
s=srt, for some re S. Then by putting ¢, =s,, t,=s,_,,...,t,=S5; We see that s is almost
regular.

Corollary 2.7[7]. All S-systems of the monoid S are coflat if and only if S is regular.

Proof. If S is regular then as noted above, S is almost regular and so all divisible S-
systems are coflat. Let s be a left cancellable element of S. Then s=ss's for some s’ €8,
hence 1=s's and s is left invertible. Proposition 2.3 gives that all S-systems are divisible,
hence all S-systems are coflat.

Conversely, assume that all S-systems are coflat. By Proposition 2.2, all S-systems are
divisible and so by Proposition 2.3, left cancellable elements are left invertible.

Let seS. Since all divisible S-systems are coflat, s is almost regular. Let
Fo¥1s-eesTmsS1s---5Sy DE elements of S and let c,,...,c,, be left cancellable elements of §
satisfying (AR). For ie{1,...,m} choose c;eS with cic;=1. Then s,,=¢},C,sSp=Cpul'ns and
forie{l,...,m—1}s;=cjr;s;, . Now

S=S8rs; =Srcir S, =""" =SrciriC573...Co= 1¥m—1Cont'mS

and so s is regular.

3. Divisible R-modules

The definition of a weakly (f-, p-) injective R-module corresponds directly to that of a
weakly (f-,p-) injective S-system. However, the notion of coflatness in R-modules
coincides with that of weak f-injectivity [2] and not with weak p-injectivity as in the
semigroup case. Further, every weakly-injective R-module is injective [1], whereas this is
not true for S-systems. Finally, an R-module M is divisible if M =Mr for every non
zero-divisor r of R.

The relations between the above properties of R-modules have been extensively
investigated. In [8], Ming considers rings for which the properties of divisibility, weak
p-injectivity and injectivity coincide. The proof of Proposition 2.6, in particular the
construction of a divisible S-system A containing any given S-system A, suggests that a
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similar method might be used to obtain an elementary characterisation of rings over
which all divisible R-modules are weakly p-injective. Such a characterisation is obtained
in Proposition 3.3.

First we have the straightforward analogues of Propositions 2.2 and 2.3.

Proposition 3.1[8]. If M is a weakly p-injective R-module then M is divisible.
Proposition 3.2. The following conditions are equivalent for a ring R.

(i) all right R-modules are divisible,
(ii) all right ideals of R are divisible,
(iii) R is divisible (as a right R-module),
(iv) non-zero-divisors in R are left invertible.
A ring R is Von Neumann regular if the multiplicative semigroup of R is regular. We
shall refer to Von Neumann regular rings simply as regular rings.
We now state the analogue of Proposition 2.6.

Proposition 3.3 The following conditions are equivalent for a ring R with set of non-
zero-divisors C:

(i) all divisible R-modules are weakly p-injective,
(ii) for any element r of R there exist a positive integer n and n finite sets

{Sil,---’si.p(i)} (1=ign)
of elements of R and n finite sets

{cil""5ci,p(i)} (1£ign)

of elements of C such that if I;=Rs;;+ - +Rs; ,;, (j=1,...,n) and I,,,=Rr,
then

(a) rerl,,

() casp€livr (G=1,...,m k=1,...,p(j)).

Before giving the proof we make some comments on this result. If  is a regular
element of R, then putting n=1, p(1)=1, s;,=r, ¢;;=1, one sees that r satisfies
conditions (ii) above. As in the semigroup case, a non-regular element may satisfy (ii).

For if ceC, then taking n=1, p(1)=1, s,, =1, ¢;, =c we have that ¢ satisfies (ii). Thus
all non zero-divisors satisfy (ii),
We now prove the propostion.

(ii)=(i). Let M be a divisible R-module and let 8:rR—M be an R-homomorphism
from a principal right ideal rR of R to M. By assumption there exist ne N and finite sets
of elements

{sib‘ . ’si.p(i)}(l §l§n)’ {cib~ . '5ci.p(i)} (1 élén)a

of R, C respectively, satisfying the conditions of (ii).

