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LOCATING OSCILLATORY ORBITS OF THE
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Abstract

A method is considered for locating oscillating, nonrotating solutions for the parametrically-
excited pendulum by inferring that a particular horseshoe exists in the stable and unstable
manifolds of the local saddles. In particular, odd-periodic solutions are determined which
are difficult to locate by alternative numerical techniques. A pseudo-Anosov braid is also
located which implies the existence of a countable infinity of periodic orbits without the
horseshoe assumption being necessary.

1. Introduction

The parametrically-excited pendulum is an example of a simple one degree of freedom
nonlinear system which can exhibit a plethora of nonlinear phenomena. The equation
of motion is given by

0+c9 +(I + p cos cot) sin 9 = 0 (1)

in which 6 is the angle of rotation, c is a damping constant taken as 0.1 throughout, p is
the scaled parametric excitation amplitude, to is the scaled frequency of excitation and
a dot represents differentiation with respect to the scaled time, t. Equilibria, oscillatory
and rotating orbits exist and the latter two cases possess multiple attractors and can
undergo symmetry-breaking and period-doubling bifurcations, with the possibility
of chaotic motion [19]. Much of the bifurcational behaviour has been determined
by Bryant and Miles [5] in an earlier rigorous study. Despite its simplicity, the
parametrically-excited pendulum is used as a model for many physical [22] and
electrical [23] systems. Mawhin [17] notes the importance of the simple pendulum in
the development of modem mathematics in terms of nonlinear functional analysis and
critical-point theory. Where the pendulum is used in engineering to model physical
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systems, often it is necessary only to consider the oscillatory, nonrotating motions,
and these will be exclusively covered in the following. It was noted with interest
that an earlier study of the parametrically-excited pendulum [5] failed to locate any
nonrotating solutions with odd period (except the trivial 9 = 0,9 = ±n solutions).
This was a surprising result since there were large regions of odd periodic motions for
two other pendulum systems considered [3,4]. Odd periodic solutions do exist for the
parametrically-excited pendulum, but are only stable over a narrow parameter range.
To locate these solutions it is necessary to use a more sophisticated approach than
the usual cell-mapping or path-following techniques used in computational dynamical
systems analysis.

2. Bifurcational behaviour

Before presenting the results in more detail, an overview of the bifurcational
behaviour can be obtained by considering the bifurcation diagram of Figure 1 in
the (co, p) parameter space, which was produced by solving (1) together with cell-
mapping [13], path-following and bifurcation-following techniques [21], [9].

FIGURE 1. Major features of the bifurcation diagram of the parametrically-excited pendulum in the
(a), p) parameter space. H is where the equilibrium loses stability at a period-doubling or flip bifurcation
which is subcritical to the left of c. S is a symmetry-breaking bifurcation, and F represents the end of a
period-doubling cascade although only the first period-doubling is shown. The period two fold line A
associated with the subcritical flip is also shown. A similar unstable zone is shown centred around a> = 1.

Only the major bifurcations are displayed around the primary unstable zone centred
at co = 2 (similar detail can be examined near other unstable zones). The line labelled
H is where small perturbations from the equilibrium 8 = 0 will first result in an
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initial growth which may be predicted by the linear theory [14, 12]. To the right of
the point c, the equilibrium bifurcates into a stable symmetric period-2 solution at a
supercritical bifurcation, whilst to the left, the resultant symmetric period-2 solution
becomes unstable at a subcritical bifurcation. Line A corresponds to a period-2 fold
where the unstable period-2 solution from the subcritical bifurcation stabilises at a
saddle-node bifurcation. Line S corresponds to a symmetry breaking bifurcation,
where the symmetric period-2 splits into two stable antisymmetric period-2 solutions,
and line F represents the end of a pair of period-doubling cascades [8], although only
the first period-doubling is shown, since the cascade is very rapid. The resulting
possibly chaotic attractor is stable over a very narrow parameter regime before a
catastrophic bifurcation which leaves no stable oscillatory, nonrotating periodic or
chaotic solutions.

