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1. There is a general rule applicable to all insurance and reinsur-
ance fields according to which the level of the so-called technical
minimum premium should be fixed such that a certain stability
criterion is satisfied for the portfolio under consideration. The two
bestknown such criteria are

(i) the probability that there is a technical loss in any of the
future years should be less than a given percentage

(ii) the probability that the company gets "ruined" i.e. initial
reserves plus accumulated premiums minus accumulated claims
becomes negative at any time of a given period in the future should
be less than a tolerated percentage.

Confining ourselves to criterion (i) in the present paper we may
then say that the problem of calculating technical minimum
premiums is broadly spoken equivalent with the problem of
estimating loss probabilities. Since an exact calculation of such
probabilities is only possible for a few very simple and therefore
mostly unrealistic risk models and since e.g. Esscher's method is not
always very easy to apply in practice it might be worthwhile to
describe in the following an alternative approach using results and
techniques from Reliability Theory in order to establish bounds for
unknown loss probabilities.

It would have been impossible for me to write this paper without
having had the opportunity of numerous discussions with the
Reliability experts R. Barlow and F. Proschan while I was at
Stanford University. In particular I was told the elegant proof of
theorem 3 given below by R. Barlow recently.

2. About ten years ago a group of American statisticians started
to work on a subfield of Applied Probability Theory and Statistics
which is now called Reliability Theory. For a detailed introduction
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98 RELIABILITY AND INSURANCE

to this theory we refer to the book "Mathematical Theory of Reliabi-
lity" [1]. For the purpose of the present note we only need to make
the following remarks:

Let us first look at a few definitions:

—The reliability of a system (of any kind) is usually defined as the
probability that the system is able to perform its function(s) during
a given time period. Using the words of the authors of the book
mentioned before, Mathematical Reliability Theory is "a body of
ideas, mathematical models and methods directed toward the
solution of problems in predicting, estimating or optimizing the
probability of survivial, mean life, or, more generally, life distri-
bution of components or systems".

—Another key notion in Reliability Theory is the notion of
failure rate. If the life time X of a given system is a non-negative and
continous stochastic variable with distribution V(x) and density
v(x) then the ratio

, v V{X)
r{x) = T=m

is called failure rate (function). This notation corresponds to the
intuitive interpretation because r(x)dx is the conditional probability
that the system fails in the time interval (x, x + dx) given that it
was functioning up to time x. Therefore, from a mathematical
point of view, the failure rate r(x) is identical with the force of
mortality \LX since iixdx is the probability that a man of age x dies in
(x, x + dx).

—Finally a distribution V(x) is called
IFR (i.e., with increasing failure rate)

if r(x) is nondecreasing in x
and DFR (i.e., with decreasing failure rate)
if r(x) is nonincreasing in x
"prominent" examples of IFR-distributions are

(i) Gamma distributions with density v(x) = --—— (\>.x)a~1e~iix

r(a)
where a > 1

(ii) normal distributions
(iii) Weibull distributions with v(x) = ji,a#a~1 e-M;a where a 5= 1
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important DFR-distributions are
(i) Gamma distributions with a ^ i
(ii) Weibull distributions with a ^ i
(iii) Pareto distributions with v(x) = oc(i + # ) ~ a ~ \ a > o

For the exponential distribution V(x) = i —•{""we get

r\x) — -w = H = constant

i.e., the exponential distribution belongs to both the IFR- and the
DFR-class.

There are of course distributions belonging to neither of these
two classes. From an actuarial point of view the log normal dis-
tribution is one of these "regrettable" examples.

