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We investigate the shape of a tin sheet formed from a droplet struck by a nanosecond
laser pulse. Specifically, we examine the dynamics of the process as a function of laser
beam properties, focusing on the outstanding puzzle of curvature inversion: tin sheets
produced in experiments and state-of-the-art extreme ultraviolet (EUV) nanolithography
light sources curve in a direction opposite to previous theoretical predictions. We resolve
this discrepancy by combining direct numerical simulations with experimental data,
demonstrating that curvature inversion can be explained by an instantaneous pressure
impulse with low kurtosis. Specifically, we parametrise a dimensionless pressure width,
W , using a raised cosine function and successfully reproduce the experimentally observed
curvature over a wide range of laser-to-droplet diameter ratios, 0.3 < d/D0 < 0.8. The
simulation process described in this work has applications in the EUV nanolithography
industry, where a laser pulse deforms a droplet into a sheet, which is subsequently ionised
by a second pulse to produce EUV-emitting plasma.

Key words: drops, interfacial flows (free surface)

1. Introduction
The hydrodynamic deformation of a droplet driven by a laser pulse is a process of
high interest for the nanolithography industry, in which the state-of-the-art technique for
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producing extreme ultraviolet (EUV) light involves deforming a tin droplet into a thin
sheet that is subsequently ablated into a light-emitting plasma (Bakshi 2009; Fomenkov
et al. 2017; Versolato 2019; Sizyuk & Hassanein 2020). Similar deformation processes can
also be found in scenarios without a laser, in which the deformation is triggered by the
droplet impact onto a large solid surface (Scheller & Bousfield 1995; Bergeron et al. 2000;
Josserand & Thoroddsen 2016) or a solid pillar (Rozhkov, Prunet-Foch & Vignes-Adler
2002; Villermaux & Bossa 2011; Wang & Bourouiba 2017) for example. In these cases,
the droplet is also expanded into a thin sheet, which eventually can fragment or retract due
to the effects of surface tension. These processes are also industrially relevant in a wide
range of applications, such as spray coating and printing (Derby 2010; Lohse 2022). Hence,
understanding their fluid mechanics is essential for further optimising current systems.

In a typical nanolithography scenario, a spherical tin droplet is irradiated by a
nanosecond laser pulse in vacuum. This interaction ablates part of the droplet surface,
which becomes a tin plasma that rapidly expands also on the laser pulse time scale
(τp ∼ 10 ns). As this plasma expands, it transfers momentum to the liquid droplet, which
propels with a velocity Uz ∼ 100 m s−1 and expands radially with velocity Ṙ0 ∼ 100 m s−1.
Therefore, this expansion happens hydrodynamically on the inertial time scale (τi =
R0/Ṙ0 ∼ 100 ns), with R0 ∼ 10 µm being the droplet radius. In the third stage, when
the droplet is already significantly deformed into a sheet, surface tension slows down its
expansion, eventually forming a rim, fragmentation and sheet retraction. This final stage

happens on the capillary time scale τc =
√

ρR3
0/γ ∼ 10 µs, where ρ = 6900 kg m−3 is the

liquid tin density and γ = 0.55 N m–1 its surface tension (Liu et al. 2020).
Previous works by Klein et al. (2015) and Gelderblom et al. (2016) have numerically

simulated laser-induced droplet deformation by assuming that the laser (and the generated
plasma) interact with the droplet by applying a near-instantaneous pressure on its surface,
setting it in incompressible motion. As illustrated in figure 1, this pressure is commonly
approximated by a function f (θ) defined over the parametrised surface of the droplet,
where θ = 0 and θ = π correspond to the side of the droplet hit by the laser and
the opposite side, respectively. Different profiles have been suggested for this pressure
function, most commonly a Gaussian profile is used, in which the standard deviation σ

is tuned to mimic variations in the focus size of the laser beam. A truncated cosine has
also been suggested by Gelderblom et al. (2016), and the authors show that this is the only
profile capable of generating a perfectly symmetric sheet.

Kurilovich et al. (2018) and Hernandez-Rueda et al. (2022) utilise the full radiation-
hydrodynamic code RALEF-2D to simulate the interaction between a laser and the tin,
leading to the plasma formation that transfers momentum to the droplet. While their code
could not simulate late-time droplet deformation, the early time interaction between the
laser and tin was reported, and the authors observed pressure profiles that can match
Gaussian functions in some aspects, such as propulsion-to-deformation energy ratios.
However, no attention is given to the actual morphology of the deformed sheet coming
from these pressure profiles.

While Gaussians and the truncated cosine profiles have been successfully used for the
purpose of these previous studies, they were not capable of reproducing one striking
feature of some experiments: a sheet that curves in the opposite direction to the incident
laser beam, as also illustrated in figure 1. This sheet morphology, which we refer to as
a ‘positive curvature’, is intriguing as it is characteristic, for example, of a droplet being
pushed by a constant wind tunnel, which is not the case in a near-instantaneous focused
laser interaction. Depending on the experiment’s parameters, a ‘negative’ curvature can
also be observed. This naturally leads to the following question: Is it possible to obtain a
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Figure 1. Initialisation strategy to obtain a velocity field from a pressure profile given on the droplet surface.
(a) Sketch of the droplet and laser. (b) Examples of possible initial pressure profile functions on the droplet
surface. (c) Radial and axial velocity components on three sheets obtained from different pressure profile types.
The values of uz represent the droplet velocity relative to its centre-of-mass translational velocity.

single functional form for the pressure profile to explain positive and negative curvatures,
as we see both in experiments? In this work we go beyond the early time dynamics and
show that this is possible by suggesting a pressure profile based on a raised cosine function.
As will be demonstrated later, this profile was chosen due to its capability of mimicking
laser beam focus as the Gaussian profile and providing a forward curvature that is more
comparable with experiments. Correctly predicting the morphology and curvature of the
sheet provides important information for EUV-light generation applications. The shape
and thickness of the sheet will directly influence how much energy is necessary to ablate
the liquid and generate light, such good predictions of the sheet morphology will allow for
better tuning for the optimal experimental parameters. It has also been shown by Engels
et al. (2023) that the vaporisation of a thin sheet creates a vapour with a shape that follows
the local curvature of the sheet, indicating that controlling the morphology of the sheet is
also essential for shaping the vaporisation (and plasma creation) process.

The raised cosine profile is illustrated in figure 1, along with the more classical Gaussian
and cosine profiles. We also show examples of typical sheet shapes that can be numerically
obtained using the three pressure profiles discussed in this paper. In the Gaussian example,
a sheet that curves towards the laser is shown (negative curvature). In the raised cosine
example, the sheet curves away from the laser origin (positive curvature). The centre
image in figure 1(c) shows the truncated cosine case that presents a symmetric sheet and,
according to our definition, presents zero curvature. The expressions for the three pressure
profiles are shown in table 1. Similarly to the Gaussian function, the proposed raised cosine
also has a tuneable parameter W , which controls the width of the profile.

While in this work we obtain positive curvatures by using raised cosine pressure profiles,
we note that this is not the only function capable of giving this sheet morphology.
Other functions can also be chosen or carefully constructed to obtain similar deformation
dynamics. During an exploratory study of different pressure profiles, we observed that,
in order to obtain a realistic positive curvature, the following characteristics should be
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Profile name Expression Control parameter

Cosine cos(θ)H
(π

2
− θ

)
—

Gaussian exp
(

− θ2

2σ 2

)
σ

Raised cosine
1
2

(
1 + cos

(
θ

π

W

))
H(W − θ) W

Table 1. Different initial pressure profiles used throughout this work. In the cosine and raised cosine
expressions, H represents the standard Heaviside step function.

present in a chosen function: first, the function should be peaked at θ = 0; second, the
peak should be wide enough so that not all the pressure is focusing at θ = 0, which would
give negative curvature; and third, while the peak needs to be wide, the function cannot
fully wrap the droplet to θ = π , which would stop expansion. This requires the function
to have a wide peak, but short tail. The second condition can be easily achieved with the
classical Gaussian profile by increasing the σ parameter, which widens the peak. However,
Gaussian profiles have long tails, such that widening the peak would automatically break
the third condition, as the profile would wrap the whole droplet. The ‘tail size’ of a
distribution is often characterised by excess kurtosis, which is the distribution’s kurtosis
minus the reference Gaussian kurtosis. A Gaussian function has, therefore, an excess
kurtosis of exactly 0 and is referred to as a mesokurtic function. Leptokurtic functions are
those with a positive excess kurtosis, and these are not desired in this study since they lead
to fat-tailed profiles. Platokurtic functions have negative excess kurtosis, which leads to a
short tail. Therefore, platokurtic functions are optimal for our study in order to guarantee
the third condition above. Out of many known statistical distributions, the raised cosine
is one of the few smooth functions that provide a constant and negative excess kurtosis
(Kurt = −0.59) that does not depend on the parameter W . Due to its simplicity, while
providing the necessary kurtosis condition, we chose to use the raised cosine in this study.
Throughout this work we show that the raised cosine can, indeed, be a suitable choice to
simulate situations in which the deformed sheet presents a positive curvature.

