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Summary

The effect of selection on the amounts of nucleotide variation within and between allelic classes

was studied when two allelic classes exist in a population. Two selection models – the genic

selection model and the overdominant selection model – were used. The average numbers of

pairwise nucleotide differences within two allelic classes were investigated by computer simulation

and the average number of pairwise differences between two allelic classes was obtained

analytically. It was indicated that selection largely affects the amounts of variation within and

between allelic classes. However, the sum of the average numbers of pairwise differences within

two allelic classes is nearly constant and always close to θ(θ¯ 4Nµ), even when selection is acting,

where N is the effective population size and µ is the mutation rate per sequence per generation.

This result suggests that the sum of the average numbers of pairwise differences within two allelic

classes can be used to estimate θ. It may be useful for a region where selection may be acting. As

examples, several gene regions of Drosophila melanogaster and a region of Mus domesticus were

analysed. The effect of recombination on the sum of the average numbers of pairwise differences

within two allelic classes was discussed.

1. Introduction

Two or more alleles can coexist in a population

because of mutations, random genetic drift, natural

selection and so on (Hubby & Lewontin, 1966;

Lewontin & Hubby, 1966; Harris, 1966). In order to

interpret the evolutionary history and maintenance

mechanism for these alleles, the amounts of nucleotide

variation within and between alleles have been

investigated. In our previous study (Innan & Tajima,

1997), the expectations of the average number of

pairwise nucleotide differences within and between

two allelic classes were obtained following the theory

of gene genealogy (Griffiths, 1980; Kingman, 1982;

Hudson, 1983a ; Tajima, 1983) under the neutral

model (Kimura, 1968, 1983). The allelic class is

defined as follows: When DNA sequences are sampled

from a population and two nucleotides are segregating

in a particular site, the sequences can be divided into

two classes. Such classes are called allelic classes. For

example, when A and T are segregating in a site, we

have two allelic classes for this site : sequences with A

belong to one allelic class and sequences with T belong
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to the other. Assume that we have n sequences

sampled from a random mating population with N

diploid individuals, and that there are two allelic

classes, A1 and A2. We also assume that A1 allelic

class consists of i sequences and A2 consists of n®i

sequences. Denote this state by A(i, n®i), and the

expectations of the average number of pairwise

nucleotide differences within A1 allelic class, within

A2 allelic class and between two allelic classes by K
"
(i,

n®i), K
#
(i, n®i) and D(i, n®i), respectively. Note

that the amount of nucleotide variation in the

population can be measured by θ¯ 4Nµ, where µ is

the mutation rate per sequence per generation. Then,

Innan & Tajima (1997) have shown that these three

expected values under the neutral model are given by

K
"
(i, n®i)¯

i

n
θ, (1)

K
#
(i, n®i)¯

n®i

n
θ, (2)

D(i, n®i)¯ 2 9S(n)®
i

n
S(i)®

n®i

n
S(n®i):­n®2

n
θ,

(3)
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Table 1. The sum of the a�erage numbers of pairwise differences within A1 and A2 allelic classes under the

genic selection model when n¯10

K
"
(i, n®i) K

#
(i, n®i) Sum

i Mean Variance Mean Variance Mean Variance Frequencya

Ns¯ 0±1
2 0±207 0±335 0±789 0±607 0±996 0±870 0±164 (26730)
3 0±314 0±369 0±676 0±544 0±990 0±805 0±127 (20664)
4 0±418 0±418 0±583 0±502 1±001 0±797 0±116 (18929)
5 0±523 0±496 0±474 0±423 0±996 0±792 0±116 (18851)
6 0±616 0±529 0±383 0±384 0±998 0±798 0±127 (20581)
7 0±718 0±574 0±277 0±314 0±995 0±792 0±149 (24166)
8 0±819 0±628 0±191 0±308 1±009 0±865 0±201 (32742)
All 0±999 0±822 1±000 (162663)

Ns¯1

2 0±354 0±660 0±593 0±452 0±947 0±973 0±036 (2952)
3 0±514 0±689 0±467 0±338 0±982 0±915 0±043 (3526)
4 0±623 0±669 0±362 0±237 0±985 0±823 0±058 (4750)
5 0±736 0±707 0±299 0±235 1±035 0±858 0±087 (7095)
6 0±807 0±702 0±232 0±182 1±039 0±829 0±131 (10633)
7 0±870 0±695 0±174 0±156 1±044 0±810 0±222 (18065)
8 0±920 0±684 0±121 0±156 1±041 0±814 0±423 (34415)
All 1±032 0±830 1±000 (81436)

Ns¯10b

5 1±138 0±854 0±059 0±022 1±197 0±870 0±002 (58)
6 0±938 0±822 0±037 0±021 0±975 0±847 0±013 (501)
7 1±007 0±767 0±030 0±020 1±038 0±785 0±106 (3971)
8 0±998 0±729 0±023 0±024 1±021 0±753 0±879 (32899)
All 1±022 0±757 1±000 (37440)

a The relative frequency of A(i, n®i) is shown with the observed number of cases in parentheses.
b When the observed number of cases is smaller than 50, the results are not presented.

where

S(n)¯ 3
n−"

k="

1

k
θ.

These results indicate that

K
"
(i, n®1)­K

#
(i, n®i)¯ θ. (4)

Namely, the sum of the average numbers of pairwise

differences within two allelic classes is equal to θ under

the neutral model.

On the other hand, let us consider a locus where two

allelic classes are maintained by strong overdominant

selection. In such a locus, the frequencies of these two

allelic classes are expected to be close to their

equilibrium values, so that the average number of

pairwise differences within each allelic class might be

proportional to its equilibrium frequency. Conse-

quently, the sum of K
"
(i, n®i) and K

#
(i, n®i) might be

close to θ. We suspected that this relationship may

hold even when selection is weak. The first purpose of

the present report is to evaluate the sum of K
"
(i, n®i)

and K
#
(i, n®i) under two selection models : the

overdominant selection model and the genic selection

model. For this purpose, computer simulations were

conducted and the average numbers of pairwise

differences within A1 and A2 allelic classes were

investigated. The results indicate that K
"
(i, n®i)­

K
#
(i, n®i)E θ not only under the overdominant

selection model but also under the genic selection

model, and suggest that the sum of the amounts of

variation within allelic classes can be an estimate of θ

even in a region where natural selection is acting.

