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Abstract
We interpret a boundary-value problem arising in a cell growth model as a singular
Sturm–Liouville problem that involves a functional differential equation of the
pantograph type. We show that the probability density function of the cell growth
model corresponds to the first eigenvalue and that there is a family of rapidly decaying
eigenfunctions.
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1. Introduction

This paper is concerned with solutions to functional differential equations of the form

y′(x)+ bxn y(x)= λαnxn y(αx), (1.1)

subject to
lim

x→0+
y(x)= 0, lim

x→∞
y(x)= 0, (1.2)

and the normalizing condition ∫
∞

0
y(x) dx = 1. (1.3)

Here, b > 0, α > 1 are constants, n is a nonnegative integer, and λ is a nonzero
eigenvalue parameter. Equation (1.1) and conditions (1.2) and (1.3) form a first-order
singular Sturm–Liouville problem, which, in this paper, we shall refer to simply as the
boundary-value problem.

If n = 0, then (1.1) is the pantograph equation. This equation has been studied
extensively by several researchers (for example, [2, 7, 8]) owing to its wide range of
applications, including light absorption in the Milky Way [1], current collection for an
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electric train [3, 9], probability theory [4], and more recently a cell growth model [5].
Most of these studies focused on the asymptotic behaviour of solutions as x→∞
for initial-value problems; however, the cell growth model brought boundary-value
problems to the fore. The cell growth model of Hall and Wake [5] is based on the
equation

∂

∂t
n(x, t)+

∂

∂x
(g(x, t)n(x, t))=−b(x, t)n(x, t)+ α2b(αx, t)n(αx, t),

where n is the number density of cells of size x (as measured by DNA content)
at time t , and b is the rate at which cells of size x are dividing and creating α

new cells of size x/α. The function g is the growth rate of the cells. Under the
assumption that the functions b and g depend solely on x , Hall and Wake looked for
separable solutions n(x, t)= N (t)y(x). These were called steady size distribution
(SSD) solutions. Here, y is a probability density function for the size of a cell. The
separation process leads to the pantograph equation

y′(x)+ ay(x)= aαy(αx),

where a = αb/g. A second-order version of the problem was studied in [10].
There is a paucity of information about linear functional differential equations with

variable coefficients. In a second paper on cell growth, however, Hall and Wake [6]
studied the boundary-value problem for the case where the growth rate is assumed to
be linear and the division rate is of the form b(x)= bxn , where b is a constant. These
assumptions lead to an equation of the form (1.1). Their study included the more
general case where n is not necessarily an integer.

In this paper we show that the boundary-value problem leads to a family
of eigenvalues and corresponding eigenfunctions. The first eigenfunction is the
probability density function from the cell growth model. The problem is solved
using Mellin transforms. We recover the results given by Hall and Wake for the first
eigenfunction and then look at the higher eigenfunctions.

2. A Mellin transform solution

Equation (1.1) can be transformed into the pantograph equation with constant
coefficients. The Dirichlet series solution for the pantograph equation can then
be exploited to find a solution to the problem. This approach was used by Hall
and Wake [6] for the case λ= bα, but it can be adapted for more general values.
Alternatively, one can apply the Mellin transform to (1.1) and solve the problem
directly. In this section, we formulate and solve the equation for the Mellin transform
and its inverse. We use a technique of factoring the transform into two parts, one
of which does not depend on the functional parameter α. It may be possible that
this approach can be adapted to more general functional equations; however, the
solution of the transform equation might prove formidable. The Mellin transform
approach has the advantage that it highlights eigenvalues and the role of solutions to
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the homogeneous equation
y′(x)+ bxn y(x)= 0. (2.1)

It also indicates possible sources for nonuniqueness.
Recall that the Mellin transform of a function f is

M[ f, s] =
∫
∞

0
x s−1 f (x) dx .

We first establish conditions for a fundamental strip in the s-plane.

LEMMA 2.1. Let y be a solution to (1.1) such that y is differentiable in some interval
[0, a], a > 0 and y(0)= 0. Then y has derivatives of all orders in [0, a] and, for all
k ∈ N, y(k)(0)= 0; consequently,

lim
x→0+

y(x)

xk = 0, (2.2)

for all k ∈ N.