This paper is organised as follows. Section 2 introduces the experimental set-up used.
In § 3 the problem is mathematically stated, and the numerical approach to simulate the
droplet deformation is described. Section 4 discusses the numerical and experimental
results obtained. Finally, § 5 concludes the results and presents future perspectives.
Additional numerical and experimental details can be found in the appendices.

2. Experiment
Our experimental set-up has previously been described in detail (Kurilovich et al. 2016;
Kurilovich 2019; Liu et al. 2021). In short, in these experiments, a kilohertz sequence of
liquid tin droplets (270 ◦C) is vertically dispensed in a vacuum environment (10−7mbar)
by a droplet generator. The pressure and frequency of the generator are adjusted to obtain
droplets with diameters ranging from 27 µm to 59 µm. The droplets fall at approximately
10 m s−1 through a horizontal light sheet generated by a continuous-wave HeNe laser.
The scattered light is then detected by a photomultiplier tube and downsampled to 10 Hz,
serving as the start trigger for the experiment.

Firstly, a droplet is hit by the Gaussian intensity pre-pulse (λ= 1064 nm, a full width
at half-maximum value (FWHM) of 10 ns, circularly polarised). This laser interacts with
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
66

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10665


Journal of Fluid Mechanics

30 µm

(a) (b)

60 µm

Time

R(t)

Figure 2. Laser pulse schemes with specific irradiation geometries lead to either (a) positive or (b) negative
curvature, visualised by shadowgraphs.

the droplet by ablating part of its surface and generating a plasma, exerting pressure on the
remaining liquid tin. This pressure rapidly propels and expands the tin droplet on the order
of 100 m s−1 to a thin axisymmetric sheet (Kurilovich et al. 2016, 2018). The propulsion
velocity Uz aligns with the propagation direction of the laser, while the expansion occurs
radially with an initial velocity Ṙ0. The radial expansion speed subsequently decreases due
to the surface tension that is exerted on the edge of the sheet (Villermaux & Bossa 2011;
Gelderblom et al. 2016; Kurilovich et al. 2016).

The time scales governing propulsion and expansion accelerations are similar to
the duration of the laser pulse (ns) and are much shorter than the time scale of the
subsequent fluid dynamics deformation (Gelderblom et al. 2016; Kurilovich et al. 2016).
Figure 2(a) illustrates the typical experimental response of droplets to the pre-pulse
impact, characterised by a beam width of approximately 100 µm FWHM and showcasing a
sheet that curves away from the laser beam. Conversely, figure 2(b) depicts the response to
a pre-pulse with a beam diameter of approximately 20 µm, exhibiting negative curvature.

In order to observe the evolution of the liquid tin, we obtain shadowgraphs as depicted
in figure 2. The shadowgraphy imaging set-up is described in detail by Kurilovich (2019)
and briefly summarised here. It consists of a dye-based illumination source and a charge-
coupled camera coupled to a long-distance microscope, granting a spatial resolution
of approximately 5 µm. The illumination source emits pulses with a duration of 5 ns
(FWHM) and a spectral bandwidth of 12 nm (FWHM) centred at 560 nm. We utilise
these shadowgraphy pulses (SP) for backlight illumination of the side-view acquisitions
(at 90◦ concerning the laser axis) to capture the curvature dynamics of the liquid tin
sheet. We select a discrete number of time steps in the experiment and record 20 frames
in a stroboscopic manner for each step, each frame representing a distinct laser–droplet
interaction event. This methodology allows us to apply post-filtering techniques, such as
selecting optimally aligned laser-to-droplet events.

The non-dimensional parameters for each individual experiment can be seen in tables 3
and 4 in Appendix A.

3. Problem formulation and numerical approach
We perform fluid simulations to numerically simulate the laser-induced deformation of a
tin droplet into a sheet. The governing equations for the isothermal incompressible bi-
phase (droplet and ambient) flow are the continuity and momentum conservation, given
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by

ρ

(
∂u
∂t

+ ∇ · (uu)

)
= −∇ p + ∇ · (2μD) + f γ , (3.1)

∇ · u = 0, (3.2)

where u and p are the velocity and pressure fields, D = [∇u + (∇u)T ]/2 is the
deformation rate tensor, ρ and μ are the density and viscosity of the fluids, respectively.
We note that, in this one-fluid formulation, ρ and μ are functions with values that change
across the droplet–ambient interface. The expression for these functions is given later in
this paragraph. In the numerical method used here, the surface tension force is defined as
a body force f γ = γ κδsn, where κ is the local curvature of the interface, γ the constant
surface tension coefficient, n is the unit vector normal to the interface and δs is the Dirac
delta function centred on the interface (Popinet 2009; Tryggvason, Scardovelli & Zaleski
2011). The droplet interface is tracked using a volume of fluid (VOF) scheme (Hirt &
Nichols 1981), in which a scalar colour function c(x, t) indicates the fraction of droplet
fluid contained in each numerical cell. The local density and viscosity are obtained by
linearly interpolating using the value of c. So ρ and μ from (3.1) are defined as

ρ(c) = c ρd + (1 − c)ρa, (3.3)
μ(c) = c μd + (1 − c)μa, (3.4)

where the indices d and a refer to the properties of the droplet and ambient fluids,
respectively. While in experiments the droplet is contained within a vacuum chamber,
due to numerical limitations, we keep the ambient fluid properties set to ρa = 10−4ρd and
μa = 10−4μd . We note that, in the experimental vacuum chamber, the actual density ratio
is ρa ≈ 10−13ρd . In Appendix B we provide a small sweep of this ratio parameter to show
that our solution is not significantly affected by it with our chosen value of 10−4.

Equations (3.1) and (3.2) can be non-dimensionalised by rescaling variables with the
following choices:

x = R0 x̄, t = R0

Uz
t̄, u = Uz ū, p = ρd U 2

z p̄, κ = 1
R0

κ̄, δs = 1
R0

δ̄s . (3.5)

Here R0 is the initial radius of the droplet and Uz is the droplet propulsion velocity
obtained after the laser hit.

Substituting (3.5) into (3.1) and (3.2) , we obtain the non-dimensional version of the
governing equations, given by

ρ̄

(
∂ ū
∂t

+ ∇ · (ūū)

)
= −∇ p̄ + 1

Re
∇ · (

2μ̄ D̄
) + 1

We
κ̄ δ̄sn, (3.6)

∇ · ū = 0, (3.7)
where

Re = ρd Uz R0

μd
, and We = ρd U 2

z R0

γ
(3.8)

are the Reynolds and Weber numbers, respectively. Later in the text we also use a version
of these two numbers based on the droplet initial expansion velocity Ṙ0 as a velocity scale,
that is, Redef = (ρd Ṙ0 R0/μd) and Wedef = (ρd Ṙ2

0 R0/γ ). The non-dimensional density and
viscosity functions are obtained from (3.3) and (3.4) and are given by

ρ̄(c) = c + (1 − c)ρa/ρd , (3.9)
μ̄(c) = c + (1 − c)μa/μd . (3.10)
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Equations (3.6) and (3.7) require an appropriate velocity field as an initial condition to be
solved. To obtain an initial condition for the velocity, we adopt the same strategy proposed
by Gelderblom et al. (2016), which we briefly describe here. We know that the process
is nearly inviscid and that the time scale of this laser-plasma kick (τp ≈ 10−8 s) is much
smaller than the inertial (τi ≈ 10−7 s) and capillary (τc ≈ 10−5 s) time scales, that is, τp �
τi � τc. While the droplet surface is pressurised by the plasma, shock waves travel across
the droplet within the acoustic time scale τa = R0/cs ≈ 8 × 10−9 s, where cs is the speed
of sound in the liquid tin. It was shown by Grigoryev et al. (2018), Meijer et al. (2022)
that for short laser pulses, the focusing of these waves in the droplet’s centre can generate
a cavitating bubble with dynamics that can affect the droplet morphology (also see Jalaal
et al. 2019a). However, the laser parameters chosen here fall within a range where these
effects are not pronounced and, in fact, no effects of early time cavitation are observed
within our droplets. Therefore, since the acoustic and laser-plasma time scales are much
smaller than that of inertia, we assume that the tin plasma applies a near-instantaneous
pressure kick on the droplet surface, which, in turn, instantaneously develops a pressure
field within the whole droplet volume. This pressure kick will be provided as a function
f (θ) over the parametrised surface of the droplet as in figure 1. With these assumptions,
the Navier–Stokes equations can be reduced into the following Laplace equation for the
pressure:

∇2 p̄ = 0. (3.11)

Equation (3.11) is solved in spherical coordinates assuming symmetry in the azimuthal
angle ϕ. Therefore, it is solved in the domain (r, θ) ∈ [0, 1] × [0, π] with boundary
condition p̄(1, θ) = f (θ). A solution to (3.11) can be obtained by decomposing the
pressure field in Legendre polynomials Pn , which will give

p̄(r, θ) =
∞∑

n=0

Anrn Pn(cos θ), (3.12)

with coefficients

An = 2n + 1
2

∫ π

0
f (θ)Pn(cos θ) sin θ dθ. (3.13)

The initial velocity field within the droplet can then also be obtained from the simplified
Navier–Stokes equations by

ū0 = −α∇ p̄ = −α

[ ∞∑
n=0

n Anrn−1 Pn(cos θ), −1
r

∞∑
n=0

Anrn P ′
n(cos θ) sin θ

]
, (3.14)

where α can be numerically tuned to change the magnitude of the velocity field. Since we
opted to use the propulsion speed as our velocity scale in (3.5), we always take α such that
the non-dimensional propulsion velocity is

Ūz = 3
2

∫ π

0
f (θ) cos θ sin θ dθ = 1. (3.15)

The velocity field ū0 from (3.14) is then used as an initial condition for (3.6) and (3.7).
Equations (3.6) and (3.7) are solved numerically using the open-source free-software

language Basilisk C (Popinet & Collaborators 2013–2021). The droplet is created at the
centre of a square domain [−10R0, 10R0] × [−10R0, 10R0] that is fully discretised with
a non-uniform quadtree grid (Popinet 2003, 2009). To accurately resolve the flow structure
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inside the droplet and its shape, we apply increased refinement levels for the liquid phase
and also at the interface. The maximum quadtree level of refinement used is 14, resulting
in grid cells with a minimum size of Δ = 20R0/(214) = 0.0012R0.

The numerical code then solves the governing equations using a projection method and
a multilevel Poisson solver. We refer to the works of Popinet (2009, 2015) for more details
of the VOF implementation and Appendix C for validation tests of our code. We note that
the software language Basilisk C used here has also been previously validated in many
other works involving deformable surfaces, such as the works by Sanjay, Lohse & Jalaal
(2021) and by Popinet (2009).

4. Results and discussion

4.1. Predicting curvature based on the initial velocity field
We begin our study by looking at the initial velocity calculated at time t = 0 from (3.14)
and attempting to predict how the sheet will curve after deformation.

In order to do this, we first subtract the centre-of-mass velocity from ū0 such that
we obtain only the velocity field responsible for the droplet deformation. From (3.14)
and (3.15), this field is given by

ūdef(r, θ) = Ūz [cos θ, sin θ] +
[
−

∞∑
n=0

n Anrn−1 Pn(cos θ),
1
r

∞∑
n=0

Anrn P ′
n(cos θ) sin(θ)

]
.

(4.1)
An indicative of how the droplet will deform is the radial component of ūdef at the

droplet surface, that is,

ūrdef(1, θ) = Ūz cos θ −
∞∑

n=0

n An Pn(cos θ). (4.2)

Figures 3(a) and 3(b) show the value of the radial velocity (4.2) as a function of θ for
three Gaussian and three raised cosine profiles. Intuitively, we see negative velocities for
low and high θ , with positive values at intermediate θ . This is expected since the droplet is
being ‘squeezed’ in the laser-hit direction while it expands upwards. A striking feature of
the Gaussian curves is that the high values of ūrdef always happen before π/2, regardless
of the choice for the parameter σ . This is also shown in figure 3(d–f ), where the arrows
represent ūrdef on the droplet surface. This observation indicates that the maximum radial
expansion for a Gaussian profile will always happen behind the droplet centre of mass,
such that a negative curvature is to be expected. We note that this had also previously
been observed by Gelderblom et al. (2016), where the authors show a convergence of the
direction of maximum expansion to an angle close to π/2.

For a raised cosine profile, on the other hand, we can see that the maximum value of
ūrdef can be positioned beyond π/2 if W is chosen to be large enough. This can be seen in
figures 3(b), 3(g–i). Since the maximum radial expansion happens after the droplet centre
of mass, we expect the deformed sheet to have a positive curvature. It is worth noting that
the negative curvature can also be expected from raised cosine profiles, as long as W is
chosen small enough. This highlights the versatility of this pressure profile choice, as both
outcomes can be achieved with the correct tuning of a single parameter.

To quantitatively predict if a profile can provide positive or negative curvature, we can
calculate the angle where ūrdef(1, θ) is maximised, let us call that angle θmax. We can find
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Figure 3. Initial droplet radial velocity ūrdef (r, θ) in spherical coordinates at time t = 0 for different profiles
and profile parameters. (a–b) Velocity at the droplet surface over θ for three Gaussian and three raised cosine
profiles, respectively. The insets show the normalised pressure profiles over the droplet surface. (c) Value of
θmax as a function of profile parameter. Panels (d–i) show the ūrdef field within the droplet for the six cases
shown in panels (a) and (b). The arrows represent the magnitude and sign of ūrdef (1, θ) and the dashed line
indicates the point of maximum ūrdef for each r .

this local maximum by derivating (4.2) and solving the equation

ū′
rdef

(1, θ) = −Uz sin θ +
∞∑

n=0

n sin θ An P ′
n(cos θ) = 0. (4.3)

The solution to this equation is shown in figure 3(c) for the Gaussian and raised cosine
profiles as a function of their respective parameters, σ and W . Once again, we see more
clearly that the Gaussian solution cannot cross the θmax = π/2 limit, while the raised
cosine does. We note that the Gaussian results are only shown up to σ ≈ 1.2, since
for higher values, the Gaussian pressure profile wraps the entire droplet such that no
significant expansion happens.

We can also show that a Gaussian pressure profile can never provide θmax > π/2. If we
calculate the derivative (4.3) at the point θ = π/2, we have

ū′
rdef

(
1,

π

2

)
= −Uz +

∞∑
n=0

n An P ′
n(0). (4.4)
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If the value of (4.4) is positive, we know the function is still increasing at π/2, such that
the maximum velocity will happen at θmax > π/2. Analogously, if the value is negative,
we will have θmax < π/2. If we substitute the Gaussian profile into An and Ūz in (4.4), we
obtain

ū′
rdef

(
1,

π

2

)
= −3

2

∫ π

0
cos θ sin θe−θ2/(2σ 2)dθ

+
∞∑

n=0

n
2n + 1

2
P ′

n(0)

∫ π

0
Pn(cos θ) sin θe−θ2/(2σ 2)dθ, (4.5)

which is always negative.
The radial deformation velocity from (4.2) can also be defined for other fixed radial

positions (instead of only at the droplet surface). By doing that for multiple values of r and
storing the angle at which the maximum velocity is attained, we obtain the dashed lines
shown in figure 3(d–i). This line indicates the direction of maximum radial expansion not
only at the droplet surface but also within the fluid. This shows that the expansion direction
smoothly varies from the droplet centre to the surface. An almost-flat curve is obtained for
a Gaussian with σ = 1.2 and W ≈ 2, indicating that these droplets will expand almost
perfectly vertically for all θ cross-sections.

4.2. Curvature measurements after droplet deformation
The parameter θmax was introduced as an initial condition indicator of the sheet curvature
characteristics in the previous section. In this section we attempt to demonstrate that this
parameter can indeed be correlated with the actual later-time sheet curvature. Since we
have demonstrated in § 4.1 that Gaussian profiles can never provide positive curvature, we
now focus our study only on raised cosine profiles.