The system can display complex dynamics due to the presence of homoclinic and
heteroclinic tangencies of the saddles located at 6 = ±n (the so-called hilltop saddles)
which can be accurately predicted using a Melnikov approach [15]. The existence
of homoclinic and heteroclinic intersections of the saddles implies the existence of
horseshoes, which in turn implies the existence of an infinite number of unstable
periodic orbits [24]. The existence of unstable periodic orbits significantly affects the
underlying dynamics of the system. Unstable periodic orbits can be located in the
phase space by using a Newton-Raphson procedure, but the approach is considerably
improved if the number of expected (unstable) periodic orbits and their approximate
location is known. This information can be obtained by considering the Smale
horseshoe formed by the invariant manifolds of the two hilltop saddles. The horseshoe
is formed by the intersection of two 'S' shapes formed by the two stable and unstable
manifolds. This is shown in figure 2A,B respectively, and their intersection in Figure
3A. Figure 3B is an idealisation of the manifolds in Figure 3A and is topologically
equivalent. The horseshoe formed here is similar in nature to the classic Smale
horseshoe, but has three stripes and so might be termed a 3-shoe. We note that
a similar horseshoe was located for the pendulum with applied torque [11]. The
resulting trellis of invariant manifolds allows the required unstable periodic orbits to
be located using symbolic dynamics [10].

3. Symbolic dynamics

The 3-shoe in Figure 4 has horizontal and vertical strips labelled HO, HI, H2, and
V0, VI, V2 respectively such that Vi = G(Hi), i = 0, 1, 2 where G is the Poincare"
map associated with the flow [25].

Each point in the horseshoe invariant set is then described uniquely by a bi-infinite
symbol sequence or itinerary describing the strips visited in subsequent mappings
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FIGURE 2A. Stable manifolds of the hilltop saddles at 6 = ±n with a> = 2, p = 1.8.
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FIGURE 2B. Unstable manifolds of the hilltop saddles at 9 = ±n with a> = 2, p = 1.8.

forward, and backwards in time:

where Gk(x) e Hi <$• hk = i,

which may be expressed identically as

...v2v1vo.hohih2h3..., where G~k(x) vk = i.

Here we concentrate on periodic orbits, which have recurrent substrings, for ex-
ample . . . 010101.01010101... is one Poincar6 point of a period-2 orbit, which can
be identified by its 'root' OL The number of periodic orbits of any particular period
can be calculated, and have been tabulated for orbits up to period-8 by McRobie [18].
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FIGURE 3A. Intersection of stable and unstable manifolds shown in Figures 2A and 2B.

FIGURE 3B. Idealised invariant manifolds of Figure 3A, preserving the topological structure.

The itinerary can then be used to locate periodic orbits in the 3-shoe by converting
the itinerary into invariant coordinates [10] which uniquely describe the position of
the orbit. The position of an orbit in the idealised 3-shoe can then be related to the
real trellis of invariant manifolds of the saddles, giving an approximate location for
the orbit in the phase space. This was carried out for all orbits up to period-3 for the
parametrically-excited pendulum, and all predicted orbits were subsequently located
by using a Newton-Raphson procedure which searched for unstable periodic orbits
around the approximate location given by the invariant coordinates. The location of
the period-3 orbit 001 in the idealised 3-shoe and the trellis of invariant manifolds is
shown in Figure 5.
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FIGURE 4. Three striped horseshoe or 3-shoe. Horizontal and vertical strips are labelled Hi and Vi
respectively with i = 0, 1, 2 such that Vi = G(Hi) where G is the Poincar6 map associated with the flow.

Path-following these unstable orbits enables subsequent bifurcations to be identi-
fied, and in particular, stable orbits to be located. Typically the higher periodic orbits
are stable only over a small parameter range, but one important result to note is that
stable periodic orbits were located in the region above the chaotic zone (in terms
of increasing the parametric forcing parameter, p) previously thought to contain no
stable nonrotating periodic or chaotic orbits. For example, a pair of period-3 orbits
are stable for co = 2, and 1.6741286 < p < 1.6741420. One of these orbits is
the orbit (XH located earlier. The stable period-3 orbits are created at saddle node
bifurcations, and rapidly undergo period-doubling bifurcations to chaotic attractors
which then disappear at further bifurcations, sometimes called catastrophes.

