ANZIAM J. 44(2003), 133-143

NATURAL CUBIC ELEMENT FORMULATION AND INFINITE
DOMAIN MODELLING FOR POTENTIAL FLOW PROBLEMS

G. A. MOHR! and A. S. POWER!

(Received 31 October, 2000; revised 10 January, 2002)

Abstract

A simple formulation of a 9 df cubic Hermitian finite element for potential low problems
is given, using the interpolation of the BCIZ element and after Argyris, defining natural
velocities parallel to the element sides. Consistent loads for body forces are also derived
and it is shown that these are necessary to obtain accurate results when body forces are
significant. Example problems include those of infinite domains for which simple conditions
at infinity are used.

1. Introduction

Finite elements for harmonic problems governed by Laplace’s equation V?¢ = O and
pseudo-harmonic problems governed by V2¢ = constant have very wide application.
Examples are plane torsion, potential flow and electromagnetic fields [15, 18]. For
these problems Lagrangian triangular elements with three or six nodes (and df) are
commonly used [5, 15]. In the present work, however, a cubic Hermitian element
with freedoms ¢, d¢/9x, 3¢ /dy at its vertices is used.

First the element of Mohr and Mohr [13] was used. The 9 global freedoms are
transformed [11, 13] to the values of ¢ at the vertices and the third points on each side.
By employing a simple approximation for ¢ at the centroid (in terms of the other nine
values [13]) a complete Lagrangian cubic interpolation (in areal coordinates) is able
to be used. Element formulation is straightforward.

Subsequently, however, it was found that the BCIZ element [3] (appropriately
modified for potential problems) gave identical results for all the problems under
study. It was then shown that the interpolations of the Mohr and Mohr and BCIZ
elements are exactly equivalent [10].
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FIGURE 1. (a) 9 df global element, (b) 10 df local element.

The interpolation functions of the BCIZ element were originally obtained by some-
what intuitive arguments [18], but are derived from first principles in the present
paper.

As the BCIZ element is, perhaps, the simplest reasonably accurate 9 df Hermitian
triangle, a simple formulation for this is given in the present work, complete with
simple explicit formulae for the consistent loads for body forces. Of note too is that
local natural velocities parallel to the element sides are defined in like fashion to the
natural strains of Argyris [2].

The element is tested on a simple rectilinear flow problem. Then to test its con-
vergence it is applied to the plane torsion problem. It is found that, provided that
consistent loads are used to approximate body forces, the element is much more
accurate than the popular six-node triangle of Argyris [1].

Next the element is applied to the classical problem of flow around a cylinder [7],
yielding much better results than 3 and 6 df Lagrangian elements.

Finally the problem of a point source/sink in an infinite domain is considered
using both the 6 df and 9 df elements and simple conditions at infinity similar to the
‘elastic boundary conditions’ used by Mohr and Power [14] for plane thermoelasticity
problems. With the use of these, only a few elements are needed to approximately
model such problems.

2. Element formulation

Figure 1 (a) shows the global freedoms for the element, namely the potential ¢ and
its Cartesian derivatives ¢, = d¢/dx, ¢, = 3¢ /9y at each node.
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Defining natural derivatives

Ga = 0¢/0sa, ¢p =0¢/3sp, ¢ =3¢/3s, 2.0

parallel to the element sides, the local freedoms are shown in Figure 1 (b).
In order to express the interpolation consistently in terms of dimensionless inter-
polation functions the natural derivatives are expressed as dimensionless derivatives,

@, = L,(30¢/3s,) = x219: + y21¢, and similarly for ¢, and ¢, 22)

where x5 = x5 — x1, yu = y2 — ¥ efc. and s, is a coordinate parallel to side 1-2. We
note that ¢, = x21/L,, ¢y = y21/L, are the direction cosines of side 1-2, L, being
its length.