B
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We have rerl,=Rs,;+ - +Rs, ,1, and so there are elements ry,...,r,, of R such
that r=rr s;, + - +rr,4)S1, p1)- Since M is divisible, for any ke {l,...,p(1)} there is an
element m, , in M such that &rr,)=m, ,c, . Thus

0(r)=0(rry)s  + = +0(rr,1))81, p1)

p(1)

= z my 4 Ci kS1,k-
K=1

Now I, =Rs,;+ - +Rs;, ,, so using (b) there are elements u, , of R, ke{l,...,p(1)},
le{l1,...,p(2)} such that for ke{1,...,p(1)},

CLaS1 =W, 15211 " T U p2)S2,p(2)
Then

r(1) p(2)

0(r)= Z my .k z U152,
k=1 =1

= My kU182,

for some v,,,...,0; 2 €M.
Again using the divisibility of M, there are elements m,,,...,m, ,,, of M such that
vz’,=m2,,C2’, f0r le {1,. . ,p(Z)}. Then

p(2) p(2) p(3)
9(")=IZI my €318~ m;, Z Wi kS3,k

iI=1 k=1

for some elements w,, of R,le{l,...,p(2)}, ke{l,...,p(3)}. It follows that there are
elements z3,,...,25 ,3) of M with

p(3)

0(r) =kzl Z3,k53, k-

Clearly we may continue in this way to obtain

p(n)

e(r) =kZI xn.ksn,k

for some x, y,...,%, ym€M. Then there are elements m, ,,...,m, ,i, of M with x, ,=
m, o -k€{1,...,p(n)}. This gives that

pin
o(r) =kz mn.kcn,ksn,k'
=1
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But for ke {1,...,p(n)}, c, S, =1 for some t,eR. Hence

p(n) p(n)
) =kz'1 My (b = kzl m, ot 1.

Thus 6 is given by left multiplication with an element of M. It is then easy to see that
6 can be extended to an R-homomorphism y:R—M. Since rR and 8 were chosen
arbitrarily it follows that M is weakly p-injective.

(i)=>(ii). We parallel the proof of Proposition 2.6 by constructing a divisible R-
module M containing an arbitrary given R-module M.

Let £,=Cx M and let X,={x,:0€X,} be a set in one-one correspondence with Z,,.
Let F, be the free R-module on X, and put Go=M@®F,. Now let H, be the R-
submodule of G, generated by K, where

Ko={x,c—m:a=(c,m)eZ,}.

Finally, put M, =G,/H,.
We claim that M is embedded in M,. Suppose that m,,m,e M and m;, + Hy=m,+ H,,.
Thus m, —m, € H, and so either m; =m, or m; —m, can be expressed as

n
my—m;= .Zl (xa,-ci —a)r;
s

where 6;=(c;, a;) € Xy, r;€ R\{0}, 1<i<n. Hence

and as c,,...,c, are cancellable, ¢;r;#0 for ie{1,...,n}. Clearly this is impossible. Thus
m;=m, and $:M—->M, defined by ¢(m)=m+ H, is an embedding of M into M,. We
will identify the element m of M with its image ¢(m) in M, and consider M as an R-
submodule of M.

In a similar manner one constructs a sequence M;SM,<... using X,,%,,...,
F.,F,,....,G,,G,,...,K,K,,... and H,H,,... where X,F,G,K; and H; are defined
using M; in the same way that X,, F,, G,, K, and H, are defined in terms of M.
Although X,<ZX,..., at each stage we choose for the basis of F; a set of symbols
{y,:0€Z;} not occurring in Gy,...,G;_;. -

We put M=| )2, M; where My=M. Then M is an R-module containing M, further
we claim that M is divisible. For let ce C and me M. Then meM, for some neN and
so o=(c,m)eX,. Thus y,c—meK, where {y,:0€Z,} is used in the construction of G,.
Now in M, ., we are identifying m with its image m+ H, and so

m+H,=m+y,c—m+H,
=y,c+H,=(y,+H,)c.

As y,+H,eM,,, and M, ., =M, we have shown that M is divisible.
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Now let R be a ring with all divisible R-modules weakly p-injective. Let re R and

form the divisible R-module 7R containing rR as above. By assumption rR is weakly
p-injective and so there exists an R-homomorphism : R—rR such that

rR

] K

Re—— R
o

commutes, where :rR—R and x:rR—7R are the inclusion mappings. Thus
r=k(r)=yu(r)=y(r)=y(r.

By the construction of rR, either ¥(1)erR or y(1)e(rR), for some ne N\{0}. In the
former case it is clear that r is a regular element and so (ii) holds for r.

