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Abstract

For isotropic incompressible hyperelastic materials the single function
characterizing generalized shear deformations or as they are sometimes
called anti-plane strain deformations must satisfy two distinct partial
differential equations. Knowles [5] has recently given a necessary and
sufficient condition for the strain-energy function of the material which if
satisfied ensures that the two equations have consistent solutions. It is shown
here for the general material not satisfying Knowles' criterion that the only
possible consistent solutions of the two partial differential equations are those
which are already known to exist for all strain-energy functions. More
general types of generalized shear deformations for such materials are shown
to exist only for special or restricted forms of the strain-energy function.
In deriving these results we also obtain an alternative derivation of Knowles'
criterion.

1. Introduction

Generalized shear deformations which are sometimes referred to as anti-plane
strain deformations are characterized by a single function. For isotropic incom-
pressible hyperelastic materials this function must satisfy two generally distinct
partial differential equations. Knowles [5] has recently obtained a necessary and
sufficient condition which ensures that every solution of one of these partial
differential equations is automatically a solution of the second equation. There
are, however, many standard strain-energy functions proposed for rubber-like
materials (see, for example, [1], [2] and [3]) which do not satisfy Knowles' criterion.
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130 James M. Hill [2]

The purpose of this paper is to investigate possible consistent solutions of these
equations for materials of the latter type. We show for the general strain-energy
function not satisfying Knowles' criterion that the only possible solutions are
those which are known to exist for all strain-energy functions (namely those given
by (2.7)). More general types of deformations are shown to exist only for special
or restricted forms of the strain-energy function. In establishing these results we
also obtain an alternative derivation of the necessary and sufficient condition given
in [5].

In the following section we give the basic equations for generalized shear
deformations of isotropic incompressible hyperelastic materials. In Section 3 we
give an alternative derivation of the sufficiency of the criterion (2.8) due to
Knowles [5] which follows immediately from (3.9). For those materials not
satisfying Knowles' criterion we use (3.9) in Section 4 to show not only the necessity
of (2.8) but also that the only generalized shear deformations which apply to all
strain-energy functions are those given by (2.7). In Section 5 we discuss briefly the
possibility of obtaining more general types of deformations for particular forms
of the strain-energy function. The first case considered is interesting since the
restriction obtained on the strain-energy function is a generalization of that given
in [5]. Moreover, for this case the mathematical details can be effected in simple
terms so as to obtain an explicit form for the deformation.

2. Terminology and basic equations

For material and spatial rectangular cartesian coordinates (X, Y,Z) and (x,y,z)
respectively, static generalized shear deformations are given by

x = X~iX, y = X-*Y, z=XZ+u(X,Y), (2.1)

where A is a positive constant and u(X, Y) is a function of X and Y only. If for
isotropic incompressible hyperelastic materials we use the general equations given
in Hill [4] for the stress and strain tensors and the equilibrium equations, then for
(2.1) we can show in a straightforward manner that the basic equations for u(X, Y)
are given by

i<h(fi>) ux\x+[<h(f») urh = 0. (2.2.1)

) "x " r l r > (2.2.2)

qT = [&(«) u\r]Y + [<f>2(a>) ux uT]x, (2.2.3)

where subscripts denote partial differentiation, q(X, Y) is related to the usual
arbitrary pressure function for incompressible materials and the function co(X, Y)
is defined by

w* = ux + u2
r. (2.3)
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[3] Generalized shear deformations 131

The response coefficients fa(oj) and <f>2(<o) are defined in terms of the strain-energy
function of the material S(/1( 1%) by

Afoj)-^ 1^5 6(co) = — (2 4)

where Jx and J2 are the invariants of the strain tensor of (2.1) which can be shown
to be given by

2 1 2

J. dJ
h = Az + -r+aA L =-r; + 2AH—r-, (2.5)1 A * A2 A v

and we remind the reader that the dependence of fa and <f>2 on the constant A
will not be noted explicitly.