A cell mapping program based on Hsu's method [13] with 200 x 200 cells in the
window 9 — —n to +n, 9 = —4 to +4 failed to locate these stable periodic orbits
since their basins of attraction are very small, and the attractors are stable over very
small parameter ranges. A time history of angular displacement, 9 and corresponding
phase portrait in the phase space of (9,0) for the stable period-3 solution, 001 with
eigenvalues —0.0826 ± 0.6187i (stable) are shown in Figure 6.

Beside locating period-3 solutions, we can use the symbolic-dynamics approach to
find higher-order periodic solutions. However, as we move to higher periods, locating
solutions becomes more difficult as the orbits become increasingly unstable. Rather
than trying to locate all the periodic orbits in the 3-shoe of higher period, we use a
technique based on braid theory to prove the existence of many periodic solutions
from the discovery of a single orbit.
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FIGURE 5. Locating the period-3 unstable orbit 001 i n the 3-shoe and subsequently on the Poincart
plane by the method of symbolic dynamics

4. Braid diagrams

A braid on n strands may be formed from a periodic orbit with period-/* by plotting
displacement (or angle) versus time modulo T, where T is the period of the applied
forcing [1]. For 3-dimensional dynamical systems all crossings of strands will be
in the same sense since the strand with the lower value of 9(t) before the crossing
corresponds to a higher value of the derivative $ (t) which is perpendicular to the plane
and so passes over the other. Hence all braids obtained in this manner will contain only
crossings that are left over right, forming a positive braid. Braids can be classified into
three classes: finite order, reducible, and pseudo-Anosov [2]. The first two classes
imply little about the global dynamics of the system, whilst pseudo-Anosov braids
have positive topological entropy and imply a countable infinity of (unstable) periodic
orbits. 'A pseudo-Anosov braid implies chaos' [19] is the 2-dimensional analogy
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FIGURE 6. Time history and phase portrait for stable period-3 solution 001 <o = 2, p = 1.67413.

of the famous 'Period three implies chaos' statement for 1-dimensional maps [16].
None of the period-3 solutions produce pseudo-Anosov braids; indeed we have to go
to period-5 before any such solutions are located. A period-5 pseudo-Anosov braid
located by the symbolic dynamics method outlined above is shown in Figure 7.

The number of orbits with a particular period that are implied by the existence of
this braid can be calculated relatively easily [2], and is given in Table 1. Thus by
locating one period-5 orbit we have proved the existence of 23 other orbits with period
< 10.

This proof is independent of the 3-shoe hypothesis, and additionally we have shown
that the system has positive topological entropy, that is, there exists a chaotic solution,
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FIGURE 7. Time history of period-5 pseudo-Anosov braid for the parametrically-excited pendulum.

albeit an unstable one. This form of analysis allows a complete topological picture of
the dynamics of the parametrically-excited pendulum to be built, and a partial ordering
of the creation process of the nonrotating periodic orbits can also be constructed, but
is beyond the scope of this paper.

5. Conclusions

We have highlighted the location of odd oscillatory periodic solutions for the
parametrically-excited pendulum using a knowledge of the horseshoe structure formed
by the invariant manifolds of two saddles. Additionally, stable periodic orbits have
been located where it was initially thought that none existed for the parametrically-
excited pendulum. Basins of attraction are small and therefore in a typically 'noisy'
engineering environment these would probably not be sustainable while in other
more precise situations they could play a more significant role. If fine precision
is available, these techniques may be used in conjunction with concepts based on
control strategies to target desirable solutions [20]. In addition, we have located a
pseudo-Anosov braid which implies the existence of a countable infinity of periodic
orbits, positive topological entropy, and an unstable chaotic solution. These results
represent a modest start towards a complete topological picture, but allow a large
body of existing theory to be applied to understanding the global dynamics of the
parametrically-excited pendulum. However, these results may not be extended to
higher-dimensional systems since the braid theory used here is only valid in three
dimensions.
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TABLE 1. Number of periodic orbits implied by period 5 pseudo-Anosov braid.

Period
1
2
3
4
5
6
7
8
9
10

Number of Orbits
1
1
2
1
3
2
4
3
4
2
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