Multiple simulations were performed varying the width parameter in the range W ∈
[1.0, 3.0]. Values of W lower than these result in numerical difficulties in the convergence
of (3.14), while for higher values, no significant expansion can be observed, as the pressure
fully wraps the droplet as also noted by Gelderblom et al. (2016) for wide Gaussian
profiles. The deformation Reynolds and Weber numbers were always kept high enough
(Redef > 1000 and Wedef > 1000) such that no significant viscous effects are present, and
significant capillary effects are only observed at later times in the simulations (particularly
the formation of a rim at the edge of the sheet). None of these effects are expected to affect
the bulk curvature formation of the sheet.

To quantify the curvature of the deformed sheet, we extract the sheet cross-section
from the simulations and perform circular fits. This process is illustrated in figure 4. The
two sides of the sheet are separately extracted, and individual circles are fitted to each
side, resulting in two curvatures κ1 and κ2. Each value will be defined as negative if the
corresponding circle centre is in the same direction as the laser or positive otherwise. We
then define the simulated sheet curvature as

κavg = κ1 + κ2

2
. (4.6)

With this definition, we obtain κavg = 0 if the sheet is perfectly symmetric, as in the case
of the cosine profile shown previously in figure 1. It is positive when the sheet curves
away from the laser origin and negative when it curves towards the laser origin. These
three possibilities are illustrated in figure 4, showing the fitted circles used to estimate the
curvatures.
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Radius : Rc

(a) (b) (c)

κ = (−1/Rc) κ = (1/Rc)

κavg < 0 κavg = 0 κavg > 0

Figure 4. Method used to define and extract the sheet curvature of experiments and simulations based on fitted
circles. The black lines represent the sheet interface, as extracted from a simulation or an experiment. The
orange and red lines show the circles that were fitted to the laser side and back side of the sheet, respectively.

We begin by looking at how the numerical curvatures κ1, κ2 and κavg develop over time.
Figure 5(a) presents κavg over non-dimensional time for different raised cosine profiles.
The full evolution of all simulations in this figure can also be seen in supplementary
movie 1 available at https://doi.org/10.1017/jfm.2025.10665. Initially, all curves start from
the origin since κavg = 0 in the case of a perfect sphere. Over time, each simulation reaches
a peak curvature as the droplet experiences its initial deformation, which then tends again
to zero as the sheet expands and becomes flatter. While some curves show positive values
and others negative, none present a change of sign over time. This means that κavg is a good
theoretical quantity to classify if a simulation results in positive or negative curvature since
this classification will not depend on the chosen measurement time.

For low values of W , as illustrated in figure 5(d), the focused profile quickly pierces
the laser side of the droplet, changing it from its initial convex shape to a concave shape,
which results in negative values for κavg. Due to the focused profile, we can see that most
of the velocity field is concentrated at the laser side of the droplet, which deforms very fast
and creates the typical negative curvature shape. This initial curvature formation happens
in approximately half the expansion (inertial) time scale, as can be seen in figure 5(a)
by the moment when a peak in κavg is obtained. After this peak is reached, most of
the deformation observed will be simple sheet expansion, such that the curvature will
again reduce in magnitude as the sheet becomes more extended. This initial curvature
deformation is seen very clearly by looking at the initial field uz , also shown in figure 5(d)
for W = 1.25. We observe that uz has only a small concentrated area of strong positive
values at the laser side of the droplet. The opposite side of the droplet maintains mostly its
spherical shape during this stage. Over time, due to mass conservation, the uz component
is converted into ux as the droplet is progressively ‘squeezed’ in the z direction and
expands in x . This causes the uz field to become closer to uniform within the droplet,
as seen in figure 5(d). By observing the velocity component field ux for W = 1.25 we can
also see a good indication that negative curvature will be obtained, since the higher values
of ux are strongly concentrated on the laser side of the droplet at initial time. Due to this,
the droplet expands towards the laser, and the curvature becomes increasingly negative
until it eventually reaches its peak.

On the other hand, the unfocused pressure profile wraps the droplet so that the laser side
of its surface does not experience strong deformation and maintains its approximate initial
spherical shape. This can also be seen clearly through the velocity field uz in figure 5(e)
for W = 2.75. Most of the early deformation happens on the opposite side of the droplet,
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Figure 5. Sheet curvature over time for different values of the raised cosine parameter W . (a) Average curvature
κavg, (b) κ1 and (c) κ2. The inset shows the peak average curvature κmax

avg for each simulation as a function of
W . The transparent bands show the uncertainty in the curvature measurement for simulations as defined in
Appendix D. (d,e) Droplet/sheet interface at selected time stamps for two simulations with W = 1.25 and
W = 2.75, respectively. The components of the velocity field in cylindrical coordinates ux and uz are also
shown in the snapshots. The exact parameters for these simulations are presented in table 2 of Appendix A.

where a strong negative velocity field pushes the surface inwards, creating a positive
curvature. The velocity field ux also indicates positive curvature, since the highest values
of ux are concentrated on the droplet side not illuminated by the laser. Similarly to the
previous case, we see also that the curvature experiences a peak. Once again, this is set by
the time it takes for the initial velocity field to establish the shape of the sheet, after which
only expansion with a fixed shape will be present.

The inset in figure 5(a) presents the value of this peak (κmax
avg ) as a function of the profile

parameter W . Interestingly, we see a linear growth of the peak curvature within this range
of W . Another interesting observation is that the time scale of the peak formation is
not heavily dependent on W and approximately half the inertial time scale. Due to the
similar time scale magnitude, the processes of sheet curving and sheet expansion happen
simultaneously and cannot be easily separated over time.

Figure 5(b,c) also shows the individual curvatures κ1 and κ2 for the laser side and
opposite side of the droplet, respectively. Unlike κavg, these individual curvatures can
change sign over time. The curvature κ1 will always present a sign change for simulations
with small W . This happens as initially κ1 = 1 due to the spherical shape and eventually
becomes negative as the laser side of the droplet is strongly pushed by a focused pulse.
However, κ2 will not change sign for simulations of small W since the opposite side of
the droplet does not experience strong pressure to deform, and its initial curvature does
not change direction. On the other hand, for simulations with high W , the exact opposite
happens, that is, κ2 changes sign over time while κ1 does not.
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As suggested by figure 5, a direct correlation between κavg and W will vary with time;
however, the sign change will not be time dependent. Since our main interest is to know
when a sheet will be positively or negatively curved, we now study this correlation between
κavg and W at a fixed time.

In figure 6 we present the measured value of κavg as a function of the profile width W at
a specific time of the simulations t · Ṙ0/R0 = 1, where Ṙ0 is the initial expansion velocity
experienced by the sheet. The time scale R0/Ṙ0 is then an inertial time scale related to
how fast the sheet expands. We chose to match this specific non-dimensional time for
all simulations so that all sheets have the same amount of expansion at the moment of
measurement. As expected, we see that the curvature starts at negative values for focused
pressure profiles (low W ) and then monotonically increases with W . In the same figure
we visualise the values of θmax introduced in figure 3. We can observe that both θmax and
κavg follow qualitatively a very similar trend. Moreover, the θmax curves indicate that the
curvature will flip at W = 1.9, and the κavg curve indicates the flip around W ≈ 2, which
is a reasonable agreement.

To visualise the correlation between the predicted and measured curvatures, we plot in
figure 6(b) the value θmax vs κavg. We observe that the curve passes not too far from the
point (θmax, κ) = (π/2, 0), which is the point that indicates a perfect prediction of the
curvature flip. For illustration, in the bottom row of figure 6, we show the sheet cross-
section for eight of the simulations used in the other panels. One can easily see from these
snapshots that the curvature sign flips around W = 2. Other interesting characteristics
can also be seen in these snapshots outside the curvature measurements. We observe, for
example, that the thickness profile along the sheet is closer to constant for high values of
W , while the sheet is very thick at its centre and thin at the edges for low W . These thin
edges will eventually numerically disconnect from the sheet, forming rings, as our grid is
not fine enough to resolve it properly. We note that, in experiments, we do indeed observe
small droplets fragmenting near the edge of the sheet. However, this is not what is observed
here since our simulation assumes axisymmetry and asymmetric fragments cannot be
reproduced. The near-constant thickness profile obtained from high W is beneficial for
the experimental application of EUV-light generation since the tin over the whole sheet
can be evenly ablated into plasma by a following laser pulse.