If we eliminate q(X, Y) from (2.2.2) and (2.2.3) by equating expressions for qXT

then we obtain

a2
v r f S \ s A ft \ -i I v v 1 r I S -\ i *f± £\

dXdY1™ JK x TJi

and this equation and (2.2.1) are the two partial differential equations which the
function u(X, Y) must satisfy. We remark that (2.6) is satisfied identically for all
strain-energy functions if u(X, Y) takes on any of the following forms :

(i) u(X, Y) = A tan-1 ( Y/X)+B,

(ii) u(X,Y)=AX+BY+C, (2.7)

(iii) u(X, Y) = <f>(X2+ Y2),

(iv) u{X, Y) = f(AX+BY),

where A, B and C denote arbitrary real constants and <f> and i/r are functions of the
arguments indicated. We note that the deformations (i) and (ii) are controllable
while for the deformations (iii) and (iv) the functions <f> and ip depend upon the
strain-energy function of the material. For all of the above deformations we can
always find a function q(X, Y) such that (2.2.2) and (2.2.3) are satisfied. Knowles [5]
has shown that a necessary and sufficient condition for every solution of (2.2.1)
to be automatically a solution of (2.6) is that the strain-energy function of the
material satisfies

I, (2.8)

where D is a constant which can depend upon A. In the following sections we show
for the general material which does not satisfy (2.8) that the only possible consistent
solutions of (2.2.1) and (2.6) are those of the form (2.7).
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132 James M. Hill [4]

It is convenient here to define the following functions,

f{w) = wkfcS), (2.9.1)

g(to) = ufi &(<*), (2.9.2)

and we note that since <f>i(oj) is essentially the generalized shear modulus of the
material we shall assume throughout that /(co) is never zero for non-constant
u(X, Y). We shall also frequently use the function h(u>) which we define by

n(a>) =—T^T = J 7 - T , (2.10)

and we mention that h(a>) constant gives rise to Knowles' criterion (2.8). In the
following section we show that (2.6) can be expressed in a form which enables
the sufficiency of (2.8) to be established directly.

3. Alternative derivation of the sufficiency of Knowles' criterion

From (2.3) we can introduce the function 9(X, Y) such that

ux = o)cos9, uY = w sin 0, (3.1)

and on equating expressions for uXY we obtain

1

In addition from (2.2.1) and (3.1) we can deduce

6X sin 6— By cos 6 = „ . fax c o s 9+u>Y sin 6], (3.3)

where/(w) is defined by (2.9.1) and we follow the convention throughout that
primes denote differentiation with respect to the argument indicated. We now
use (3.2) and (3.3) in the forms given to express (2.6) in an alternative form.

Using (3.1) we see that (2.6) becomes

' (3.4)

where g(a>) is defined by (2.9.2). If we now rewrite (3.4) as

8(8 8
OX\OI OX

= 0, (3.5)

and perform the differentiations inside the brackets in (3.5) then on eliminating
the partial derivatives 9X and 9Y by means of (3.2) and (3.3) we can show in a
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[5] Generalized shear deformations 133

straightforward manner that (3.5) becomes

[^Q} = 0, (3.6)
where the function H{oi) is defined by

[̂ y (3.7)
If we again make use of (3.2) and (3.3) then from (3.6) we obtain

H(oS) [2coXT cos20 + (<j»ry — ti)xx)sin26]

[ ^ ^ + i j ) [2u>xu>Ycos20+(wY-w^)sin25] = 0. (3.8)

In terms of the function h(co) defined by (2.10) we see on using (3.7) that (3.8)
becomes

h'(w)

+h"(u>)[2u)Xwrcos26+(a>%r-iox)sm20] = 0, (3.9)

and this is the alternative form of (2.6) from which the sufficiency of the criterion
due to Knowles [5] can be deduced immediately. Evidently if the strain-energy
function of the material is such that h(u)) is constant then (3.9) is satisfied trivially
and in this case for every solution of (2.2.1) there always exists a function q(X, Y)
such that (2.2.2) and (2.2.3) are satisfied. For further details of the case of h(cS)
constant the reader is referred to [5]. In the following section we suppose that
h{ui) is not constant and we show not only the necessity of (2.8) but also that for
the general material of this type the only consistent solutions of (2.2.1) and (2.6)
are those of the form (2.7).