Including a centroidal freedom ¢, the complete cubic interpolation in areal coordi-
nates is easily obtained as [8]

¢ = {.f }'{¢h ¢27 ¢3a ¢:]’ ¢:~|1 ¢;21 ¢:2’ ¢:39 ¢;3’ ¢C} = {f }'{d}’ (23)
where
fi=Li+L}(X, Lj)—Li(X; L}) —9L\LoLy  (i=1,2,3) (forgy),
faisa=L3Liyy — LiLaLy (i=1,2,3) (where Ly := L),
fass=—L:Lia+ LiL,Ly (i =1,2,3),
Sio=27L,L,L3 (for ¢.)
and the areal coordinates are given by cyclic permutation of
Ly =1/3 = (ynx — x32y)/2A,

where 2A = |x3;y3, — x3,y21| gives the element area A.
To eliminate the inconvenient centroidal freedom we can use the simple approxi-
mation [10]

b= (D1 + 2+ ¢3)/3+ (b, — &5 + Dy — Doy + D2 — D33)/18. (24)

Substituting (2.4) into the interpolation of (2.3), that is, into

9
¢ =) fidi+27LL,Lsg.

i=1
the modified interpolation functions are immediately obtained as
f,"=fi+9LlL2L3 (l=11273)1
fra=frun+B/DLiILLy (i=1,2,3), (25)
frsa=fa3— B/DLi1LLy (i=1,2,3)
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4]

and these are the interpolation functions of the classical BCIZ element [3], the simple

explicit interpolation of which is still attractive.

Using (2.5), an interpolation matrix for the first derivatives is easily obtained as

{80)/aL1, 8()/3Ls, 8()/OL5} = B{d*},

where

1+ L,2-L)-S§ L? -2L,L, L? - 2L,L,
L2-2L,\L, 1+L,2—L)—S L2 -2L,L,
L2 —2L,L; LI-2L,L, 1+Ls2—-L3)-S
2L|L2+a L%"i’b c

B' = —2L\Ls—a -b -L?—c¢
a 2L2L3 +b L§_+C
~L3-a —2L,L, - b —c
L§+a b 2L3L| +c
i —a ~-LI—b —2L3L; — ¢

and S = L% +L% + Lz,a = L2L3/2, b= L3L|/2, c= L|L2.

-

(2.6)

@7

This relates to the local freedoms. Generalizing (2.2), the transformation from the

global freedoms to these is simply

{d‘} = {¢lv ¢21 ¢31 ¢;|v ¢:lv ¢;21 ¢;2’ ¢:3» ¢23}
= T{d} = T{d’l’ ¢xla ¢ylv ¢21 ¢x2’ ¢y21 ¢31 ¢x31 ¢y3}1

where
1 0 0 0 0 0 O 0 O]
0 0 01 0 O 0 0 O
0 0 0 00 O 1 0 O
0 xy y» 0 0 0 0 0 O
T=|0 x3 y» 0 0 0 0 0 O
0 0 0 0 X32 Y32 0 0 0
0 0 0 0 X221 Y21 0 0 0
0 0 0 0 0 0 0 X13 Yi3
_0 0 0 0 0 0 0 X32 y32_

The derivatives of (2.6) are transformed to Cartesian derivatives

a()/aL,
[3()/3x} =(1/24) [—)’32 —=Y13 —)’21] 90)/9L,
a()/3dy X32 X13 X2 3()/dLs
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FIGURE 2. Rectilinear flow problem.

using the areal coordinate definitions given earlier, and the 2 x 3 matrix in (2.10) we
denote by Z.

Then the final element matrix for Laplacian problems is given by a 6-point areal
coordinate numerical integration of quartic accuracy ([8)) k = ) F F'(w;A) with inte-
gration point weights w;. The interpolation matrix F for the two Cartesian derivatives
is given by

F=ZBT (2.11)
using (2.7), (2.8) and (2.10).

Finally, for the case of Poisson’s equation, the ‘local’ consistent loads are given by
the explicit integration [8] of (2.5), yielding

{q}}) =(CA)T'{8,8,8,1,-1,1,—1, 1, —1}/24,

where in the case of plane torsion C = 2G8. Using the simple matrix T of (2.8) we
obtain
Gt = qea = g = qA/3,

g = ql(xa —x13)/24, g3 =qA(ya — yi3)/24,

ges = qA(xn2 — x21)/24, qes = qA(yn2 — y2)/24,

g = qA(x13 — x32)/24, g = qA(yi3 — y32)/24.
These explicit formulae are particularly useful and can be used for other 9 df Hermitian
triangular elements where simple formulae are not available [9].

The coding of the element is particularly simple and transformation by the matrix T

in (2.11) can, observing the simple form of (2.9), be coded explicitly rather than as a
matrix multiplication.