3. After this very short excursion into Reliability Theory we
return to our insurance rating problem. Following the remarks made
in section i we are concerned with the problem of estimating loss
probabilities Ft(x) of the form

Ft(x) = i Pn(t) V(n) (x)
n = 0

where Ft(x) = 1 — Ft(x) = Prob. (total of claims arising in
(o, t) exceeds the premium x)

Pn(t) = probability that there are n claims in (0, t)
V(x) = distribution of the individual claims amount
F<») (x) = 1 — F<»> (x) where F<»> (x) denotes the n-th con-

volution of V(x)

(assuming mutual independence between the individual claims as
well as independence of these claim amounts time from t)

Unfortunately there are only a few very special cases—and
mostly unrealistic cases—where it is actually possible to calculate
Ft(x) in an exact manner. Besides that the classical approximation
technique, namely Esscher's method, is not always easily applicable
to practical situations. Therefore it might be worthwhile in the
following to look into an alternative approach which leads to upper
limits for Ft(x) provided that

{)n _x, Poisson-distributed
e

, ...
Pn\f) — r e , , , .

n ! number of claims
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(ii) V(x) is IFR
(iii) [ii = / xdV(x) and [jt,2 = J x2dV(x) are given.

It is easy to see that it is actually possible to calculate limits of
this sort if we mention the following two results from Reliability
Theory:
a) Barlow and Marshall [2] have calculated (sharp) upper limits
U(y, y.2) with the property that

V(y) < U(y, y . 2 ) , y>o

for each IFR-distribution V(x) with [xx = 1 and given [x2.
b) The convolution of any two IFR-distributions is again IFR [1].
(But the corresponding theorem for DFR-distributions does not
hold true as can be verified e.g., by convoluting two Gamma
distributions with 1/2 < a < 1)
using these results we get

n\x.{l

where <r2 = [x2 — (ij.
As a numerical illustration to this section we have calculated a

few values in Appendix No. 1.

4. Sometimes we may prefer to work with a specified distribution
V(x) rather than just assuming that V(x) belongs to a class of dis-
tributions such as the IFR class considered above. But then we run
into difficulties again if the convolution powers F<re> (x) of V(x) can
not be calculated as nice and explicite mathematical expressions
(e.g., in the case of the Pareto distribution). In such a situation the
following result may be of some help:

Theorem 1: The inequalities
Tn(nR{xjn)) < ( » 7<»> (*) < {» Tn(R(x)), n = 1,2,3,...

hold true for the n-th convolution F<»> (x) of an IFR (DFR)
distribution V(x)

\j-e-v V for
i\where Tn(y) = I j-ij\

' o f or y < o
x

and i?(#) = — log V(x) = Jr(5) i\ (hazard function).
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As a concrete example we may take the Pareto distribution
V(x) = (i + x) "a which is DFR. In this case we have R(x) — « log
(i + x) and nR (x/n) = not. log (i + x\ri)

and therefore

r«(a log (i + *)) < V<n) (X) < r . (n log (i + */»))

with regard to practical calculations we remind that
n - 1

rn(y) = i — / — e'v — Pn{y) = i — Poisson distribution.

Since the probabilit ies P»(y) are tabulated, it is easily possible
to calculate the above bounds even without using a computer. -

In Appendix 2 we have given a few numerical values for the
probabil i ty of loss Fi(x) calculated on the basis of this theorem as-

X« —
suming a Poisson-Pareto model i.e. ^>»(i) =— -& and V(x) =

n!

= (!+*)-".
For the actual calculation a FORTRAN program has been used

written by J. Hofmann of Swiss Reinsurance Company, Zurich.

5. The above-mentioned theorem turns out to be a special case
of the following much more general inequalities.

Theorem 2 :

a) If for two distributions V(x) and G(x) with F(o) = G(o) = 0 the
function R(x) = G-1(V(x)) is convex then

G<"> (nR(x[n)) < F<»> (x) ^ G<»> {R(x)) for n = 1,2,3, ...
b) If tor two distributions V(x) and G{x) with F(o) = G(o) = 0 the
function i?(^:) = G—1(V(x)) is concave then

G<») (R(x)) < F(»> («) < G<»> {nR{x[n)) for « = 1, 2, 3, . . .