4. The general material not satisfying Knowles' criterion

In this section we suppose that h'(co) is non-zero and we remind the reader of
our assumption noted at the end of Section 2 that /(co) is never zero for non-
constant u(X, Y). If we use (3.1) to eliminate 6{X, Y) from (3.9) then we obtain

h\oi) [a>XT (u
2
x - uT) + (a)TY - <DXX) ux uT]

+h"(u>) [cox wF(M^ - u%) + (cof, - a>x) ux uT] = 0. (4.
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134 James M. Hill [6]

In terms of the Jacobian,

8(u,a>) .. „
= " < x ) U 0 > ^ ^8(X Y)

we can show on using (2.3) that (4.1) becomes

From (2.2.1) we now introduce the function v(X, Y) such that

i ,(f t i )My = v-f, <j>i(u>) u-p- = —Vx> (4.4)

and we note that from these relations and (2.3) and (2.9.1) we have

^ =" / (» ) • (4.5)

From (4.3) and (4.4) we can deduce

(4.6)

where F'(v) is some arbitrary function oft; which for convenience we have expressed
as a derivative with respect to v. If now we recall our assumption that /(co) is
never zero for non-constant u(X, Y) then we see from (4.5) that we can treat u and
v as independent variables so that on dividing (4.6) by (4.5) and using the usual
rule for Jacobians we obtain

where we are evidently now considering a> as a function of u and v. On integrating
(4.7) we have

/
, (4.8)

where co0 is some arbitrary constant and G(w) is an arbitrary function of u. We have
thus established

(4.9)

where for a given material $ is in principle a known function while both F(v) and
G(u) are as yet undetermined arbitrary functions.

We now make use of the form (4.9) for u> to obtain the function 8(X, Y) defined
by (3.1). For convenience we set

, (4.10)
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[7] Generalized shear deformations 135

so that (4.7) becomes

tof(u>)h'(a,)p=l, (4.11)
dp

and it is important to emphasize again that for a given material w as a function of
p is determined by (4.11). Using the form (4.9) for w we can deduce from (3.2) and
(3.3),

e / t o * * n v ) c o s 0 + » dJMG'(u)smd,
to dp f(u>) dp (412)

co dp J\<v) dp

where we have made frequent use of (3.1) and (4.10) as well as the relations

vx = —/(OJ) sin 6, vY =/(">) cos 6, (4.13)

which are obtained from (4.4), (3.1) and (2.9.1). On equating expressions for 6XT

and making use of the above relations we obtain

(4.14)

which is the sole equation for the determination of the functions F(v) and G(u).
Now since u and v are independent variables and for a given material ao and/(co)
are prescribed functions of p, the only possible way (4.14) can be satisfied without
imposing a further restriction on the strain-energy function of the material is that
if p is either a function of v only or a function of u only. For special materials
there are situations for which (4.14) can be satisfied with p as a function of both
u and v and these are discussed in the following section. For the general material
not satisfying Knowles' criterion we now consider separately the solutions arising
from the cases p = F(v) and p = G(u).

For the case of p = F(v) we obtain from (4.14)

where a is a constant and we note that in principle (4.15) together with (4.11)
determines the function F(v). From (3.1), (4.12) and (4.15) we find that 6(X, Y)
is given by

6 = au+p, (4.16)

where /? is a constant.
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136 James M. Hill [8]

Now using (4.15) and (4.16) we see that (3.1) and (4.13) become respectively

ux = CJ cos (aw + jS), Uy = a> sin (aw+]8),

iox = — aw2 sin (pcu+fi), coy = acu2 cos (aw+jS), (4.17)

and we note that we have

w$)=aw3- (4-18)
Assuming a is non-zero and considering X and Y as functions of u and en we have
in the usual way from (4.17) and (4.18)

BY
Bat

BY
Bu =

1
aw2

1 . .
at

BX 1 s . n
aco2

— cos(aM+j3),
CO

and these equations can be integrated to yield

X = — sin (a«+j8) + Zo, y = — - cos (a«+j8) + yo, (4.20)
aoi aw

where Zo and Yo are arbitrary constants. On inverting (4.20) we obtain

(4.21.1,

l(XX)'+(yy^]-', (4.21.2)

and the reader can verify that (4.21.1) and (4.21.2) are consistent with (2.3).
Apart from the arbitrary constants (4.21) is evidently the deformation (i) of (2.7).
The reader can easily verify from (4.17) that the case of a zero gives rise to the
deformation (ii) of (2.7).