4.3. Comparison with experiments
We have seen so far that the raised cosine profile can provide deformed sheets with a
curvature that goes from negative to positive as W is changed. We now attempt to visualise
how well this can be correlated to the sheet shapes obtained experimentally when the ratio
between laser focus and droplet size is changed.

To quantify the sheet curvature experimentally, we use the side-view shadowgraphs
obtained following the experimental method described in § 2. For a given shadowgraph,
we apply an edge-extraction algorithm to obtain the interface of the sheet. We then perform
two circle fits as described previously in figure 4 for simulations. However, unlike in the
simulations, we note that the shadowgraphs do not show a cross-section of the sheet, they
only show a projection of the three-dimensional sheet into the camera plane. Consequently,
if the sheet has a curvature, the concave side of the interface will look flat, and the actual
curvature of that side will be hidden in the projection. With this limitation in mind, in this
section we opted to define our curvature differently from the simulation case in (4.6). We
consider only the side of the sheet that displays the largest curvature in absolute value,
while the opposite side is ignored since it is likely hiding an internal curvature that cannot
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Figure 6. Simulated average curvature and θmax for different raised cosine parameters W . The curvature is
always obtained at time t · Ṙ0/R0 = 1. Panel (a) shows θmax and κavg over W . (b) Correlation between θmax
and κavg. (c) Snapshots for data points shown in panels (a) and (b). The coloured lines represent the two circle
fits in figure 4. Error bars estimate the uncertainty from fitting circles using different sections of the sheet; see
Appendix D for details. The exact parameters for these simulations are presented in table 2 of Appendix A.

be seen. Therefore, the curvature in this section will be defined as

κmax =
{

κ1, |κ1| ≥ |κ2|,
κ2, otherwise,

(4.7)

where κ1 and κ2 refer to the curvature of each side of the sheet as illustrated previously in
figure 4.

We now sweep over the ratio between the diameters of the laser beam and the droplet
(d/D0). This is done by keeping fixed the beam diameter d = 20 µm and using droplets
with a diameter in the range D0 ∈ [27, 59] µm. For each experiment, side-view snapshots
were taken at the times [0, 500, 1000, 2000, 2500] ns. The first two snapshots were used
to estimate the expansion velocity of the sheet Ṙ0, which is then used to obtain the non-
dimensional expansion time texp = t · Ṙ0/R0. In order to measure the curvature at similar
expansion times, we then select the snapshot of each experiment that has a time closest to
texp = 5. The actual selected time will vary between experiments since the experimental
snapshots are only available at limited time steps.

Figure 7 shows the experimental images at the selected time. As expected, we observe
that a focused laser pulse (with respect to the droplet size) pierces the centre of the droplet,
resulting in a sheet with negative curvature. On the other hand, a wide beam results in a
sheet that curves positively. Since the droplet is small in comparison to the beam size, we
hypothesise that the laser generates a plasma that wraps around most of the droplet, such
that the tips also experience a pressure that can push them forward. A detailed description
of this plasma-wrapping phase is given by Hemminga et al. (2021), where this process
is numerically investigated and the authors verify that the plasma expands across the
whole droplet surface. The value of κmax is plotted in panel (a) as a function of d/D0.
The triangular points indicate the cases in which κ1 was selected as κmax, while for the
circle points, κ2 was selected. Similarly to the simulation results, the curvature flips from
negative to positive as the ratio d/D0 increases, eventually approaching a plateau. This flip
from negative to positive curvature happens around d/D0 ≈ 0.575, indicated as a vertical
line in figure 7. For comparison, we also plot the simulated curvature as a function of W
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Figure 7. Experimentally measured sheet curvature for different ratios d/D0. For all cases shown, we use
E pp = 0.8 mJ, d = 20 µm and τp = 10 ns, while D0 is varied from 59 to 27 µm. (a) the experimental curvature
is plotted as a function of d/D0. Grey markers are the individual repetitions of the experiment and black
markers/bars show their mean. Error bars estimate the uncertainty from using circle fits; see Appendix D
for details. As a qualitative comparison, the numerical curvature is shown as a function of the raised cosine
parameter W (red). (b) a shadowgraph for each d/D0 is shown, going from 59 (top left) to 27 µm (bottom
right). The orange and red curves indicate the circles that were fitted to each side of the sheet, as described
in figure 4. The bright spots are generated by plasma light that overexposes the camera chip. In some frames,
this plasma is offset relative to the droplet centre as a result of vertical motion of the droplet over time. Our
images are flipped vertically, so the droplet is displaced upward in relation to the plasma location. The exact
parameters for these simulations and experiments are presented, respectively, in tables 2 and 3 of Appendix A.

in the same panel using a separate horizontal axis for W . The linear fit used to correlate
the W axis and the d/D0 axis is given by W = 4.37 (d/D0) − 0.48. This fit, however, is
specific for the range of ratios shown here d/D0 ≈ 0.5 and would not realistically hold
for more focused laser pulses, where a nonlinear scaling would be necessary. We note
that to fairly compare numerical and experimental results, the numerical curvature shown
here is also κmax, which is different from the curvature κavg used in the previous sections.
For simulations, we note that the flip between κ1 or κ2 being chosen for κmax happens at
W ≈ 2, which is also indicated by the vertical line in figure 7 that separates the triangular
and circular simulation points. Overall, a good agreement between the experimental and
simulated curvatures can be seen, which motivates the usage of the raised cosine parameter
W as a numerical analogous of the experimental ratio d/D0.

In order to visually compare the sheet deformation between experiments and
simulations, in figure 8 we show a time lapse of three different scenarios involving positive
and negative curvatures. Each frame contains a shadowgraph of an experiment overlayed
with the corresponding simulated sheet cross-section. The inset of each frame shows
the projection of the three-dimensional simulated sheet, which would be the equivalent
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comparison to what is seen in the experimental images. The curvature κexp is measured
over time for all three cases and plotted at the top panel of the same figure.

Figure 8(b) contains shadowgraphs at five time stamps of a tin droplet experiment that
exhibits negative curvature. To match this specific experiment, we perform a simulation
with a focused raised cosine profile of W = 1 and an expansion Weber number of Wedef =
2022. This overlayed comparison between simulation and experiment accentuates the main
advantage of the numerical simulations: the actual sheet thickness can be seen in the
simulation, while it is completely hidden in the projected two-dimensional experimental
images. Very good agreement is observed in the bulk area of the sheet between experiment
and simulation, while some discrepancy is observed only as we get closer to the edges.
Experimentally, strong asymmetric sheet fragmentation is observed at the edge of the
sheets as a result of a violent expansion. As previously discussed, this behaviour cannot
be captured by our simulations, which are axisymmetric and only present the expected
formation of a rim. At the edges of the experimental images, we also notice an area in
which the sheet deviates from the bulk curvature, becoming nearly flat abruptly. This
behaviour is also not captured by our initialisation approach, which creates a smooth
curvature change along the droplet and sheet.

Figure 8(c) shows the same experimental–simulation visual comparison now for a case
with positive curvature. We chose time stamps that result in expansion times similar to
those in the previous case. At the earlier time of texp = 1.36 we observe a very good agree-
ment between the simulated and experimental sheets. Note that no onset of experimental or
numerical fragmentation has yet been observed at the sheet edge since the sheet volume is
better distributed with a near-constant thickness profile in this case. At later times, while
the positive curvature is maintained for both the simulated and experimental sheets, a
discrepancy can be observed: the laser side of the sheet remains uniformly curved in the
simulation, while in the experiments, it flattens out and only the edges curve forward. This
is a striking feature of the experimental sheets that is still numerically unreproducible with
our current choice of pressure profile. Numerically, we also see the formation of a small
rim at later times that curves slightly back. The rim is formed due to capillary effects acting
at a late time, and we believe this rim is slightly pulled back due to drag in the simulations
(the outer medium is not a vacuum in simulations due to numerical limitations).