PROOF. Equation (1.1) implies that

y′(x)= xn(λαn y(αx)− by(x)),

so that y′(0)= 0. Since y is differentiable, we can differentiate the above expression
to get

y′′(x)= nxn−1(λαn y(αx)− by(x))+ xn(λαn+1 y′(αx)− by′(x)).

Since y and y′ both vanish at x = 0, the right-hand side of the above expression is also
zero when x = 0 even if n = 1. We thus see that y′′(0)= 0. It is clear that we can
continue this process any number of times to show that y has derivatives of all orders
and that y(k)(0)= 0 for all k ∈ N. Equation (2.2) follows from L’Hôpital’s rule. 2

THEOREM 2.2. Let y be a solution to the boundary-value problem such that∫
∞

0
xn+1
|y(x)| dx <∞. (2.3)

Then the fundamental strip for the Mellin transform of y includes the interval
(−∞, n + 2].

PROOF. Inequality (2.3) and the comparison test show that M[y, s] is defined for
all s such that 1≤ s ≤ n + 2. Suppose that s < 1. Then s − 1< 0, but Lemma 2.1
implies that x s−1 y(x)→ 0 as x→ 0+. Hence x s−1 y(x) is continuous on [0, 1] and
the integral ∫ 1

0
x s−1 y(x) dx
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is thus well defined. The integral ∫
∞

1
x s−1 y(x) dx

converges by the comparison test and therefore M[y, s] is defined for all s < 1. 2

We restrict our attention to functions y that satisfy condition (2.3). In addition, we
assume that

lim
x→∞

xn+1 y(x)= 0. (2.4)

The above conditions imply that

M[y′, s] = x s−1 y(x)|∞0 − (s − 1)
∫
∞

0
x s−2 y(x) dx =−(s − 1)M[y, s − 1].

Taking the Mellin transform of both sides of (1.1) gives

−(s − 1)M(s − 1)+ bM(s + n)=
λ

αs M(s + n), (2.5)

where, for succinctness, we use M(s)= M[y, s]. Condition (1.3) implies that

M(1)= 1. (2.6)

We seek solutions to (2.5) of the form

M(s)= KF(s)Q(s), (2.7)

where K is a nonzero constant that will be used later for normalization and F
corresponds to the Mellin transform equation for the homogeneous equation (2.1).
We thus have

−(s − 1)F(s − 1)+ bF(s + n)= 0, (2.8)

and since we can solve (2.1) by elementary means, we know that a solution to (2.8) is

F(s)=
1

n + 1

(
b

n + 1

)−s/(n+1)

0

(
s

n + 1

)
. (2.9)

The second factor Q contains all the influence of the functional term. Substituting
(2.7) into (2.5) gives

−(s − 1)F(s − 1)Q(s − 1)+
(

b −
λ

αs

)
F(s + n)Q(s + n)= 0,

and, using (2.8), we have that

Q(s − 1)=
(

1−
λ

bαs

)
Q(s + n),

https://doi.org/10.1017/S1446181110000866 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000866


[5] An eigenvalue problem involving a functional differential equation 387

which has a solution

Q(s)=
∞∏

k=0

(
1−

λ

bαk(n+1)+1+s

)
.

One solution to (2.5) is therefore

M(s)=
K

n + 1

(
b

n + 1

)−s/(n+1)

0

(
s

n + 1

) ∞∏
k=0

(
1−

λ

bαk(n+1)+1+s

)
. (2.10)

Note that M is defined for all s > 0, and that

M(1)=
K

n + 1

(
b

n + 1

)−1/(n+1)

0

(
1

n + 1

) ∞∏
k=0

(
1−

λ

bαk(n+1)+2

)
,

so that there is a K that satisfies condition (2.6) for Q(1) 6= 0, that is, provided that

λ 6= bαk(n+1)+2, (2.11)

for any nonnegative integer k.
Integrating (1.1) from 0 to∞ gives(

b −
λ

α

)
M(n + 1)= 0; (2.12)

hence, either λ= bα or M(n + 1)= 0. In any case, the product Q vanishes at s = 0.
The eigenvalues are therefore