Here G-^y) stands for the inverse of the distribution G(#).
i?(̂ f) is usually called "generalized hazard function". This notion

is used because in the special case where G(x) = 1 — e~x

X

R(x) is equal to the hazard function R(x) = JV(5) dZ,
0

r(x) being again the failure rate of V(x).
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Proof of Theorem 2 :

(i) any function R(x) is called convex (concave) if
R{auc + (1 — a) y) < ( » OLR(X) + (1 — a) R{y) for all A;, y ^ 0

and all ae[o, 1]
(ii) if R(o) = 0 and R(x) convex and if x ^ y then yR(x)

yx I y\ y
because we can write y = \- 1 0 with - e [0,1]

x \ xl x
and therefore R(y) < - R(x) + (1 — - ) R{o)

x \ xl

i.e. xR(y) sC yR{%)

(iii) if R(x) is convex and R(o) = 0 then
7?(% + y) ^ .R(#) + i?(y) for x, y ^ o i.e. convexity implies super-
additivity.

Because assuming two values x and y with # > y and
R(x + y) < R(x) + R(y) we would have

x =
y I y\ y
- y + [1 1 (̂  + y) with - e [0,1] and
x \ xl x

R(x) < y- R(y) + (1 — - ) R{x + y ) < -R(y) +

+ ^iyR(x) + R(y)]

or o < xR(y) — yR(x) which contradicts (ii) qed.

(iv) We now proceed to prove by induction that
V(n) (x) < G<B) (R(x)) if R(x) = G-\V{x)) is convex.

The statement is tiue for n = 1 by definition because of
(x) = V(x) = G{R{x)) = G<x) (/?(*)).

We assume that it is also true for n — 1 in order to get

) = }v{n-V (x — l)dV(l) < jG<n-V (R{x — l)

Using the superadditivity of R(x) proved in (iii) we have

R(x) > R{1) + R(x - I) or R(x - 1) < R(x)
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i.e. VM (x) < ] G(n~x) {R(x) — R(l)) dG{R) (£)) = G(n) (R(x)) qed.
0

(v) Proof of G<re) («#(-) ) < V(n) (x) if R{*) = G-l(F(#)) is convex.

The statement is again true for n = 1 by definition of R(x), we
assume that it holds also true for n — 1 and carry out the step
from n — 1 to n as follows

(x) = J V(H~l)(x
0

> jG(«-D ^n-T) R

Using the convexity of R(x) we may write

) +
n \n — 1/ n

x n — i x — l 1
because of - = 1— t,

n n n— 1 n

or ln — i)R y—^) > nR (-) — R{Q leading to
\n — 1/ \nl

nRixjn)

f G*"
0

n)

- J ^''H
/ fx\ \ lx\

if we observe that G'""1' \nR\-\—yi) = o for r, >nR\~) qed.
V \n) I \n)

(vi) Part b of the theorem can be proved in the same way if con-
vexity of R(x) is replaced by concavity.

6. The theorem given in this section together with a certain chain
property of the F-family will be used latei on to improve the upper
and lower bounds for convolution powers of IFR and DFR distri-
butions stated in theorem 1.
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First we borrow from Reliability Theory a notion of ordering tor
distribution functions which is based on the definition of the
generalized hazard function I2]:

Notation:

If R(x) = G'1{V(x)) is convex we say "V(x) is convex ordered
with respect to G(x)" and write "V(x) ^ G(x)" or "V ^ G".

e c

Theorem 3 :

a) if G(x), H{x) and V(x) are distribution functions with
G(o) = H(o) = V(o) = 0 and V < H < G then

c c

G<n) tnR (*]] < HW (ns (*\\ ^ V^ (*) < H^ {S(x)) < G<

for n = 1, 2, 3, . . .

b) if G(%), #(#) and F(%) are distribution functions with
G(o) = ^(0) = 7(o) = 0 and G < H < V then

c c

G<m> {R(x)) < H«"> (S(«)) < F « (*) < HW Us!-)) < G^ (»2? l-

for » = 1, 2, 3, . . .

where «(*) = G " 1 ^ * ) ) and S(«) = H-\V{x))

The theorem says in other words that bounds for the convolution
powers of a given V(x) calculated on the basis of a distrubution
G(x) can generally be improved if there is another distribution H(x)
which with respect to convex ordering lies in between of G(x) and
V(x).