Figure 8(d) showcases the laser-induced deformation of a larger water droplet,
reproduced from the work of Klein et al. (2015). In this experiment, a large water droplet
with D0 = 0.9 mm is used, and due to its size, the velocity received by the droplet is small,
such that only a small Weber number (We = 16 or Wedef = 141) is attained. We note that
this is a striking difference from our experiments, in which a micrometre-sized droplet is
used and deformed with a much higher Weber number (Wedef > 1000). Not only do the
size, velocity and time scales differ from our experiments, but also some aspects of the
mechanism that induces the initial pressure. In this particular water droplet, only a vapour
cloud is created, as opposed to the tin plasma that quickly expands and wraps the droplet in
our experiments. We note, however, that with appropriate laser parameter choices, plasma
can also be generated from water droplets as reported, for example, by Klein et al. (2015)
and Marston et al. (2016), but these are not the conditions relevant to the comparison
below. Besides all these differences, we show that the raised cosine approach can also
be successfully used to describe this flow. In this case, a focused profile with W = 1.25
was chosen to obtain the negative curvature observed in the experiment. The good visual
agreement is observed in the frame-by-frame comparison, which is also confirmed in the
κmax measurements over time shown in the top plot. This confirms that this approach can
be used in a wide range of droplet impact scenarios, with different time, length and velocity
scales and different mechanisms of propulsion.

1020 A21-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
66

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10665


Journal of Fluid Mechanics

1.0

0.5

0

–0.5

–1.0

0 1 2 3 4 5 6

Case 1 : κ2 for simulation and experiment

Experiment: D0 = 59 µm, d = 20 µm, E = 0.8 mJ Simulation: Wedef = 2022, Raised cosine, W = 1

Experiment: D0 = 27 µm, d = 100 µm, E = 5 mJ

C
as

e 
1

C
as

e 
2

C
as

e 
3

Simulation: Wedef = 1207, Raised cosine, W = 2.5

Experiment: D0 = 0.9 mm, d = 2 mm, Eod = 15 mJ Simulation: Wedef = 125, Raised cosine, W = 1.25

Case 2 : κ1 for simulation and experiment

Case 3 : κ2 for simulation and experiment

7 8

t · Ṙ0/R0
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Figure 8. Frame-by-frame comparison between sheets obtained experimentally and numerically for three
different sets of parameters. The background of each plot shows the experimental side-view shadowgraph,
while the red/green/yellow outlines show the simulated sheet cross-section. The insets show the side-view
projection of the simulated sheet. (a) Numerical and experimental curvature over time for each case in the
following panels. Circles and error bars represent the experimental results, and dashed lines represent the
numerical results. The transparent bands show the uncertainty in the curvature measurement for simulations
as defined in Appendix D. The uncertainty for experimental points is defined in the same manner. (b) Case
from a focused laser beam resulting in negative curvature. (c) Unfocused beam resulting in positive curvature.
(d) Experiment with a large water droplet reproduced from Klein et al. (2015). The exact parameters for these
simulations and experiments are presented in table 4 of Appendix A.

5. Discussion, conclusion and perspective
We numerically and experimentally investigated the morphology of a liquid sheet obtained
by laser-induced droplet deformation. Direct numerical simulations are performed to
understand how the initial pressure profile exerted on the droplet surface can lead to
different late-time sheet morphologies. We propose a pressure profile based on a raised
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cosine function and demonstrate that, by tuning its parameter W , we can obtain better
morphological agreement with experiments compared with previous functions proposed
in the literature.

Our results show that using an instantaneous pressure impulse we can still obtain both
negative and positive sheet curvatures as long as the pressure profile function is correctly
chosen. The previously proposed profiles in the literature (Gaussian and cosine functions)
could not provide both sheet curvature types, which illustrates again the importance of
carefully choosing or determining the pressure profile. The actual determination of this
pressure profile from experiments is a difficult task since it comes from the complex
interaction between a laser-generated plasma and a droplet. As this plasma expands and
wraps the droplet, the determination of the exerted pressure is not trivial. Therefore,
while we show in this work that we can obtain positive curvatures as long as a suitable
pressure impulse is given, we note that more work on determining the real shape of this
impulse from an experimental point of view is still required. Computationally, determining
the ‘correct’ pressure impulse would require complex plasma physics modelling of
the interaction between tin plasma and the droplet, which requires different numerical
techniques that are out of the scope of the current work.

We have analysed the corresponding initial velocity field for a given pressure profile and
proposed a method to predict whether a given profile will produce a positive or negatively
curved sheet. This method shows that a positively curved sheet can be obtained with raised
cosine functions of W > 1.9, which can never be achieved with the traditional Gaussian
pressure. We observe that in order to obtain positive curvature, a pressure profile needs to
present a wide peak and a short tail, which the raised cosine can achieve due to its negative
excess kurtosis but not the Gaussian (zero excess kurtosis). The initial prediction is then
compared with the curvature obtained after the simulation of the droplet deformation.
Good agreement is obtained as we see that the sheet curves forward for approximately
W > 2. Predicting sheet morphology from the initial condition at time zero can be very
beneficial for future works on probing different pressure profiles and their corresponding
deformation dynamics. Without having to perform expensive dynamical fluid simulations,
it is possible to test different profiles and tune them accordingly to obtain the desired
morphology. This allows for efficient and careful design of pressure profiles to obtain
different sheet morphologies.

Focusing on the raised cosine profile, we have shown that the numerical parameter W
can be correlated to the experimental beam-to-droplet size ratio d/D0. A negative sheet
curvature is obtained for low values of W and d/D0, while a positive curvature is obtained
for high values. This effect is associated with the pressure profile being either focused
at the centre of the droplet or wrapping around most of the droplet surface, which can
experimentally happen due to the fast plasma expansion.

While the raised cosine profile is capable of answering the riddle of curvature inversion
observed in experiments, some other experimental characteristics are still not fully
matched, notably the expansion-to-propulsion velocity ratio highlighted in Appendix E.
Therefore, additional research on determining the optimised pressure profile for specific
experiments could still be performed. We believe some insights on this optimised profile
could be obtained numerically using full radiation-hydrodynamics solvers, such as by
Hernandez-Rueda et al. (2022), experimentally by using retarding field analysers to
measure energy of flying ions at different angles as by Poirier et al. (2022), or analytically
with strongly simplified plasma expansion models as by Murakami et al. (2005), Bayerle
et al. (2018). All of these approaches rely heavily on studying the dynamics of plasma
expansion, and are beyond the scope of the present work.
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Simulation 1 2 3 4 5 6 7 8

W 1 1.25 1.5 1.75 2 2.25 2.5 2.75

We 81 227 534 1142 2285 5006 12 573 41 489
Re 404 674 1033 1511 2137 3164 5014 9109

Wedef 2022 2049 2024 2012 1944 1995 2053 1981
Redef 2019 2025 2011 2006 1971 1997 2026 1991

Table 2. Non-dimensional groups for all simulations shown in figures 5, 6 and 7. We note that the propulsion-
based numbers We and Re are the actual inputs provided to our solver, while Wedef and Wedef are measured
during post-process since they are the actual relevant numbers to study droplet expansion.

The approach used in this work can be used more generally than only in laser–droplet
applications for EUV-light generation. We have shown that the raised cosine function also
correctly captures the laser-induced expansion dynamics of a large millimetre-sized water
droplet performed by Klein et al. (2015). These deformation dynamics have also already
been shown to be similar to the case of droplets impacting narrow solid pillars, such that
this numerical simulation approach could also be used for droplet impact problems to
design or optimise such systems. Moreover, the combination of the present simulation
methods and the counterpart experimental insights may be leveraged to shed further light
on a wide range of other laser–material interactions, such as laser-induced forward transfer
(Jalaal et al. 2019b; Serra & Piqué 2019), laser-induced breakdown spectroscopy (Fortes
et al. 2013) and pulsed laser deposition (Shepelin et al. 2023), paving the way for more
predictive models and achieving optimised process control.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10665.
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Appendix A. Parameters from simulations and experiments
In total, eight simulations are used in figures 5, 6 and 7, with parameters shown in table 2.
The input values for Re and We change significantly between simulations as we keep the
values of Redef and Wedef close to 2000 while changing W . As mentioned previously,
with the large values of Redef and Wedef, no significant effects of viscosity and surface
tension are visible within the inertial-expansion time scale.

In figure 7, eleven experiments are shown as we perform a sweep in the droplet-to-beam
size ratio d/D0 by changing D0. The parameters for each of these experiments is shown in
table 3. Note that, similarly to what was done in the simulations, the propulsion Weber and
Reynolds numbers change drastically between experiments, but Wedef and Wedef always
stay large.