Contrary to the constancy of the sum of the average

numbers of pairwise differences within two allelic

classes, the average number of pairwise differences

between two allelic classes might depend on the type

and strength of natural selection. In this study, the

average number of pairwise differences between A1

and A2 allelic classes is also investigated under the

two selection models. Although the genealogical

relationship under these models is very complex if

selection is involved (Kaplan et al., 1988; Neuhauser

& Krone, 1997), we can obtain the expectation of the

average numbers of pairwise differences between A1

and A2 allelic classes when the sample consists of i A1

sequences and n®i A2 sequences. Our analytical

result is different from those of Kaplan et al. (1988)

and Neuhauser & Krone (1997), because we do not

allow any recurrent mutations between two allelic
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classes after the divergence of the two allelic classes,

following the infinite site model (Kimura, 1969).

2. The average numbers of pairwise differences within

A1 and A2 allelic classes under the selection models

In order to evaluate K
"
(i, n®i) and K

#
(i, n®i) under

the selection models, we conducted computer simu-

lations. For the simulation, we employ a simple two-

allele model, where two alleles, A1 and A2, exist in a

random mating population with N diploid individuals.

In the genic selection model, the fitnesses of genotypes

are given as follows:

A1A1

1­2s

A1A2

1­s

A2A2

1

Table 2. The sum of the a�erage numbers of pairwise differences within A1 and A2 allelic classes under the

symmetrical o�erdominant selection model when n¯10

K
"
(i, n®i) K

#
(i, n®i) Sum

i Mean Variance Mean Variance Mean Variance Frequencya

Ns
"
¯Ns

#
¯ 0±1

2 0±205 0±347 0±792 0±607 0±997 0±882 0±180 (31448)
3 0±298 0±341 0±704 0±564 1±002 0±807 0±140 (24483)
4 0±393 0±382 0±605 0±526 0±998 0±791 0±123 (21427)
5 0±502 0±465 0±502 0±465 1±004 0±801 0±119 (20732)
6 0±601 0±519 0±393 0±392 0±994 0±799 0±122 (21227)
7 0±699 0±552 0±306 0±357 1±005 0±807 0±137 (23874)
8 0±788 0±598 0±204 0±335 0±992 0±853 0±179 (31175)
All 0±999 0±825 1±000 (174366)

Ns
"
¯Ns

#
¯1

2 0±240 0±390 0±733 0±560 0±972 0±876 0±155 (43607)
3 0±342 0±385 0±646 0±497 0±978 0±791 0±141 (39747)
4 0±416 0±387 0±564 0±448 0±980 0±749 0±136 (38118)
5 0±487 0±412 0±487 0±419 0±974 0±732 0±135 (38078)
6 0±557 0±437 0±414 0±388 0±971 0±733 0±136 (38355)
7 0±641 0±489 0±330 0±367 0±971 0±772 0±141 (39528)
8 0±727 0±540 0±243 0±407 0±970 0±879 0±156 (43723)
All 0±974 0±794 1±000 (281156)

Ns
"
¯Ns

#
¯10

2 0±450 0±675 0±494 0±277 0±944 0±945 0±074 (69166)
3 0±457 0±433 0±489 0±290 0±946 0±717 0±134 (125079)
4 0±467 0±354 0±480 0±299 0±947 0±648 0±187 (174546)
5 0±476 0±321 0±477 0±325 0±953 0±640 0±210 (194828)
6 0±483 0±301 0±467 0±356 0±949 0±652 0±187 (174912)
7 0±487 0±287 0±461 0±436 0±948 0±720 0±134 (125456)
8 0±494 0±280 0±447 0±664 0±941 0±931 0±074 (69047)
All 0±948 0±709 1±000 (933034)

Ns
"
¯Ns

#
¯ infinityb

2 0±500 0±750 0±500 0±289 1±000 1±039 0±045
3 0±500 0±472 0±500 0±300 1±000 0±772 0±120
4 0±500 0±384 0±500 0±317 1±000 0±701 0±210
5 0±500 0±342 0±500 0±342 1±000 0±683 0±250
6 0±500 0±317 0±500 0±384 1±000 0±701 0±210
7 0±500 0±300 0±500 0±472 1±000 0±772 0±120
8 0±500 0±289 0±500 0±750 1±000 1±039 0±045
All 1±000 0±744 1±000

a The relative frequency of A(i, n®i) is shown with the observed number of cases in parentheses.
b The theoretical expectations are shown. The variance is calculated according to equation (30) in Tajima (1983).

In the overdominant selection model, their fitnesses

are

A1A1

1®s
"

A1A2

1

A2A2

1®s
#

Following these fitnesses of genotypes, the computer

simulations are conducted. The simulations follow the

infinite site model with no recombination (Kimura,

1969; Watterson, 1975). Assume that the selection is

acting on a particular site that distinguishes two allelic

classes, mutations on the other sites being selectively

neutral. We assume that the population size, N, is

5000. According to each mode of selection presented

above, the frequency of A1, x, is determined by

the pseudosampling method (Kimura, 1980; Kimura
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Table 3. The sum of the a�erage numbers of pairwise differences within A1 and A2 allelic classes under the

non-symmetrical o�erdominant selection model when n¯10

K
"
(i, n®i) K

#
(i, n®i) Sum

i Mean Variance Mean Variance Mean Variance Frequencya

Ns
"
¯ 0±01, Ns

#
¯ 0±09

2 0±204 0±335 0±796 0±603 1±000 0±866 0±174 (29385)
3 0±307 0±365 0±691 0±558 0±998 0±818 0±135 (22843)
4 0±406 0±411 0±591 0±496 0±998 0±784 0±120 (20264)
5 0±506 0±458 0±488 0±448 0±994 0±787 0±117 (19844)
6 0±616 0±523 0±380 0±373 0±996 0±786 0±123 (20774)
7 0±704 0±570 0±288 0±324 0±992 0±803 0±143 (24217)
8 0±808 0±615 0±195 0±316 1±003 0±865 0±188 (31951)
All 0±998 0±821 1±000 (169278)