The case of p = G(u) is similar to the above. From (4.14) we have

( 4 - 2 2 )

where y is a constant and we find from this equation and (4.12) and (4.13) that
6(X, Y) is given by

6 = yv + h, (4.23)

where 8 is a further arbitrary constant.
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[9] Generalized shear deformations 137

On using (4.22) and (4.23) we have from (4.13) and (3.1)

vx = —/sin (yv + S), vr = /cos (yv + S),

), fY=-ypsm(yv+8). (4.24)

If in this case we consider X and Y as functions of v and/then for y non-zero we
can show as for the previous case that X(v,f) and Y(v,f) are given by

X=j.cos(yv+S) + X0, Y=jsm(yv+P) + Y0, (4.25)

where again Xo and Yo are arbitrary constants. Thus in particular from (4.25) we
have

/(co) = 1 [{X- Xof + ( Y- Yof]~K (4.26)

and since a> is a function of u we have the deformation (iii) of (2.7). If y is zero
then from (4.24) we see that the deformation is such that / is constant and from
(3.1) and (4.23) we have

ux = a) cos 8, uT ~ u> sin S. (4.27)

On solving the partial differential equation for w which results from (4.27) on
equating expressions for uXY we obtain a solution of the form

w(X, Y) = Y(Zcos S + Ysin 8), (4.28)

where *F is an arbitrary function. From (4.27) and (4.28) we see that u(X, Y) is
of the same form as the deformation (iv) of (2.7).

We have thus established the necessity of (2.8) and in addition for the general
material which does not satisfy Knowles' criterion we have shown that the only
possible consistent solutions of (2.2.1) and (2.6) are those of the form (2.7). In
the following section we briefly discuss the special materials which admit solutions
p of (4.14) which are functions of both u and v.

5. Special materials

If we are at liberty to choose the functions /(w) and h(io) then it is possible to
find solutions p of (4.14) which are functions of both u and v. The resulting special
materials although perhaps physically well defined are somewhat contrived and
appear not to include any standard materials which have been proposed in the
literature. We will therefore not discuss all of these situations in any great detail.
The following list of expressions for p, which may not be exhaustive, are possible
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138 James M. Hill [10]

solutions of (4.14) for particular strain-energy functions:

(a) p = Au+Bv,

(b) P = Alog(v/u) + B, (5.1)

(c) P =

where A and B denote arbitrary constants which can if necessary be functions of
the constant A.

The first case is interesting since all the mathematical details can be effected in
relatively simple terms and an explicit form for the function u(X, Y) can be deduced.
Moreover, in this case we find that the constraint on the response coefficients can
be considered as a generalization of Knowles' criterion (2.8). For the case (a) we
find that (4.14) admits a first integral which on using (4.11) can be integrated again
to yield

* ^ (5.2)

where C and D are integration constants which can depend upon A. In terms of
the response coefficients ^(w) and 2̂(co) w e s e e from (2.9.1) and (2.10) that (5.2)
becomes

<f>2(a>) = DU^+^^+B^U^, (5-3)

which evidently can be considered to be a generalization of Knowles' criterion (2.8).
From (3.1), (4.12), (4.13) and (5.1) (a) we obtain the relations,

dpi u) /(co)

e MMBsiae-wQ4
dp[ (o f(w)

dp

(xiY = - j - V»A sin 9+f(u))Bcos 6].
dp

Now from (5.4) and the first integral obtained from (4.14) we have

0(0, a>) _ <of(co)du>
d(X,Y) 2C dp' { }
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[11] Generalized shear deformations 139

and if we consider .Sf and Fas functions of 6 and to then as described in the previous
section we can deduce from (5.4) and (5.5) that X(8, to) and Y{6, w) are given by