2.12)
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FIGURE 3. Plane torsion problem.
3. A simple test problem

The new element is first tested with the simple rectilinear flow problem shown in
Figure 2. Here ¢ is a potential function so that the flow velocities are given by

u=—3¢p/dx, v=—a¢/dy. (3.1)

Equations (3.1) satisfy the irrotationality condition du/3dy — dv/dx = 0. Substitut-
ing (3.1) into the continuity condition du/dx + dv/dy = 0 provides the governing
PDE V%¢ = 0.

To force the flow loads g4 = 1/2, 1, 1/2 are specified at the inlet and ¢ = 0 is set
as a datum at the outlet. It is also necessary to set v = —d¢/dy = O at the top and
bottom of the domain.

This yields the expected results u = —9¢/3x = 1,¢i, = QL/H,where Q =3 _ q,
at the inlet.

4. Convergence of the element

The plane torsion problem is useful to test the convergence of the element. Here ¢
is a stress function such that r,, = 3¢/dy = —v, t,, = 3¢/dx = u and the governing
PDE is

V3¢ +2G8 =0. 4.1)
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TABLE 1. Plane torsion solutions (LL = lumped loads, CL = consistent loads).

Solution Mesh1 Mesh2 Extrapolated Basis

6 df, ¢* 0.6000 0.5900 0.5893 h*
6 df, t* 0.6500 0.6568 0.6590 h?
9df,LL,¢* 0.5357 0.5762 0.5897 h?
9df,LL,* 0.2143 0.3016 n/a n/a
9df,CL, ¢* 0.5714 0.5888 0.589%4 h’
9df,CL,t* 0.6786 0.6705 0.6702 h®
Exact, ¢* 0.5894

T 0.6753

Figure 3 shows a quadrant of a square shaft section in plane torsion modelled using
‘eight elements. The boundary conditions for the edges of the domain are shown,
those at the corners combining those of the intersecting edges. Corresponding to the
constant term of (4.1), ‘lumped’ loads of gus = 2a%/4, gus = qes = (1/2)(2a*/4),
qeo = (1/4)(2a*/4) are applied, in which G = 1 is assumed.

The results for ¢ at the centre (¢* = ¢max/a*) and T at the middle of the sides
(t* = Tmax/a?) are compared to those of the 6-node quadratic Lagrangian element in
Table 1. Here meshes with 9 nodes and df (mesh 1) and 25 nodes and df (mesh 2) are
used for the 6 df element and meshes with 4 nodes and 12 df (mesh 1) and 9 nodes
and 27 df (mesh 2) are used for the new 9 df element.

The results are extrapolated using A"V extrapolation [8] and compared to those of
the series solution [16]. For ¢* we require N = 2(p — m + 1) = 4 and for t* we
require N = 2 for the quadratic element [8, 12].

For the cubic element, N = 2 appears appropriate for ¢* but the results for t*
are poor and cannot be extrapolated. The remedy is to use consistent loads (applying
(2.12)) , when h° extrapolation is found appropriate for both because the latter is now
a nodal freedom.

This is intermediate between N = 4 and N = 6 for quadratic and cubic elements,
not uncommon for elements involving approximations such as (2.4), and the results
are clearly satisfactory.

Note that greater accuracy of stress or velocity solutions (with N = 5) is a principal
advantage of the cubic element, one that is demonstrated in the following section.

5. Example

Figure 4 shows the element applied to the classical problem of flow around a
cylinder (one quadrant analysed) [7]. The loads g4 shown are specified at the inlet and
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FIGURE 4. Flow around a cylinder.

TABLE 2. Results for the problem of Figure 4.

Element U Ug Ug
3df — 1.232 —
6 df 1.756 1930 1.826
9 df 2.506 1.834 1.757
Exact 2.509 1.884 1.755

¢ = 0is set at the outlet, with v = 0 around the boundary (except at node 5). The area
‘cut out’ by the cylinder is A = mr?/4 >~ 0.8, so that the coordinates of node 5 are
chosen as x = 2.2 and y = 0.8. This gives A = 1 — 2(1/2)(1)(0.2) = 0.8, yielding
a reasonable approximation of the boundary shape.

The results for the velocity over the crest of the cylinder are compared in Table 2
to those obtained with the 3 df linear element (using 10 nodes) [5], the 6 df quadratic
element (using 25 nodes) and exact solution [5].