Ns
"
¯ 0±1, Ns

#
¯ 0±9

2 0±281 0±517 0±696 0±526 0±977 0±950 0±100 (18450)
3 0±394 0±488 0±594 0±449 0±987 0±825 0±099 (18293)
4 0±488 0±501 0±486 0±376 0±974 0±775 0±106 (19606)
5 0±589 0±539 0±407 0±342 0±996 0±781 0±121 (22366)
6 0±671 0±579 0±335 0±303 1±006 0±794 0±142 (26216)
7 0±746 0±587 0±253 0±256 0±999 0±769 0±180 (33444)
8 0±830 0±631 0±175 0±257 1±005 0±837 0±252 (46788)
All 0±995 0±815 1±000 (185163)

Ns
"
¯1, NS

#
¯ 9

2 0±853 1±658 0±202 0±083 1±055 1±668 0±002 (265)
3 0±870 1±096 0±230 0±119 1±100 1±186 0±008 (920)
4 0±869 0±869 0±211 0±108 1±080 0±977 0±025 (2726)
5 0±867 0±748 0±183 0±102 1±050 0±853 0±061 (6699)
6 0±892 0±733 0±165 0±103 1±057 0±828 0±132 (14459)
7 0±911 0±706 0±141 0±106 1±053 0±805 0±262 (28740)
8 0±930 0±688 0±113 0±129 1±043 0±813 0±510 (55736)
All 1±049 0±824 1±000 (109545)

Ns
"
¯ infinity, Ns

#
¯ infinity (Ns

"
:Ns

#
¯1 :9)b

2 0±900 1±710 0±100 0±046 1±000 1±756 0±000
3 0±900 1±050 0±100 0±048 1±000 1±098 0±000
4 0±900 0±845 0±100 0±050 1±000 0±895 0±000
5 0±900 0±747 0±100 0±054 1±000 0±801 0±006
6 0±900 0±690 0±100 0±060 1±000 0±750 0±042
7 0±900 0±653 0±100 0±072 1±000 0±725 0±217
8 0±900 0±627 0±100 0±110 1±000 0±737 0±734
All 1±000 0±735 1±000

a The relative frequency of A(i, n®i) is shown with the observed number of cases in parentheses.
b The theoretical expectations are shown. The variance is calculated according to equation (30) in Tajima (1983).

& Takahata, 1983). At the start of the simulation, x¯
1}2N is given. If A1 is extinct (i.e. x becomes 0), a

new mutant A1 is introduced and x¯1}2N is given at

the next generation. In the same way, if A1 is fixed (i.e.

x becomes 1), a new mutant A2 is introduced and

x¯1®1}2N is given. This procedure can save time

until a new mutant allelic class appears. It is not

problematic because we investigate K
"
(i, n®i) and

K
#
(i, n®i) only when A1 and A2 are coexisting in the

population. At every generation, x is recorded. Every

1000 generations, n sequences are sampled from the

population. Among the n sequences, the number of

sequences belonging to A1 allelic class, i, is recorded.

If 2% i% n®2, we calculate the average number of

pairwise nucleotide differences within i A1 sequences

and that within n®i A2 sequences as follows. We first

consider the genealogical relationship among A1

allelic class. The length of time, t
"
(i), during which i

A1 sequences coalesce into i®1 sequences is obtained

by simulating the coalescent process from present to

past using the previously recorded frequency of A1, x.

Two sequences between which coalescence occurs are

randomly chosen. These procedures are continued

until reaching the most recent common ancestor of i

A1 sequences. Thus we obtain t
"
(i), t

"
(i®1), t

"
(i®2),

… , t
"
(2) and construct the genealogy of i A1

sequences. Using this genealogical relationship, the

average number of pairwise differences within A1

allelic class is calculated. Note that we assume the

number of mutations on a branch with length t
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Table 4. The sum of the a�erage numbers of pairwise differences within A1 and A2 allelic classes under the

selection models when n¯ 50

K
"
(i, n®i) K

#
(i, n®i) Sum

i Mean Variance Mean Variance Mean Variance Frequencya

Genic selection model (Ns¯1)
5 0±147 0±136 0±786 0±505 0±932 0±584 0±0029 (3213)

10 0±290 0±236 0±647 0±380 0±937 0±535 0±0025 (2754)
15 0±432 0±328 0±523 0±325 0±955 0±554 0±0027 (3037)
20 0±581 0±451 0±425 0±255 1±006 0±627 0±0037 (4139)
25 0±685 0±479 0±341 0±179 1±027 0±592 0±0053 (5937)
30 0±754 0±499 0±273 0±151 1±027 0±596 0±0085 (9548)
35 0±834 0±529 0±209 0±103 1±042 0±597 0±0142 (16001)
40 0±901 0±549 0±141 0±071 1±042 0±599 0±0281 (31561)
45 0±956 0±574 0±077 0±044 1±032 0±611 0±0747 (83876)
All 1±024 0±603 1±0000 (1123178)

Symmetrical overdominant selection model (Ns
"
¯Ns

#
¯1)

5 0±115 0±081 0±863 0±510 0±978 0±563 0±0263 (12299)
10 0±223 0±143 0±757 0±475 0±979 0±563 0±0190 (8860)
15 0±323 0±197 0±656 0±396 0±978 0±525 0±0176 (8224)
20 0±412 0±252 0±567 0±347 0±980 0±526 0±0173 (8069)
25 0±484 0±303 0±497 0±286 0±981 0±519 0±0169 (7904)
30 0±576 0±355 0±405 0±241 0±982 0±516 0±0172 (8040)
35 0±654 0±404 0±324 0±193 0±978 0±538 0±0175 (8195)
40 0±740 0±438 0±220 0±142 0±960 0±534 0±0190 (8874)
45 0±864 0±534 0±122 0±092 0±986 0±595 0±0255 (11922)
All 0±977 0±552 1±0000 (467422)

Non-symmetrical overdominant selection model (Ns
"
¯ 0±1, Ns

#
¯ 0±9)

5 0±122 0±096 0±832 0±489 0±953 0±542 0±0136 (4851)
10 0±242 0±176 0±725 0±462 0±968 0±568 0±0104 (3715)
15 0±360 0±240 0±597 0±368 0±957 0±527 0±0101 (3617)
20 0±479 0±333 0±508 0±309 0±986 0±536 0±0109 (3879)
25 0±580 0±420 0±434 0±255 1±014 0±579 0±0125 (4446)
30 0±657 0±419 0±341 0±197 0±998 0±547 0±0147 (5253)
35 0±742 0±490 0±262 0±143 1±003 0±582 0±0190 (6766)
40 0±821 0±507 0±182 0±102 1±004 0±572 0±0265 (9450)
45 0±913 0±544 0±096 0±062 1±009 0±591 0±0484 (17262)
All 0±996 0±574 1±0000 (356769)

Results for i¯²5, 10, 15, 20, 25, 30, 35, 40, 45´ are shown. The average and the variance for all the cases are calculated for
all of i (2% i% 48).
a The relative frequency of A(i, n®i) is shown with the observed number of cases in parentheses.

follows the Poisson distribution with mean tµ. In the

same way, the average number of pairwise differences

within A2 allelic class is obtained by constructing the

genealogy of n®i A2 sequences.