λm = bαm(n+1)+1, (2.13)

where m is a nonnegative integer. The spectrum {λm} of eigenvalues for the class of
solutions given by (2.10) is discrete. If k(n + 1)+ 2= m(n + 1)+ 1, then m − k =
1/(n + 1), and for n > 0 there are no integers m, k that satisfy this relation. Every
eigenvalue therefore satisfies condition (2.11) and the normalizing constant from (2.6)
is

Km = (n + 1)
(

b

n + 1

)1/(n+1)(
0

(
1

n + 1

))−1 ∞∏
k=0

(
1−

1

bα(k−m)(n+1)+1

)−1

.

(2.14)
Note that the gamma function in M(s) has simple poles at s =−`(n + 1), where ` is
a nonnegative integer. If λ ∈ {λm}, then Q has a simple zero at s =−`(n + 1). The
choice of an eigenvalue thus ensures that M is defined for all s ≤ 0. Alternatively,
Theorem 2.2 implies that λ ∈ {λm}. The spectrum thus corresponds to the values of λ
that make the Mellin transform well defined for s ≤ 0.

The separable form of the Mellin transform makes it tractable to invert. The
inversion is based on the simple observation that if G(s) is the Mellin transform of
g(x), then α−ks G(s) is the Mellin transform of g(αk x). The product Q(s) can be
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expressed as a power series in α−s , by use of the Euler identity,
∞∏

k=0

(1+ zqk)= 1+
∞∑

k=1

qk(k−1)/2zk∏k
j=1(1− q j )

,

which is valid for |q|< 1 and z ∈ C. Specifically, let q = α−(n+1) and z =
−λ/(bαs+1). Then,

Q(s)=
∞∏

k=0

(1+ zqk)= 1+
∞∑

k=1

pk(λ)

αks ,

where

pk(λ)=
(−1)k(λ/(bα))k

α(n+1)k(k−1)/2
∏k

j=1(1− α
−(n+1) j )

.

The Mellin transform (2.7) can thus be written

M(s)= K

(
F(s)+

∞∑
k=1

pk(λ)
F(s)

αks

)
.

The infinite product in the Euler identity is uniformly convergent with respect to z in
any compact subset of the complex plane, and this indicates that the Mellin transform
can be inverted term by term. The inverse transform of F is

f (x)= e−bxn+1/(n+1)
;

therefore, solutions to the boundary-value problem are given by

ym(x)= Km

(
e−bxn+1/(n+1)

+

∞∑
k=1

pk(λm)e
−bαk(n+1)xn+1/(n+1)

)
. (2.15)

The Euler identity implies that

1+
∞∑

k=1

pk(λm)= 0,

so that membership of λ in the spectrum ensures that y(0)= 0.

3. Uniqueness

The analysis of the previous section established that the boundary-value problem
has solutions when λ is in the spectrum. The restriction on the class of functions for the
Mellin transform analysis amounts to a strong decay condition. Certainly the Dirichlet
series solutions (2.15) decay rapidly as x→∞, but it may be that there are other
solutions. We know from the analysis of Kato and McLeod [8] that the pantograph
equation has an infinite number of solutions for a given initial value at x = 0.
We also know from the work of Hall and Wake [5] that the boundary-value problem
has a unique solution for the case n = 0.
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A notable feature of (2.5) is that, given M(1), the equation determines only
M(n( j − 1)+ j) for j ∈ N. For instance, M(2) is not determined by this equation
when n > 0. The absence of information about M(2) and other Mellin transform
values signals that the Dirichlet series solutions may not be the only solutions even
with the assumption of strong decay. Certainly, the Mellin transform solution (2.10)
is not unique since M can be multiplied by any nonzero function P that satisfies
P(s)= P(s + n + 1). For example,

M̂(s)= K
F(s)Q(s)

sin(2πs/(n + 1))

is also a solution to (2.5). Functions such as P may not lead to solutions of the
boundary-value problem, but there is latitude for nonuniqueness. In this section we
show that under certain rapid decay conditions, the Dirichlet series solutions are the
only solutions.