The cubic element models the velocity profile above the crest of the cylinder well
because the velocities are nodal freedoms, not the results of approximate ‘stress type’
calculations. The solutions for ¢ at the inlet are 3.93—4.00, of the expected magnitude.

Therefore the simple cubic formulation is useful for accurate modelling of potential
flow and other ‘potential-type’ problems.

6. Infinite-boundary modelling

Figure 5 shows a quadrant of a circular domain (of radius 4) with a point source
at its centre modelled using (a) 6-node isoparametric elements (8] and (b) the present
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(a) 19 nodes (b) 21 nodes

FIGURE 5. Two models of a quadrant of an infinite domain with a point source at the centre.

TABLE 3. Results for the problem of Figure 5.

Case r=1 r=2 r=3 r=4
6 node FE (la) 525 367 276 210
6 node FE (1b) 520 365 275 209
Cubic FE (2a) 620 447 341 261
Cubic FE (2b) 520 374 284 218

Expected (3) 520 410 345 299
Expected (4) 480 370 305 259

cubic element.

To simulate an infinite domain no boundary conditions are imposed other than
¢ = 1000 at the centre. However, in the fashion of the elastic boundary conditions
used by Mohr and Power [14] for plane thermoelasticity problems, ‘stiffnesses’ equal
to the angle (in radians) subtended by each node’s ‘share’ of the boundary are added
to the pivot for each boundary node’s ¢ freedom before final solution of the problem.
In Figure 5 (a), for example, the added values (in degrees) are 11.25 for the two nodes
atx = 0and y = 0 and 22.5 at the other three nodes of the circular boundary.

Table 3 shows the results obtained. The expected results are obtained by fitting the
appropriate decay function which is [6, 17]

¢ =—(1/2m)¢oIn(r) + C. ©.1)

This is much used in the boundary element method [4].

In case (3) (row 5) the constant C is calculated by substituting ¢ = 520 at r = lin
(6.1) and using the result to calculate ¢ for the other radii. Then for case (4) ¢ = 370
and r = 2 is used to obtain row 6.

Cases (la) and (2a) are the FEM results with only conditions at infinity on the
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boundary. Here a ‘natural’ decay rate occurs in the meshes used. However in general
the desired rate of decay should be modelled by choosing an appropriate C value and
setting a corresponding ¢ value as a boundary condition at an inner radius.

This is done for cases (1b) and (2b), setting ¢ = 520 for the nodes at r = 1.
The agreement of the two FEM results is now good and agreement with the expected
(logarithmic) decay results is reasonable with such coarse meshes and such a rapid
decay rate.

Finally, note that from (6.1) it follows that d¢/or = —¢o/(2rr). This can be set
as a boundary condition in Figure 5 (at r = 4) but this gives little change in the results
of Table 3 (for the cubic element).

7. Conclusions

(1) The simple formulation for a 9 df cubic element for potential flow problems,
complete with explicit formulae for body force loads, is useful and accurate.

(2) The element uses the interpolations of the classical BCIZ element for thin plates,
these being found in the course of the present work to be exactly equivalent to those
of the (apparently quite different) Mohr and Mohr element.

(3) In element formulation, it is found useful to define natural velocities paraliel
to the (triangular) element sides. It is hoped that with further application of this
approach in fluid mechanics the Navier-Stokes equations can be applied to each side
of an element and that the usual continuity condition would then not be needed. This
is the subject of current work.

(4) The results of Table 1 show that the element converges more rapidly than the
popular 6 df/node element as expected, but only if consistent loads are used. Here
the plane torsion problem proves useful, along with the explicit formulae given for
consistent loads.

In Table 2 the cubic element is clearly more accurate, though here many more
freedoms are used for it.

(5) Though only small problems are studied here, the BCIZ element has been widely
used for very large problems in structural mechanics and thus should be reliable in
large fluids problems. However, in the present work it is the introduction of natural
velocities in (2.1) to fluids problems and the use of conditions at infinity which are of
primary interest.

(6) The conditions at infinity used for infinite domains are particularly simple and
useful for a wide variety of problems, for example those of dipoles with only ¢ = ¢,
as boundary conditions within the domain.

It is concluded, therefore, that the present formulation, its explicit formulae for
consistent loads (and other details such as the use of (2.4) to obtain the final interpola-
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tions), the definition of natural velocities of flow and the simple conditions at infinity
for infinite domains should all prove useful.
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