The results for n¯10 and θ¯1 are summarized in

Tables 1–3. The averages and the variances of K
"
(i,

n®i) and K
#
(i, n®i) are shown with the relative

frequency of the cases where the allelic state was A(i,

n®i) during each run of simulation. One million times

of sampling were conducted for each run, except that

ten million samplings were conducted for Ns¯10

under the genic selection model.

Table 1 shows the results for the genic selection

model. Three values of selection intensity were used

(Ns¯ 0±1, 1 and 10). K
"
(i, n®i)­K

#
(i, n®i) is close to

1 for any i (2% i% 8), although K
"
(i, n®i) increases

and K
#
(i, n®i) decreases with increasing Ns. Note

that, if Ns is large (for example, Ns¯10), the

frequency of the advantageous A1 allelic class is

usually close to 1 and it is rare to obtain a small value

of i. The averages of K
"
(i, n®1)­K

#
(i, n®i) for all

values of i (2% i% 8) are also close to 1 for all three

values of selection intensity, although they tend to be

a little larger than 1. The variances are 0±822, 0±830

and 0±757 when Ns¯ 0±1, 1 and 10, respectively.

Table 2 shows the results when Ns
"
¯Ns

#
¯ 0±1, 1

and 10 under the symmetrical overdominant selection

model. When i! 5, K
"
(i, n®i) increases and K

#
(i,

n®i) decreases as Ns increases, whereas K
"
(i, n®i)

decreases and K
#
(i, n®i) increases with increasing Ns

when i" 5. For three values of selection intensity,

K
"
(i, n®i)­K

#
(i, n®i) is close to 1 for any value of i.

The averages for all values of i (2% i% 8) are also

close to 1, although the average shows some reduction
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Fig. 1. The average number of pairwise differences between two allelic classes with sample size n¯10, under the genic
selection model. The unit of the vertical axis is θ.

as Ns increases. The variances are 0±825, 0±794 and

0±709 when Ns¯ 0±1, 1 and 10, respectively. As Ns

becomes larger, the average of K
"
(i, n®i)­K

#
(i, n®i)

is expected to approach 1 again since we expect that

K
"
(i, n®i) and K

#
(i, n®i) approach 0±5. This is because

we can consider that the population consists of two

subpopulations with size 0±5N when Ns
"
¯Ns

#
¯

infinity. The theoretical expectations and variances of

K
"
(i, n®i) and K

#
(i, n®i) in this case are also shown

in Table 1.

Table 3 shows the results for the non-symmetrical

overdominant selection model, where Ns
"
¯ 0±01 and

Ns
#
¯ 0±09, Ns

"
¯ 0±1 and Ns

#
¯ 0±9 and Ns

"
¯1 and

Ns
#
¯ 9 are used. As Ns

"
and Ns

#
increase, K

"
(i, n®i)

increases and K
#
(i, n®i) decreases. In all three cases,

K
"
(i, n®i)­K

#
(i, n®i) is close to 1 for any i. The

averages for all values of i (2% i% 8) are also close to

1, although they are a little larger than 1 when Ns
"
¯1

and Ns
#
¯ 9. The variances are about 0±82 for three

values of selection intensity. When Ns is very large, we

expect that K
"
(i, n®i) and K

#
(i, n®i) are close to 0±9

and 0±1, respectively. Table 3 also shows the theo-

retical expectations and variances of K
"
(i, n®i) and

K
#
(i, n®i) when selection intensity is infinity.

The effect of sample size was also investigated. The

results for n¯ 50 and θ¯1 are shown in Table 4. The

selection intensities used are as follows: Ns¯1 under

the genic selection model, Ns
"
¯Ns

#
¯1 under the

symmetrical overdominant selection model and Ns
"
¯

0±1 and Ns
#
¯ 0±9 under the non-symmetrical over-

dominant selection model. Under all three selection

models, K
"
(i, n®i)­K

#
(i, n®i) is close to 1 for any i.

The variances of the sum of K
"
(i, n®i) and K

#
(i, n®i)

are reduced in comparison with the results for n¯10.

From these results, it can be concluded that K
"
(i,

n®i)­K
#
(i, n®i) is close to θ regardless of i for a wide

range of selection intensity under the genic selection

model and under the overdominant selection model.

3. The average number of pairwise differences

between A1 and A2 allelic classes

The effect of selection on the amount of nucleotide

variation between two allelic classes are investigated.

The expectation of the average number of pairwise

differences between A1 and A2 allelic classes in A(i,

n®i), D(i, n®i), is obtained analytically, and the

derivations are presented in the Appendix. In this

section, only the numerical results are shown.

From (A 7), D(i, n®i) were numerically calculated

when n¯10, and plotted in Figs. 1–3. Fig. 1 shows

the expectation of the average number of pairwise

differences between two allelic classes under the genic

selection model. Although, under neutrality (Ns¯ 0),

D(i, n®i) distributes symmetrically with the highest

peak when i¯ 5, the peak of the distribution of D(i,

n®i) moves to the left as Ns increases. With strong

selection, a considerable reduction in D(i, n®i) is
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Fig. 2. The average number of pairwise differences between two allelic classes with sample size n¯10, under the
symmetrical overdominant selection model. The unit of the vertical axis is θ.
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Ns1 = 0·5, Ns2 = 4·5
Ns1 = 1, Ns2 = 9

Ns1 = 0·2, Ns2 = 1·8
Ns1 = 0·1, Ns2 = 0·9

Fig. 3. The average number of pairwise differences between two allelic classes with sample size n¯10, under the non-
symmetrical overdominant selection model. The unit of the vertical axis is θ.