Suppose then that (1)e(rR), where n>0. We note that we may assume that r#0,
since 0 is a regular element of R. From the construction of (rR),,¥(1)=g,-,+H,_, for
some g,-.€G,_,. Now in (rR), we identify r with its image r+ H,_, and so

r+Hn—l =(gn—l +Hn—1)r=gn—1r+Hn—l

giving that g, _,r—reH,_,.
Suppose that {z,:0€X,_,} is the basis of F,_, used in the construction of G, ,. Then

S
"gn—l=rnn—l+_Z:1 za,-ri
i=

for some f(n)eN, m, ;e(rR),_y, ry,...,7;m€R and distinct oy,...,0,,€Z,_;.
However, if 6=(1,m,_,) then
gn—l+Hn—1=gn—1+2¢1_mn—l+Hn—l
Sm)

=z,+ ) z,i+H,_;.
i=1

Thus we may assume that g,-, has the form

[

&n-1= ';1 Zairi

for some f(n)eN,r,,...,r,eR and distinct 0,,...,0,,€XZ,_;.
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We have g,_,r—reH,_, and H,_, is generated by K,_,, hence

p(n)
Bn—1r—r= Z (kacn,k_'ﬁn—l,k)sn,k (1)

for some p(n)eN, s, ,€R and distinct v, =(C, 1> Mn—1.1) EZ,_1, k€{L,...,p(n)}. Thus

Ln) p(n) By
z za.l_rir—r= Z kacn,ksn'k‘_ z m,,_l_ks,,,k.
i=1 k=1 k=1

Now G,_;=(rR),-®F,_, so that

pmy
r= My kSn,k
k=1
and
[(n) p(n)
2,1 =Y ZyCp Sk
i=1 k=1

As r#0, s, ,#0 for some ke{l,...,p(n)} and so from considering the form of (1) we
may assume that s, #0 for all ke{1,...,p(n)}. Hence c, s, ,#0 for all ke{l,...,p(n)}.
This gives that f(n)=p(n) and for ke{l,...,p(n)} we have that c,;s,,€l,., where
In+1 =Rr.

If n=1 then there exist a,,...,a,,,€R with m,_, ,=ra, for ke {l,...,p(1)}. Then

rQ1)
r=r Z akslyk
k=1

so that rerl, where I, =Rs,, + - +Rs, (1, and r satisfies (ii).
Otherwise, n>1 and

pin)
r+Hn—2= Z mn—l,ksn.k+Hn—29
k=1

where m,_, ,+H,_,=m,_,, ke{l,...,p(n)}. Thus
pin)

Z M,y 4 Spx—TEH, 3.
k=1

For ke{1,...,p(n)}, m,_, ,€G,_, and as above we may assume that

h(k)

m,_y = Yo, i Tx.i
R

where h(k)eN, p, ;€Z,_,, r,;€R,ie{l,...,h(k)} and {y,:peZ,_,} is the basis of F,_,
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p(n)
used in the construction of G,_ ,. Further, we may express Y, m,_, s, ,—r as
k=1

p(n) p(n—1)
K lmn—l,ksn,k_r= Z (yul-cn—l,j—mn-z,j)sn—l,j
= j=1

where p(n—1)eN, s,_; 1,...,8 1, pa—1)€R and py,...,p,,—,, are distinct elements of
X, 2 where p;=(c,_q ;;m,_), je{l,...,p(n—1)} and as above we may assume that
Sp—1,;70 for all je{l,...,p(n—1)}. Thus

p(n) hk) p(n—1) pinz1)

'Zl ,V;),",~rlc,l"gn,l(_r= X yujcn—l,jsn-l,j— . mn—Z.jsn—l,j'

k=1i= Jj= 7=

Then

Also, for any je{l,...,p(n—1)}
Co—1,jSn—1,;€1,
where
I,=Rs, 1+ +Rs, ym). |

Clearly we may continue in this way to obtain

p(1)
r= Z bisy «
k=1
where b,,...,b,4,erR. Then there exist d,,...,d,,,eR with b,=rd,, ke{1,...,p(1)} so
that
p(1)
r=Y rdys;
k=1

hence rerl, where
I‘=RSU+ e +Rsl'p(‘)

and so (ii) holds.

Corollary 3.4[8]. If R is an integral domain then all divisible R-modules are weakly p-
injective.

Corollary 3.5[9]. The ring R is regular if and only if all R-modules are weakly p-
injective.
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Proof. If R is a regular ring then it follows as in the case for monoids that all R-
modules are weakly p-injective.

Conversely, assume that all R-modules are weakly p-injective. By Propositions 3.2

and 3.3, the non zero-divisors of R are left invertible are R satisfies condition (ii) of

Proposition 3.3.
Let re R. Then there is a positive integer n and n finite sets

{8i, 15+ > S, py} (1=i=n)
of elements of R and n finite sets
{Ci,ls""ci.p(i)} (1sizn)
of non-zero-divisors of R, satisfying condition (ii). For je{l,...,n} and ke{1,..., p(j)},
CiiSi k€141
and as c;, is left invertible, 1 =cj ,c; , for some cj, € R, giving
Sik€C;dje1E 141,
Hence for je{l,...,n},
I;=Rs; 1+ +Rs; p;
SRI;,,
Sl
Thus
rerl,crl,c---crl,,,=rRr,

giving that r is regular.
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