The first eigenfunction y0 is important in the application to the cell growth
model. This function should represent a probability density function and therefore the
condition y(x)≥ 0 for all x > 0 is required by the model. Hall and Wake [6] showed
that y0 is a probability density function indirectly by mapping it back to the pantograph
equation. We will show this directly from the equation along with a uniqueness result.
The direct approach also provides a pathway to establish uniqueness results for the
higher eigenfunctions.

LEMMA 3.1. Let ν be a differentiable function on [0,∞) such that ν(x)→ 0 as
x→∞, and

ν′(x)= bxn(ν(αx)− ν(x)). (3.1)

If ν′(x0)= 0 for some x0 ∈ (0,∞), then ν(x)= 0 for all x ∈ [0,∞).

PROOF. We show first that ν cannot have local extrema in (0,∞). Suppose that ν
has a positive local maximum at M1 ∈ (0,∞). Equation (3.1) implies that ν(M1)=

ν(αM1), and since ν(x)→ 0 as x→∞ there must exist another local maximum at
some point M2 ≥ αM1 at which ν(M2)≥ ν(M1). We can use the same argument
to establish the existence of another local maximum M3 ≥ αM2 at which ν(M3)≥

ν(M2), and it is clear that this argument can be repeated ad infinitum to show that
there must be a sequence of local maxima {M j } such that M j →∞ as j→∞ and,
for all j ∈ N,

ν(M j )≥ ν(M1) > 0.

The above inequality, however, contradicts the assumption that ν(x)→ 0 as x→∞;
therefore, ν cannot have a positive local maximum. This conclusion can also be
applied to the function −ν so that ν cannot have a negative local minimum. If ν has a
negative local maximum then the condition ν(x)→ 0 as x→∞ implies that it must
have a negative local minimum. Similarly, if ν has a positive local minimum, it must
have a positive local maximum. Therefore, ν cannot have local extrema in (0,∞).
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Suppose that ν′(x0)= 0 for some x0 ∈ (0,∞). Then (3.1) implies that ν(x0)=

ν(αx0), and since ν cannot have local extrema it follows that ν(x)= ν(x0) for all
x ∈ [x0, αx0]. Therefore ν′(x)= 0 for all x ∈ [x0, αx0]. Evidently, this argument
can be repeated to show that ν′(x)= 0 for all x ∈ [αx0, α

2x0]. The argument can be
repeated any number of times and this implies that ν′(x)= 0 for all x ∈ [x0,∞). Since
ν(x)→ 0 as x→∞, ν(x)= 0 for all x ∈ [x0,∞), and (3.1) implies that

ν′(x)+ bxnν(x)= 0,

for x ∈ [x0/α,∞). The above relation is an ordinary differential equation for ν that
must satisfy the initial condition ν(x0)= 0. Picard’s theorem shows that the unique
solution to this problem is the trivial solution; hence, ν(x)= 0 for all x ∈ [x0/α,∞).
This argument can be repeated j times to show that ν(x)= 0 for all x ∈ [x0/α

j ,∞),
and this implies that ν(x)= 0 for all x > 0. The continuity of ν shows that ν(0)= 0. 2

THEOREM 3.2 (The first eigenfunction). The function y0 defined by (2.15) is a
solution to the boundary-value problem with λ= bα. This solution is unique among
functions y such that ∫

∞

0
xn y(x) dx <∞. (3.2)

Moreover, y0(x) > 0 for all x > 0.

PROOF. It was established in the previous section that y0 is a solution to the boundary-
value problem. Suppose that y and w satisfy condition (3.2) and are solutions to
the boundary-value problem, and let z = y − w. Then z satisfies condition (3.2), the
equation

z′(x)+ bxnz(x)= λαnxnz(αx), (3.3)

and also the relation ∫
∞

0
z(x) dx = 0. (3.4)

Since z satisfies condition (3.2), the function

δ(x)=
∫
∞

x
ξnz(ξ) dξ

is defined for all x ≥ 0. Integrating (3.3) from 0 to∞ yields

−z(x)= b(δ(αx)− δ(x)),

and since
δ′(x)=−xnz(x), (3.5)

we have
δ′(x)= bxn(δ(αx)− δ(x)).