observed, and D(i, n®i) appears like a linear function

of i. Fig. 2 shows the plots of D(i, n®i) under the

symmetrical overdominant selection model. The shape

of the distribution is symmetrical and similar to that

under the neutral model (Ns
"
¯Ns

#
¯ 0). The peak of

each distribution is always in the centre (i¯ 5). D(i,
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Table 5. Numerical examples for D(i, n®i) under

the o�erdominant selection model

Ns
"
¯Ns

#

i 2 3 5 7 10

1, 9 2±807θ 4±453θ 14±787θ 62±399θ 693±813θ
2, 8 3±391θ 5±162θ 15±696θ 63±410θ 694±849θ
3, 7 3±642θ 5±419θ 15±948θ 63±647θ 695±059θ
4, 6 3±754θ 5±524θ 16±040θ 63±728θ 695±126θ
5 3±787θ 5±554θ 16±065θ 63±749θ 695±143θ

n–i) increases as the selection intensity increases. For

strong symmetrical overdominant selection (Ns
"
¯

Ns
#
"1), the numerical examples of D(i, n®i) are

presented in Table 5. When Ns
"
¯Ns

#
¯10, D(i, n®i)

is approximately 700θ. In other words, the mean

coalescent time of two sequences sampled from

different allelic classes is approximately 1400N gen-

erations. Fig. 3 shows the distributions of D(i, n®i)

under the non-symmetrical overdominant selection

model. The peak moves to the left as Ns
"

and Ns
#

increase. Although the figure is similar to that under

the genic selection model, the peak of distribution

becomes high as Ns increases when Ns
"
% 0±2 under

the non-symmetrical overdominant selection model

(Fig. 3), whereas the peak is the highest when Ns¯ 0

under the genic selection model (Fig. 1).

4. Discussion

The effect of selection on the amounts of nucleotide

variation within and between allelic classes was

investigated. It was indicated that selection affects the

average number of pairwise differences between allelic

classes as shown in Figs. 1–3. The average number of

pairwise differences within allelic class is also affected

by selection (Tables 1–4). However, the sum of the

Table 6. The a�erage and �ariance of K
"
(i, n®i)­K

#
(i, n®i) under the neutral model

θ¯1 θ¯10 θ¯100

Average Variance
Number
of casesa Average Variance

Number
of casesa Average Variance

Number
of casesa

n¯10
K

"
(i, n®i)­K

#
(i, n®i) 1±003 0±827 165962 10±00 36±09 163948 100±2 3117±3 164912

K 1±000 0±686 10±00 31±98 100±0 2830±9
n¯ 20

K
"
(i, n®i)­K

#
(i, n®i) 0±998 0±650 240640 9±99 28±09 240852 100±0 2441±9 240817

K 1±000 0±616 10±00 28±42 100±0 2510±5
n¯ 50

K
"
(i, n®i)­K

#
(i, n®i) 1±000 0±581 330150 10±00 25±13 332270 99±9 2174±9 330394

K 1±000 0±579 10±00 26±63 100±0 2350±3

The average and the variance of K
"
(i, n®i)­K

#
(i, n®i) when 2% i% n®2 are shown.

a Number of cases analysed in a run of simulation.

average numbers of pairwise differences within two

allelic classes is always close to θ. Namely,

K
"
(i, n®i)­K

#
(i, n®i)E θ (5)

holds for any i (2% i% n®2) under the two selection

models with a wide range of selection intensity. This

means that selection has almost no effect on the sum

of K
"
(i, n®i) and K

#
(i, n®i). It is also suggested that

K
"
(i, n®i)­K

#
(i, n®i) may be useful for estimating θ

whether there is selection or not.

It is known that the expectation of the average

number of pairwise nucleotide differences among a

sample of sequences, K, is θ under the neutral model,

and K is often used for the estimation of θ. The

variance is an important measure to know the

reliability of the estimator. To test the reliability of

K
"
(i, n®i)­K

#
(i, n®i) as an estimator of θ, the

variance of K
"
(i, n®i)­K

#
(i, n®i) was investigated

under the neutral model and compared with the

variance of K, which was theoretically obtained

according to equation (30) in Tajima (1983). The

results of simulations are shown in Table 6. When

n¯10 the variance of K
"
(i, n®i)­K

#
(i, n®i) is larger

than that of K, while the variance of K
"
(i, n®i)­K

#
(i,

n®i) is smaller when n& 20 and θ&10. However, the

difference in variance between K
"
(i, n®i)­K

#
(i, n®i)

and K is quite small, indicating that K
"
(i, n®i)­K

#
(i,

n®i) is useful for estimating θ with a similar level of

reliability to K. K
"
(i, n®i)­K

#
(i, n®i) is a little more

reliable when n and θ are large. When selection is

acting, K
"
(i, n®i)­K

#
(i, n®i) can give a more ac-

curate estimate for θ than can K, since K1 θ. As

shown in Tables 1–3, the variance of K
"
(i, n®i)­K

#
(i,

n®i) under the selection models is smaller than that

under the neutral model (0±827), although a slightly

larger variance is observed when Ns¯1 under the

genic selection model (0±830). It is suggested that K
"
(i,

n®i)­K
#
(i, n®i) can be an estimator of θ whether

selection is acting or not.
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Table 7. Analysis for ND5 gene region of Drosophila melanogaster

Position Polymorphisma K=
"
(i, n®i) K=

#
(i, n®i) Sum D= (i, n®i)

240 A(32)}G(27) 0±558 2±154 2±712 2±281

813 T(51)}C(8) 1±540 1±250 2±790 3±581

840 A(57)}G(2) 2±193 2±000 4±193 2±211

1053 G(52)}A(7) 1±645 0±000 1±645 3±635
1122 A(36)}G(23) 1±033 1±676 2±709 2±373
1239 G(57)}A(2) 2±242 0±000 2±242 1±544
1442 T(52)}C(7) 1±645 0±000 1±645 3±635

K=
"
­K=

#
2±562

K= 2±261

Ratiob 1±133

a Two segregating nucleotides are presented with the number of sequences in
parentheses. The allelic class with the first nucleotide corresponds to A1 and the
second to A2. Accordingly, the number in the first parentheses is i and that in the
second parentheses is n®i.
b The ratio of K=

"
­K=

#
to K= .

When we have a sample of n sequences with m non-

unique segregating sites, it is possible to obtain K
"
(i,

n®i)­K
#
(i, n®i) for each of m sites. Note that a non-

unique segregating site represents the site at which

polymorphism is not unique (singleton) for the sample,

so that 2% i% n®2. The unique segregating sites

were excluded from this analysis because K
"
(1, n®1)

or K
#
(n®1,1) cannot be obtained if i¯1 or i¯ n®1,

respectively. Denote the average of m values of K
"
(i,

n®i)­K
#
(i, n®i) by K

"
­K

#
. We expect that K

"
­K

#

should be equal to θ. On the other hand, the

expectation of K is θ under the neutral model.