Proof of theorem 3, pa r t b :

We write T(x) = G'1{H(x)) and use the abbreviations G~1H(x)
and TS{x) for G-\H(x)) and T(S(x)). By definition we have
TS(x) = G-1HH~1V{x) = G-^V{x) = R(x). All the three functions
R{x), S(x) and T(x) are convex by assumtion.

Applying theorem 2 to G ^ H we get

#<"> (S{x) ^G<"> (TS{x)) = G(n){R(x))

which proves the left hand side of part a)
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Furthermore using theorem 2 again we have

(Part a) is proved in the same way)
Finally we would like to mention the following result proved by

van Zwet ^ ] :
The Gamma family forms a chain with respect to convex ordering

i.e.
TJx) < T&(x) if and only if x ^ (3.

c

This chain property together with theorem 3 and the fact that
Gamma distributions are easy to convolute are of great practical
value for the calculation of bounds for F<»> (x).

7. Final Remarks

We have tried to demonstrate in this paper how to use certain
reliability techniques for the calculation of bounds for the probabili-
ty of loss. The determination of such bounds is, however, by no
means the only possible relationship between Reliability Theory and
Insurance Risk Theory. In particular we would like to mention that
there is also a useful way of getting bounds for probabilities of
ruin [4]. Furthermore it seems that a great variety of statistical
procedures developped in Reliability Theory could also be applied
successfully to various practical insurance problems.
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APPENDIX NO. I

Upper bounds for the probability of loss in % if the individual
claim is IFR-distributed with

(i l = J xdV(x) = i and (X2 = J x2dV(x) = i + a2

0 3

and if the number of claims is Poisson distributed with parameter X.

o2 # = i # = 2 x = 3 x = 4
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6.8
9.2
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21.0
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43-7
42.7
61.9
63-7
60.5
58.6
76.8
87.1
83-9
71.7

" • 5
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17.3
18.1
28.1

32.2

33-4
33-2
47-1

50.2

50.1

48.7
64.2
66.1
64.8
62.7

5-4
8-3

10.5

n -5
16.7
20.4

22.5

23-7
32.1
36.4
37-6
38.0
49-5
52.7
52.9
52.3

8.7
12.3
14.9
16.9
20.2

24.9
27-5
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35-2
39-6
43-6
42.7
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7-3
9.6

11.4
12.1

16.1
18.9
21.1

24.8
28.1
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32.8

6.8
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9-3
1 3 6
17.0

18.0
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APPENDIX NO. 2

Upper
number

(U) and
of claims

lower bounds (L) for
is Poisson and the

Pareto-distributed.
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X =
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X =

X =

X =

X =
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X =
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16 0

1 0
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16 0

1 0
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4 0

8 0
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1 0
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8 0
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a =
U
136
102

071
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030

256
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144
099
066

454
372
288
213

153
717
635
539
441
35i

93°
891
836
767
687

08 0

L

135
100

067
041

024

253
191

129

079
044

447
352
245
184
079

7°5
597
446
277
138

922

858
73i
517
265

the probability of
individual claims

a =
U
120

084

°53
032
018

230

167
112

070

042

417
325
235
160

104

681
582

•471

362
268

914
863
789
698
598

1 00

L
119

081

049
026

013

226

156
O95
050

024

408
299

185
094
041

665
53O
354
182

069

901

812

638
375
137

loss ifthe
amount is

a = 1

U
103

066

°37
019

009

200

134
081

045
024

375
273
181

i n

064

638
520

394
279
188

893
824
727
611
491

25
L
101

062

O33
015
006

196

124
065
028

on

363
241

127

052
018

615
452
258
102

O28

874
75O
521

233
052
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