X =

Y =

- - s i n d] + Xo,

(5.6)
-^ - s in 6+-COS e\+Y0,/(o>) o) J

where Xo and Yo are arbitrary constants. From (5.2) and (5.6) we have

h[w(R)] = / > + £ , (5.7)

where R is defined by
Yoy]K (5.8)

and for a given material satisfying (5.3), equation (5.7) defines OJ as a function of R.
If we use (5.6) to obtain expressions for sin 9 and cos 8 then from (3.1) we can
deduce that u{X, Y) is given by

(5.9)

where Ro and w0 are arbitrary constants. We note that, as would be expected, the
cases ^4=0 and B = 0 yield respectively deformations (i) and (iii) of (2.7). We
remark that case (b) of (5.1) is similar to (a) in that (4.14) admits a first integral.
However, the details are not simple and we shall not discuss this case further.

For case (c) we consider the material with functions f(co) and h(w) defined by

where a, /?, y, 8 and e are constants which can be functions of A. Equation (5.10)
can be shown to give rise to a strain-energy function of the form,

^ (5.11)

provided that S and s are given respectively by

where primes here denote differentiation with respect to A and So IS a constant
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140 James M. Hill [12]

which is independent of A. From (4.11) and (5.10) we can deduce the relations

(5.13)

7-r = ^-cosh[%-j + Po ,
(pi) a \2ocb )

where p0 is an integration constant. For this special material we find for case (c) that
(4.14) is satisfied provided the constants A and B are such that

B = ~^A, (5.14)

and from (3.1), (4.12) and (4.13) we can deduce that 6(X, Y) is given by

^ , (5.15)

where d0 is a constant. If we make use of the above equations then from (3.1),
(4.5) and (4.13) we can show after a long but straightforward calculation that
X and Y as functions of u and v are given by

X(uu,v) = (-)*Re{ [\i

.u,v) = l^\ Im

where s0, Xo and Yo are further arbitrary constants. The constants C and a are
defined by

(5.17)
and the complex variable s is given by

^v. (5.18)

Evidently in this case u is not a simple function of X and Y. It is however well
defined as an implicit function by the relations (5.16). We note that for suitably
chosen constants the functions/(a>) and h(cS) defined by (5.10) satisfy the constraint
(5.2) obtained for case (a).

Finally, in this section we remark that if f(u>) is identically constant for all
deformations of the form (2.1) then (4.14) admits solutions p which are functions
of both M and v. However, for f(u>) constant we can show that the strain-energy
function £ must be a linear function of o> and thus this material is not physically
meaningful since 2 must be an even function of co.
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6. Conclusion

For generalized shear deformations (2.1) of isotropic incompressible hyper-
elastic materials we have shown for the general material not satisfying Knowles'
criterion (2.8) that the only consistent solutions u(X, Y) of (2.2.1) and (2.6) are
those of the form (2.7) which are known to be well defined for all strain-energy
functions. We have eliminated the possibility of obtaining further solutions of
this type since there can be no solutions p of (4.14) which are functions of both w
and v without imposing further restrictions on the strain-energy function of the
material. In deriving these results we have also obtained an alternative derivation
of Knowles' criterion, which if satisfied ensures that every solution of (2.2.1) is
automatically a solution of (2.6). Moreover, we have also briefly indicated how
solutions p of (4.14) which are functions of both u and v can be obtained for very
special materials. The most illuminating case of this being (5.1) (a) for which
u(X, Y) is given explicitly by (5.9). In this case the restriction (5.3) on the response
coefficients can be considered to generalize Knowles' criterion (2.8).

In summary for those materials not satisfying Knowles' criterion such as those
proposed in [1], [2] and [3] the only generalized shear deformations are those of
the form (2.7) and more general types of these deformations are only applicable
to very special materials which do not include any of the standard experimentally
determined prototypes for rubber-like materials.
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