Therefore, when there is no selection, the ratio of

K
"
­K

#
to K is expected to be

(K
"
­K

#
)}KE1. (6)

As examples, the nucleotide polymorphism data in

the mitochondrial gene regions ND5 of Drosophila

melanogaster (Rand & Kann, 1996) and ND3 of Mus

domesticus (Nachman et al., 1996) were analysed.

Rand & Kann (1996) published 59 nucleotide

sequences with 1515 bp, where 21 segregating sites are

detected and K= is 2±261. Note that the hat represents

the estimated value. Among 21 segregating sites,

seven exhibit non-unique polymorphism. For these

non-unique segregating sites, we obtained the sum of

the average numbers of pairwise differences within

two allelic classes (Table 7). K=
"
(i, n®i)­K=

#
(i, n®i)

ranges from 1±645 to 4±193, and K=
"
­K=

#
is 2±562. This

value is consistent with K= (2±261), and the ratio,

(K=
"
­K=

#
)}K= , is 1±133. Nachman et al. (1996) obtained

56 nucleotide sequences with about 450 bp in ND3 of

Mus domesticus. In these sequences, there are 27

segregating sites, of which 21 are non-unique. As

shown in Table 8, the observed values of K=
"
(i,

n®i)­K=
#
(i, n®i) ranges from 2±927 to 4±286, and the

average (K=
"
­K=

#
) is 3±477, which is very close to K= (¯

3±328). These results may indicate that K
"
­K

#
can be

used to estimate θ as well as K.

The present study is based on the infinite site model

with no recombination. Equations (5) and (6) hold

under this condition. However, it is known that

intragenic recombination occurs frequently in the

nuclear region, and that the effect of recombination

on the amount and pattern of nucleotide poly-

morphism may be large. Here, we consider the effect

of recombination. As mentioned in our previous study

(see Discussion in Innan & Tajima, 1997), if re-

combination occurs between two allelic classes, the

amount of variation between two allelic classes

decreases and the amounts of variation within both

allelic classes increase. Now, let us consider the free

recombination model. Under this model, since all the

segregating sites are independent, it is apparent that

both K
"
(i, n®i) and K

#
(i, n®i) are θ, so that K

"
(i,

n®i)­K
#
(i, n®i)¯ 2θ. Therefore, in the nuclear

region where recombination occurs at a moderate

rate, we expect

θ!K
"
(i, n®i)­K

#
(i, n®i)! 2θ, (7)

and

1! (K
"
­K

#
)}K! 2. (8)

Note that K is expected to be θ even with re-

combination (Hudson, 1983b). Table 9 shows the

results of analysis for the nucleotide polymorphism

data in seven nuclear regions of D. melanogaster. In

these regions, (K=
"
­K=

#
)}K= ranges from 1±273 to 1±709

as expected from (8). In the mitochondrial gene

regions (Tables 7, 8), (K=
"
­K=

#
)}K= is smaller than

those in all the seven nuclear regions in Table 9. It is

suggested that the effect of recombination on the

amounts of nucleotide variation is large in the nuclear

regions.

Wesley & Eanes (1994) and Hasson & Eanes (1996)
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Table 8. Analysis for ND3 gene region of Mus domesticus

Position Polymorphisma K=
"
(i, n®i) K=

#
(i, n®i) Sum D= (i, n®i)

9443 A(52)}G(4) 3±344 0±500 3±844 2±308
9461 C(54)}T(2) 3±292 0±000 3±292 2±833
9478 T(54)}C(2) 3±219 0±000 3±219 3±796
9479 C(54)}T(2) 3±219 0±000 3±219 3±796
9488 T(53)}C(3) 3±203 0±000 3±203 3±472
9497 A(54)}G(2) 3±364 0±000 3±364 1±870
9504 A(49)}G(7) 3±010 1±143 4±153 3±551

9513 C(54)}A(2) 3±231 0±000 3±231 3±648
9528 C(52)}T(4) 2±927 0±000 2±927 4±981

9530 T(52)}C(4) 3±189 0±667 3±856 3±288
9539 A(48)}T(8) 2±522 0±571 3±093 4±896
9578 T(52)}C(4) 3±189 0±667 3±856 3±288
9605 A(49)}T(7) 3±010 1±143 4±153 3±551

9624 T(54)}C(2) 3±292 0±000 3±292 2±833
9635 T(43)}C(13) 3±497 0±821 4±318 2±404
9645 T(54)}C(2) 3±286 1±000 4±286 2±907
9647 A(53)}G(3) 3±203 0±000 3±203 3±472
9692 T(48)}C(8) 2±522 0±571 3±093 4±896
9721 T(48)}C(8) 2±522 0±571 3±093 4±896
9738 G(48)}A(8) 2±522 0±571 3±093 4±896
9818 A(54)}T(2) 3±219 0±000 3±219 3±796

K=
"
­K=

#
3±477

K= 3±328
Ratiob 1±045

a Two segregating nucleotides are presented with the number of sequences in
parentheses. The allelic class with the first nucleotide corresponds to A1 and the
second to A2. Accordingly, the number in the first parentheses is i and that in the
second parentheses is n®i.
b The ratio of K=

"
­K=

#
to K= .

Table 9. Analysis for se�en nuclear regions in Drosophila melanogaster

Region n K=
"
­K=

#
K= Ratioa Reference

Adh 11 20±049 15±745 1±273 Kreitman (1983)
Mlc1 16 9±893 6±558 1±509 Clark et al. (1996)
Mst26A 10 20±706 13±156 1±574 Aguade! et al. (1992)
Hsp83 13 4±370 3±500 1±249 Wesley & Eanes (1994)
Breakpoint AB 16 12±955 9±462 1±369 Hasson & Eanes (1996)
Est6 16 21±382 12±508 1±709 Hasson & Eanes (1996)
Breakpoint CD 13 6±900 5±231 1±319 Wesley & Eanes (1994)

a The ratio of K=
"
­K=

#
to K= .

investigated the nucleotide polymorphisms in four

regions: both breakpoint regions of the inversion

In(3L)Payne (breakpoint AB and CD), Hsp83 and

Est-6, on the third chromosome of D. melanogaster.