Finally, the parameters for the three simulations and three experiments used in figure 8
are presented in table 4. We note that the three experiments in this figure span a wide range
of parameters and set-ups, including also large (milimetric) water droplets.
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Experiment 1 2 3 4 5 6 7 8 9 10 11

D0 (µm) 59 52 47 43 41 38 36 34 31 29 27

We 9 33 86 140 167 255 351 397 571 564 722
Re 568 996 1527 1876 1992 2368 2704 2795 3201 3078 3359

Wedef 2363 2662 3241 3665 3868 4237 4522 5017 4582 4562 4453
Redef 8983 8952 9390 9596 9582 9654 9707 9936 9068 8751 8342

Table 3. Non-dimensional groups for the experiments shown in figure 7. For a fixed laser beam energy and
size, the droplet size is varied as a parameter in our experimental set-up. The Reynolds and Weber numbers
(both for propulsion and expansion) are measured as an output.

Case 1 2 3

Simulation
W 1 2.5 16
We 81 7348 1017
Re 404 10 640 1.25
Wedef 2022 1207 125
Redef 2019 4314 2844

Experiment
We 9 519 16
Re 568 2849 1017
Wedef 2363 1191 141
Redef 8983 4314 3021

Table 4. Non-dimensional groups for the simulations and experiments shown in figure 8.

Appendix B. Effect of other parameters in the droplet expansion
From (3.6)–(3.10), we can identify that, for a given pressure profile, our system is
determined by four parameters: the Reynolds number (Re), Weber number (We), viscosity
ratio (μa/μd ) and density ratio (ρa/ρd ). In the main body of this paper we focus on the
parameter ranges relevant to obtaining liquid sheets in a setting relevant to application:
high Reynolds and Weber numbers, density and viscosity ratios close to zero. In this
appendix we move away from these limits and provide a brief overview of how these
parameters can affect the droplet expansion and the sheet morphology over time. For
the simulations in this appendix, we assume the base values Re = 1000, We = 1000,
μa/μd = 10−4, ρa/ρd = 10−4. In each parameter sweep, one of these values will be
changed while the other three are kept fixed as the base value.

We begin by studying the effect of the Reynolds number in our system by running
simulations with Re = {10, 100, 1000}. In figure 9 we show simulations for these three
values of Re while also sweeping over the pressure profile parameter W . Similarly to what
was previously done in figure 6, we measure the sheet curvatures at the expansion time
scale t = R0/Ṙ0 and plot the two individual curvatures in panels (d) and (e). We observe
that, for the two higher values of Re, the influence in the sheet morphology is minimal
at the time of measurement, since the time scale of viscous dissipation is much larger
than the relevant inertial time scale of sheet expansion in which the measurement was
taken. Some effect is observed only in the case of W = 2.75, due to the small expansion
velocity of this pressure profile that leads to small effective inertia. Significant effects are
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Figure 9. Effect of the Reynolds number in the sheet curvature at time t · Ṙ0/R0 = 1. The values We = 1000,
μa/μd = 10−4, ρa/ρd = 10−4 are kept fixed, and a sweep is performed in the Reynolds number and pressure
profile parameter W . Minimal viscous effects are observed for Re = 1000 and Re = 100, with significant
dissipation being present only for Re = 10.

only observed for the simulations of Re = 10. In this scenario, the viscous dissipation time
scale is comparable to the time of expansion, particularly in the cases of high W (small
inertia), in which strong dissipation is quickly observed that significantly slows down the
droplet expansion to the point that it never becomes a sheet. This reduction in expansion
velocity is also made quantitatively clear in panel (f ).

We follow by looking into the influence of the Weber number through simulations
with We = {10, 100, 1000}. This parameter sweep is shown in figure 10. Differently to
the results in the Reynolds sweep, we already observe very significant capillarity effects
for We = 100. This is due to the square root dependency between the inertial and capillary
time scale τc/τi = √

We, which keeps the two time scales closer to each other. Therefore,
strong surface tension driven deformation and retraction can already be seen for the
higher values of W at We = 100. For the more extreme case of We = 10, we see very
clear rim formation for the low values of W and, once again, a very fast suppression of
droplet expansion at high W , which leads to capillary-driven droplet oscillations. These
oscillations are underdamped due to the choice of Re = 1000 made here. We note that
the actual measurement of a ‘sheet curvature’ makes little sense in the cases shown for
We = 10 and high W , since no sheet is actually formed, but we still show the measurements
for consistency.

In figure 11 we analyse the effects of the viscosity ratio by sweeping over four orders of
magnitude μa/μd = {10−4, 10−3, 10−2, 10−1}. This sweep corresponds to changing the
amount of viscous dissipation only within the ambient fluid. With the very large Reynolds
number used here (which also affects the ambient fluid, according to our (3.6)), no effects
of viscous dissipation in the ambient phase is observed for this sweep. Therefore, for
viscous dissipation in the outer fluid to be relevant, either the other three parameters need
to be different or the viscosity ratio must be significantly bigger, such that the outer fluid
is actually more viscous than the droplet itself.
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Figure 10. Effect of the Weber number in the sheet curvature at time t · Ṙ0/R0 = 1. The values Re = 1000,
μa/μd = 10−4, ρa/ρd = 10−4 are kept fixed, and a sweep is performed in the Weber number and pressure
profile parameter W . Almost no capillary effects are observed for We = 1000. For We = 100 and, particularly,
We = 10, strong capillary-driven droplet retraction and oscillations are present for the high values of W .
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Figure 11. Effect of the viscosity ratio in the sheet curvature at time t = R0/Ṙ0. The values Re = 1000,
We = 1000, ρa/ρd = 10−4 are kept fixed, and a sweep is performed in the viscosity ratio and pressure profile
parameter W . Due to the very small density and high Reynolds number, no effects are observed here even
though the viscosity ratio is within four orders of magnitude.
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Figure 12. Effect of the density ratio in the sheet curvature at time t = R0/Ṙ0. The values Re = 1000, We =
1000, μa/μd = 10−4 are kept fixed, and a sweep is performed in the density ratio and pressure profile parameter
W . Almost no effects are observed for the two smaller values of density ratio. For the higher values, significant
drag is present, particularly for the cases with small W , resulting in changes in the measured curvature and
reducing expansion velocity.

We finalise by investigating the effect of the density ratio in this system by sweeping
through the values ρa/ρd = {10−4, 10−3, 10−2, 10−1}, as shown in figure 12. This
parameter sweep is particularly important since it can also demonstrate how close we
are from the experimental ‘vacuum’ limit that we are interested in in the main paper.
The simulations for the first two density ratios (10−4 and 10−3) look practically identical.
This verifies that the density ratio chosen in the main body of this paper (10−4) is
sufficiently small to be used as an approximation to the real experimental scenario
(vacuum). For the third density ratio (10−2), some effects of drag are observed in the
sheet morphology for the cases of small W . Since drag is proportional to the velocity
squared, it is understandable that the cases of small W present the most disturbances,
since the expansion velocity is high for small W . For the extreme case in which the ratio
is 10−1, effects of drag can be observed for all values of W . For high W , the tips of the
sheet get dragged inwards, which slightly changes the measured curvature. For small W ,
the surface instabilities become extremely large with the high expansion velocity leading
to cases in which the surface is so unstable that no actual curvature measurements can
be performed (W = 1). We note that, for consistency with the main body of the paper,
in all of these simulations the centre-of-mass propulsion velocity Uz is subtracted from
the droplet at the initial condition, such that only expansion is present. In a real scenario,
not only drag coming from the expansion would be present, but also from the centre-of-
mass horizontal propulsion. To clarify how important the propulsion drag in the droplet
morphology is, we show in figure 13 the same density ratio sweep without the removal
of propulsion velocity at time zero. We initially observe that, for density ratio 10−4, these
simulations are identical to those without propulsion, validating that the removal of the
propulsion velocity is an acceptable strategy for the situations considered in this paper.
As the density ratio is increased, the expansion drag is observed but additional drag also
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Figure 13. Effect of the density ratio in the sheet curvature at time t = R0/Ṙ0. This case differs from figure 12
as the propulsion velocity is not removed at the initial condition, so drag will also be observed due to the z-
direction velocity. The values Re = 1000, We = 1000, μa/μd = 10−4 are kept fixed, and a sweep is performed
in the density ratio and pressure profile parameter W . Almost no effects are observed for the two smaller values
of density ratio. For the higher values, significant drag is present, particularly for the cases with small W ,
resulting in changes in the measured curvature and reducing expansion velocity. For the highest density ratio,
the horizontal drag is strong enough that the sheet always displays a negative curvature, regardless of chosen W .

comes from the horizontal translation, which curves the tips of the sheet towards the laser
(left side). In the extreme case of ratio 10−1, the horizontal drag is strong enough that a
negative curvature is observed for all values of W .