Equation (3.4) implies that either z is identically zero or z must change sign in (0,∞);
consequently, there is an x0 ∈ (0,∞) such that z(x0)= 0. Equation (3.5) implies
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that δ′(x0)= 0. Lemma 3.1 implies that δ(x)= 0 and hence δ′(x)= 0 for all x ≥ 0.
Equation (3.5) shows that z(x)= 0 for all x ≥ 0, and the solution y0 is therefore
unique.

The above argument can also be used to show that y0 is positive. We can replace z
with y0 in the above arguments. Condition (1.3), however, does not require y0 to
change sign. Indeed, the above arguments show that if y0 did change sign, then y0
would be identically zero. Condition (1.3) shows that y0 must be positive somewhere
in (0,∞), and since it cannot change sign we conclude that y0(x) > 0 for all x > 0. 2

The uniqueness of the higher eigenfunctions can be established in a manner similar
to that used for the first eigenfunction. The decay condition, however, becomes more
complicated. Let {δ j } be a sequence of operators defined by

δ0 y(x) = y(x)

δ j y(x) =
∫
∞

x
ξnδ j−1 y(ξ) dξ,

where j ∈ N. Let R j denote the set of functions y ∈ C0
[0,∞) such that

lim
x→∞

xnδk y(x)= 0 (3.6)

and
δk y(0) <∞, (3.7)

for all k = 1, 2, . . . , j . The Dirichlet series solutions {ym} are evidently in R j for
any j ∈ N. Theorem 3.2 shows that y0 is the unique solution to the boundary-value
problem in R1.

The usefulness of the operator δ j is that it can be used to map (1.1) back to (1.1)
with a lower eigenvalue parameter.

LEMMA 3.3. Let zm ∈Rm+1 be a solution to (1.1) with λ= λm . Then for j =
0, 1, . . . , m,

δ′j+1(x)= bxn(α(m− j)(n+1)δ j+1(αx)− δ j+1(x)), (3.8)

where δ j (x)= δ j zm(x).

PROOF. Equation (1.1) implies that

z′m(x)= xn(λmα
nzm(αx)− bzm(x))= bxn(α(m+1)(n+1)zm(αx)− zm(x)),

and integrating from x to∞ gives

−zm(x)= b(αm(n+1)δ1(αx)− δ1(x)). (3.9)

For any 0≤ j ≤ m,
δ′j+1(x)=−xnδ j (x); (3.10)

https://doi.org/10.1017/S1446181110000866 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000866


392 B. van Brunt and M. Vlieg-Hulstman [10]

hence,
δ′1(x)= bxn(αm(n+1)δ1(αx)− δ1(x)).

Given that zm ∈Rm+1, the functions δ j are well defined and xnδ j (x)→∞ as x→∞
for 0≤ j ≤ m + 1. We can thus repeat the argument up to m times, so that (3.8) holds
for 0≤ j ≤ m. 2

THEOREM 3.4 (Higher eigenfunctions). The function ym defined by (2.15) is a
solution to the boundary-value problem with λ= λm . This solution is unique among
functions in Rm+1.

PROOF. Let wm ∈Rm+1 be another solution to the boundary-value problem and let
zm = ym − wm . Then zm ∈Rm+1, zm satisfies (1.1), and∫

∞

0
zm(x) dx = 0. (3.11)

The function zm satisfies the conditions of Lemma 3.3; therefore,

δ′m+1(x)= bxn(δm+1(αx)− δm+1(x)). (3.12)

We will show that δ′m+1(x0)= 0 for some x0 > 0 and apply Lemma 3.1 to (3.12).
Equation (3.9) implies that

−

∫
∞

0
zm(x) dx = b(αm(n+1)−1

− 1)
∫
∞

0
δ1(x) dx;

therefore, by (3.11),

(αm(n+1)−1
− 1)

∫
∞

0
δ1(x) dx = 0.