Hsp83 is located outside and near the distal breakpoint

of In(3L)Payne, breakpoint AB is a sequence en-

compassing the distal breakpoint of In(3L)Payne, Est-

6 is located between the two breakpoints of

In(3L)Payne, and breakpoint CD is a sequence

encompassing the proximal breakpoint of

In(3L)Payne. It is expected that the recombination

between different chromosome arrangements is con-

siderably restricted in a region near the breakpoint,

although recombination can occur within the same

chromosome arrangement. Hasson & Eanes (1996)

reported that genetic exchange between chromosome

arrangements was not observed in three regions –

Hsp83, breakpoints AB and CD – whereas several

genetic changes between arrangements were observed

in Est-6. It may be suggested that recombination is

more strongly restricted in Hsp83 and breakpoint AB

and CD than in Est-6. As shown in Table 9,

(K=
"
­K=

#
)}K= is 1±709 in Est-6, which is larger than in

the other three regions (1±249–1±369). This result is

consistent with the expectation from the difference in

the recombination rate among the four regions.
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Table 10. Analysis for four regions associated with In(3L)payne of Drosophila melanogaster

Region K=
std

a K=
inv

b Sum K= Ratioc

Hsp83 3±111 (9) 0±476 (7) 3±587 3±500 1±025
Breakpoint AB 10±067 (6) 0±857 (7) 10±924 9±462 1±155
Est6 11±167 (9) 11±429 (7) 22±596 12±508 1±807
Breakpoint CD 5±267 (6) 0±000 (7) 5±267 5±231 1±007

a The average number of pairwise differences within the standard chromosome. The number of samples is shown in
parentheses.
b The average number of pairwise differences within the inversion chromosome with the number of samples in parentheses.
c The ratio of the sum of K=

std
and K=

inv
to K= .

These four regions were reanalysed in Table 10,

where one allelic class is defined as the standard

chromosome and the other is defined as the inversion

In(3L)Payne. K
std

represents the average number of

pairwise differences within the standard chromosome

and K
inv

represents that within the inversion

chromosome. In this case, since only the recom-

bination rate between two allelic classes (chromosome

arrangements) can affect the sum of the amounts of

nucleotide variation within two allelic classes, it is

expected that the difference in (K
std

­K
inv

)}K due to

the recombination rate appears more clearly than the

difference in (K
"
­K

#
)}K in Table 9. In Est-6

(K=
std

­K=
inv

)}K= is 1±807, whereas it ranges from 1±007

to 1±155 in the other three regions. As expected,

(K=
std

­K=
inv

)}K= in Est-6 is larger than in the other

three regions and the difference is larger than that in

Table 9. The average of (K=
std

­K=
inv

)}K= in the other

three regions is 1±062, which is consistent with

(K=
"
­K=

#
)}K= ¯1±133 in the mitochondrial gene region

ND5 (Table 7), where recombination is very rare. The

sum of the average numbers of pairwise differences

within two allelic classes may be positively related to

the recombination rate in nuclear regions.

Chromosome regions involving inversions have

been studied in population genetics and non-neutral

patterns of polymorphism were reported (Dob-

zhansky, 1937, 1970). There is a possibility that

natural selection is acting on In(3L)Payne. If so,

selection may affect on the amounts of nucleotide

variation within the standard chromosome, within the

inversion and between them, especially in a region

with restricted recombination rate between two

chromosome types. Three regions (Hsp83, breakpoint

AB and CD) correspond to such regions. If

In(3L)Payne is maintained by balancing selection, we

expect K
std

­K
inv

E θ and K" θ because of a long

coalescent time between the two chromosome types,

so that (K
std

­K
inv

)}K!1±0 is expected. As shown in

Table 10, (K=
std

­K=
inv

)}K= is a little larger than 1±0,

indicating that K is not larger than θ. This is not

consistent with the hypothesis that In(3L)Payne is

maintained for a long time by strong balancing

selection, but is rather consistent with the neutral

theory, as already suggested by Hasson & Earns

(1996).

Our results demonstrate that K
"
(i, n®i)­K

#
(i,

n®i)E θ holds even under the selection models, sug-

gesting that we can estimate θ by K
"
(i, n®i)­K

#
(i,

n®i) in a region with selection and without recombin-

ation. This result is notable because K gives a biased

estimateofθ if selection is acting. If there is strongover-

dominant selection, K may be larger than θ because of

a very long coalescent time between two allelic classes

(see Fig. 3 and Table 5). For example, KE1±80θ in the

case of n¯10, i¯ 5, Ns
"
¯Ns

#
¯1, and KE 386θ if

Ns
"
¯Ns

#
¯10. In such cases, θ estimated from K

results in a considerable overestimation. On the other

hand, if we can identify the selected nucleotide site,

K
"
(i, n®i)­K

#
(i, n®i) at the selected site is useful to

estimate θ. The variance of K
"
(i, n®i)­K

#
(i, n®i) is

similar to that of K under the neutral model. It

decreases if strong overdominant selection is acting.

Note that it is necessary to detect the selected site

because our model assumes that selection acts at only

one particular site and that mutations in the other

sites are neutral. To detect the selected site, the

average number of pairwise differences between two

allelic classes can be used, because it is largely affected

by selection. It can be concluded that K
"
(i, n®i)­K

#
(i,

n®i) gives a good estimate for θ rather than does K in

a region where strong selection is acting and there is

no recombination. However, the effect of recom-

bination on K
"
(i, n®i)­K

#
(i, n®i) is large, although

recombination does not affect the expectation of K.

K
"
(i, n®i)­K

#
(i, n®i) is sensitive to recombination

and greatly exceeds K in a region with a high

recombination rate. This result may suggest that the

bias in K
"
(i, n®i)­K

#
(i, n®i) due to recombination

may be larger than the bias in K due to selection if

selection is weak. We can conclude that K
"
(i,

n®i)­K
#
(i, n®i) can be a good estimator of θ in

some cases.