Appendix C. Numerical implementation and validation
Basilisk (Popinet & Collaborators 2013-2021) and its Navier–Stokes and VOF solvers have
been widely used and validated in other published works, including many problems with
droplet deformation dynamics, e.g. in recent studies of França et al. (2024), Li & Cheng
(2023) and Sanjay et al. (2025). In our work, we use the standard Navier–Stokes solver
within Basilisk with no custom modifications. The only custom implementation is the
calculation of an initial condition for the velocity field as given in (3.14). In summary, this
initialisation is performed according to the following steps.

(i) One of the pressure profile functions f (θ) from table 1 is chosen by the user.
(ii) The coefficients of the first 30 Legendre polynomials Pn are loaded from a

spreadsheet.
(iii) The first 30 coefficients An are calculated according to (3.13). The definite integral

in this equation is numerically evaluated using the composite Simpson’s 1/3 rule.
(iv) The propulsion velocity Uz is obtained according to (3.15). At this stage, this

propulsion velocity is not yet unity, since the function f (θ) used is not necessarily
normalised for this.

(v) For each grid cell within the droplet, the following steps are employed.
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Figure 14. Radius and thickness of the droplet/sheet over time for four different simulations. All
simulations are performed with Gaussian pressure profiles, and the Gaussian width is varied in the set σ ∈
{π/8, π/6, π/4, π/3}. Results from this work (solid lines) are compared against the results from the boundary
integral simulations by Gelderblom et al. (2016) (circles) for numerical validation of our implementation.

(a) The components of the velocity field in spherical coordinates (ur and uθ ) are set
according to (3.14). We simply use α = 1 in this equation, which means the resulting
field will not yet be normalised correctly.

(b) A conversion is made to obtain the components of the velocity field in cylindrical
coordinates (ux and uz). We also divide the velocity field by the propulsion velocity
calculated in step (iv), which now guarantees the correct normalisation. In most
cases (except figure 13), we also subtract the normalised propulsion velocity from
the velocity field, which means the droplet’s centre of mass will not move in the
simulations. Therefore, the components ux and uz are calculated through

ux (x, z) = ur sin θ + uθ cos θ

Uz
, (C1)

uz(x, z) = −ur cos θ − uθ sin θ

Uz
− 1. (C2)

After the steps above, the equations are evolved in time with the standard Basilisk solver
(centered.h header file). Surface tension is imposed with the standard tension.h header file
and the interface is tracked and evolved using the two-phase.h header. In the first few time
steps a very small time-step size is used (10−6–10−7) while the solver slightly corrects
the solution close to the droplet boundaries in order to guarantee full agreement with the
equations in that area. After this initial adaptation, a larger time-step size is used. We set
the tolerance for the Basilisk’s internal Poisson–Helmholtz solver to 5 · 10−5 and reduce
the coefficient for the Courant–Friedrichs–Lewy (CFL) time-step restriction to CFL = 0.5.

To validate our implementation of this approach with Basilisk C, we compare our
results against the boundary integral simulations performed by Gelderblom et al. (2016).
Figure 14 shows the radius and central thickness of the sheet over time for four simulations
with different Gaussian pressure profiles. All four simulations were performed with fixed
propulsion Reynolds and Weber numbers Re = 5000 and We = 800, respectively. The
pressure profile was always kept as a Gaussian, and the Gaussian width was varied for
each simulation within the set σ ∈ {π/8, π/6, π/4, π/3}. We note that the curves for
both the radius and the thickness agree well with the reference data from Gelderblom
et al. (2016), serving as validation of our solutions.
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Appendix D. Uncertainty estimation in the curvature measurements
In all figures of this work in which the curvature is estimated, we provide error bars
for each measured point from both simulations and experiments. These bars estimate the
uncertainty in the curvature measurement due to choices made in the selection of points
to be used in the circle fit. We note in simulations and experiments that the sheet does
not always presents the same curvature within its bulk area and its tips. Therefore, the
measured curvature could vary if one fits a circle using the entire sheet or by using only
points of the sheet that are close to the bulk. In order to make this choice, we define a
parameter φ ∈ [0, 1], such that φ = 1 indicates the entire sheet will be used in the circle
fit and φ → 0 indicates only points close to the sheet centre will be used. We proceed to
perform various circle fits by sweeping values of φ, which will produce a distribution of
curvatures. We note that, if the sheet was indeed a perfect circle, this distribution would
contain a single value. As the sheet deviates from a circle, the distribution would widen and
have a deviation around its mean. We select the mean of this distribution as the measured
curvature (and corresponding circle) that represents our sheet. The standard deviation of
the distribution is plotted as an error bar. The circles visualised in the snapshots of figures 6
and 7 are those obtained in this manner. This strategy is applied to create the error bars in
figures 6 and 7 as well as the transparent bands in figures 5 and 8.

For simulation results, we note that all error bars are relatively small, indicating that
the entire sheet is close to a circle and that fitting choices do not significantly impact our
results. Slightly larger uncertainties are obtained only for simulations with small W due to
the curved edges of the sheet as can be seen in figure 6.

For the experimental results, the error bars are significantly larger as can be seen in
figure 7. This reflects in part the fact that the sheets in the experiment are, compared
with the simulation, not equally well described by a circle curve. Additional research
on determining the optimised pressure profile for specific experiments could still be
performed to bring simulations and experiment in more complete agreement. In all figures
with experimental results, we also show multiple semi-transparent points showing the
individual repetitions of the same experiments. The opaque point in the foreground is
the average of all repetitions, and we note that the standard deviation from this distribution
is smaller than the one coming from the circle fitting strategy.

We note that, after choosing a circle with the procedure described above, we have also
calculated a root-mean-square (RMS) error for all experiments and simulations, comparing
the actual points of the extracted sheet to the chosen circle. This RMS leads to error
bars that are significantly smaller than those coming from the standard deviation of the
distribution of the circle fitting results. With this in mind, we chose to use only the standard
deviation as our error bars in all figures.

Appendix E. Expansion-to-propulsion velocity ratio
While the raised cosine profile can provide a more realistic direction for curvature, it still
presents a discrepancy from experimental observations. This discrepancy comes in the
form of the expansion-to-propulsion velocity ratio Ṙ0/Uz . This quantity indicates how
fast the droplet expands compared with how fast it propels forward.

In figure 15(a) the blue circles show Ṙ0/Uz as a function of the raised cosine width
W . A very sharp diverging increase is observed for W → 0, which indicates that almost
all the energy is being directed to deforming the droplet and not to propel it. For higher
values of W , the ratio decreases and eventually vanishes into a plateau where the droplet
only propels and never expands. To validate if the raised cosine exhibits the expected
velocity ratio for a given W , we compare our results with those previously reported by
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Figure 15. Measurements of the velocity ratio Ṙ0/Uz for raised cosine profiles. (a) Velocity ratio as a function
of W for the initialisation approach in this work and as predicted with the code RALEF by Hernandez-Rueda
et al. (2022). (b) Numerical average curvature κavg as a function of the velocity ratio in our simulations.

Hernandez-Rueda et al. (2022) using the full radiation-hydrodynamic code RALEF-2D.
In that software, the pressure profile is not given as an input. Instead, the actual laser
parameters are provided, and the full laser interaction with the tin droplet is simulated,
such that the pressure profile and Ṙ0/Uz are both outputs of the simulation. We fitted
the pressure profiles provided by Hernandez-Rueda et al. (2022) using raised cosines and
plotted the velocity ratio provided by their code as a function of the fitted W . We can see
that the velocity ratios obtained are a good match with the initialisation approach used in
our simulations, which validates the initialisation method.

As we have seen previously in figure 6, in order to obtain significant positive curvature
with a raised cosine, the width parameter needs to be W > 2. In this range of widths,
we see in figure 15 that the velocity ratio is always below 1, such that we cannot obtain
fast-expanding sheets that exhibit a positive curvature. This limitation is directly visible in
figure 15(b), where we plot the predicted sheet curvature as a function of Ṙ0/Uz , and we
can clearly see that we are only able to obtain simulations with positive curvature along
with velocity ratios that are below 1. This is still a discrepancy from experiments that
needs to be further studied in the future, as somehow, the experimental sheets exhibit both
positive curvature and fast expansion simultaneously.
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