Since α > 1, the above equation implies that∫
∞

0
δ1(x) dx = 0.

Repeating this argument, using Equations (3.8) and (3.10) with j = 1, gives

−

∫
∞

0
δ1(x) dx = b(α(m−1)(n+1)−1

− 1)
∫
∞

0
δ2(x) dx;

hence, ∫
∞

0
δ2(x) dx = 0.

The process can be repeated to show that∫
∞

0
δ j (x) dx = 0,

for 0≤ j ≤ m. For j = m the equation above implies that there is an x0 > 0 such that
δm(x0)= 0 and hence δ′m+1(x0)= 0. Lemma 3.1 shows that δm+1(x)= 0 for all x ≥ 0.
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Equation (3.10) therefore gives δ′m(x)= 0 and since δm(x0)= 0, δm(x)= 0 for all
x ≥ 0. We can continue this argument back to show that δ j (x)= 0 for 0≤ j ≤ m and
x ≥ 0. In particular, zm(x)= 0 for all x ≥ 0. The solution is thus unique in Rm+1. 2

4. Conclusions

The cell growth model posed by Hall and Wake [5, 6] has a rich underlying structure
as a singular Sturm–Liouville problem that involves a first-order functional equation.
In this paper we have shown that the probability density function of the cell growth
model arises naturally as the first eigenvalue of the problem. The requirement that y
be a p.d.f. solution leads to this eigenvalue.

The role of the higher eigenvalues and more detailed properties of the higher
eigenfunctions remain to be explored. The uniqueness results presented here require
strong decay conditions: it may be possible to relax them. The original cell growth
problem concerns the first eigenvalue, and the problem makes sense for any function
that is integrable on [0,∞). Consequently, there is the possibility of a solution y to the
boundary-value problem that is integrable on [0,∞) but decaying slowly enough that
xn y is not integrable. The uniqueness of the solution asserted in Hall and Wake [6]
relies on the proof for the case n = 0. The transformation they used to map the
n > 0 case to the n = 0 case, however, requires implicitly that xn y is integrable in
the uniqueness proof.

For the higher eigenfunctions, the integrability of xn y is needed, but the condition
y ∈Rm+1 is somewhat stronger. There is consequently a window through which other
solutions such that xn y is integrable but y /∈Rm+1 might exist.

References

[1] V. A. Ambartsumian, “On the fluctuation of brightness of the Milky Way”, Dokl. Akad. Nauk
USSR 44 (1944) 223–226.

[2] G. Derfel and A. Iserles, “The pantograph equation in the complex plane”, J. Math. Anal. Appl.
213 (1997) 117–132.

[3] L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Tayler, “On a functional differential equation”,
J. Inst. Math. Appl. 8 (1971) 271–307.

[4] D. P. Gaver, “An absorption probablilty problem”, J. Math. Anal. Appl. 9 (1964) 384–393.
[5] A. J. Hall and G. C. Wake, “A functional differential equation arising in the modelling of cell-

growth”, J. Aust. Math. Soc. Ser. B 30 (1989) 424–435.
[6] A. J. Hall and G. C. Wake, “Functional differential equations determining steady size distributions

for populations of cells growing exponentially”, J. Aust. Math. Soc. Ser. B 31 (1990) 434–453.
[7] A. Iserles, “On the generalized pantograph functional-differential equation”, European J. Appl.

Math. 4 (1993) 1–38.
[8] T. Kato and J. B. McLeod, “The functional differential equation y′(x)= ay(λx)+ by(x)”, Bull.

Amer. Math. Soc. 77 (1971) 891–937.
[9] J. R. Ockendon and A. B. Tayler, “The dynamics of a current collection system for an electric

locomotive”, Proc. R. Soc. Lond. A 322 (1971) 447–468.
[10] B. van-Brunt, G. C. Wake and H. K. Kim, “On a singular Sturm–Liouville problem involving an

advanced functional differential equation”, European J. Appl. Math. 12 (2001) 625–644.

https://doi.org/10.1017/S1446181110000866 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000866