Our analytical result (see Appendix) is different

from that of Kaplan et al. (1988), because of different

assumptions. In their study, it is assumed that the

frequency of the allelic class is constant at x
!
, where x

!

is a deterministic equilibrium frequency of the allelic
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class in the selection model. The coalescent event

between two allelic classes is dependent on the

recurrent mutations between two allelic classes.

Accordingly, the coalescent time between two allelic

classes is given as a function of mutation rate and x
!
.

In the present study, we assume that there is a

particular nucleotide site that distinguishes two allelic

classes. Since we follow the infinite site model, there is

only one mutation at this site. Therefore, the mutation

rates at this site are zero, since one mutation has

already taken place. The formula for the coalescent

time between two allelic classes obtained in this study

does not involve the mutation rate. Also this formula

is not a function of x
!
, because we consider the

equilibrium distribution of the frequency of the allelic

class (x). It is more realistic because i (number of A1

allelic class) depends on the frequency of this allelic

class (x), and x is usually unknown.

Appendix

To derive the average number of pairwise differences

between A1 and A2 allelic classes, we first consider the

probability that A1 allelic class is the mutant allelic

class, given the frequency of A1 allelic class. Denote

this probability by P
"
(x), where x is the freqency of A1

allelic class. Watterson (1977) demonstrated that P
"
(x)

is the same as the probability of extinction of an allele

when its frequency is x, and that P
"
(x) is given by

P
"
(x)¯

&"

x

G(y) dy

&"

!

G(y) dy

, (A 1)

where

G(y)¯ exp²®4Nsy´ (A 2)

under the genic selection model and

G(y)¯ exp²®2Ns
"
y#®2Ns

#
(1®y)#´ (A 3)

under the overdominant selection model, respectively

(Kimura, 1962).

Second, we consider the age of A1 when A1 is

mutant. Let M
"
(x) be the mean age of A1 allelic class

when A1 is the mutant allelic class with frequency x.

From equation (14) in Watterson (1977) (see also

Maruyama, 1974; Li, 1975), M
"
(x) is given by

M
"
(x)¯ 4N&"

!

G(y) dy (&"

!

P
"
(y) [1®P

"
(y)]

y(1®y)G(y)
dy

®&"

x

P
"
(y) [1®P

"
(y)}P

"
(x)]

y(1®y)G(y)
dy* , (A 4)

which is equivalent to the mean extinction time of an

allele with frequency x (Kimura & Ohta, 1969).

Let P
#
(x) be the probability that A2 allelic class is

the mutant allelic class and M
#
(x) be the mean age of

A2 when A2 is mutant, given that the frequency of A1

is x. Apparently, P
#
(x)¯1®P

"
(x). M

#
(x) can be given

by sbstituting s by ®s and x by 1®x in (A 4) under

the genic selection model. On the other hand, by

exchanging s
"
and s

#
and substituting x by 1®x, M

#
(x)

can be obtained from (A 4) under the overdominant

selection model.

Next, we consider the mean age of the mutant

allelic class. Denote by T(x) the mean age of the

mutant allelic class when the frequency of A1 is x.

Then, since either A1 or A2 can be mutant, T(x) is

given as the mean of M
"
(x) and M

#
(x) weighted by

P
"
(x) and P

#
(x), respectively. Namely, we have

T(x)¯P
"
(x)M

"
(x)­P

#
(x)M

#
(x). (A 5)

Let T(i, n®i) be the mean age of the mutant allelic

class in A(i, n®i). T(i, n®i) can be obtained as the

average of T(x) weighted by F(x r i, n®i), the dis-

tribution of x in A(i, n®i). Namely,

T(i, n®i)¯&"

!

F(x r i, n®i) T(x) dx. (A 6)

We have F(x r i, n®i) from the combination of

Wright’s allelic frequency distribution in the equi-

librium population (Wright, 1931, 1937) and Ewens’

sampling distribution (Ewens, 1972). In the genic

selection model, the fitnesses of genotypes A1A1,

A1A2 and A2A2 are given by 1­2s, 1­s and 1,

respectively. In equilibrium, the probability distri-

bution of x is given by

Φ(x)¯C
exp²4Nsx´
x(1®x)

, (A 7a)

where C is constant (Wright, 1931, 1937). In this

formula, the mutation rates between A1 and A2 are

zero. This is because we follow the infinite site model,

where only one mutation is allowed at a nucleotide

site. Since A1 and A2 allelic classes exist, the mutation

has already taken place. Therefore, the mutation rates

are zero in this case. In the same way, we have the

probability distribution of x in the overdominant

selection model, where the fitnesses of genotypes

A1A1, A1A2 and A2A2 are given by 1®s
"
, 1 and

1®s
#
, respectively. Namely,

Φ(x)¯C
exp²®2Ns

"
x#®2Ns

#
(1®x)#´

x(1®x)
. (A 7b)

Using Φ(x), we have F(x r i, n®i), the conditional

probability distribution of x in A(i, n®i), based on

Ewens’ sampling theory (Ewens, 1972). In the genic

selection model,

F(x r i, n®i)¯
0ni1xi(1®x)n−i Φ(x)

&"

!

0ni1 yi(1®y)n−i Φ(y) dy

¯
xi−"(1®x)n−i−" exp²4Nsx´

&"

!

yi−"(1®y)n−i−" exp²4Nsy´dy

, (A 8a)
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and, in the overdominant selection model,

F(x r i, n®i)¯

xi−"(1®x)n−i−" exp²®2Ns
"
x#®2Ns

#
(1®x)#´

&"

!

yi−"(1®y)n−i−" exp²®2Ns
"
y#®2Ns

#
(1®y)#´dy

.

(A 8b)

It should be noted that (A 8b) is also applicable to one

of the minority-advantage types of frequency-de-

pendent selection model where the fitnesses of A1A1,

A1A2 and A2A2 are given by ²1®s
"
x´#, ²1®s

"
x´

²1®s
#
(1®x)´ and ²1®s

#
(1®x)´#, respectively (Taka-

hata & Nei, 1990; Denniston & Crow, 1990).

Finally, we have D(i, n®i), the expectation of the

average number of pairwise differences between A1

and A2 allelic classes. Since the mean coalescent time

between two sequences sampled from different allelic

classes is 2N­T(i, n®i), D(i, n®i) is given as

D(i,n®i)¯2µ[2N­T(i,n®i)]¯ [1­T(i,n®i)}2N ]θ.

(A 9)
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