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Abstract

The Wigner distribution and many other members of the Cohen class of generalized phase-
space distributions of a signal all share certain translation properties and the property that
their two marginal distributions of energy density along the time and along the frequency
axes equal the signal power and the spectral energy density. A natural generalization of this
last property is shown to be a certain relationship through the Radon transform between
the distribution and the signal's fractional Fourier transform. It is shown that the Wigner
distribution is now distinguished by being the only member of the Cohen class that has this
generalized property as well as a generalized translation property. The inversion theorem
for the Wigner distribution is then extended to yield the fractional Fourier transforms.

1. Introduction

The integer powers of the symmetrically defined Fourier-Plancherel operator F on
the Hilbert space L2(0Sd) form a cyclic group {Fk}k •, of order 4 [7] and so it is
natural to imbed that discrete group of operators into a continuous one. For d = 1
E. U. Condon [5] in 1937 derived a one-parameter continuous set of integral operators
{Fg}eel (where T = R/2n¥) that had the properties of unitarity, the group property,
continuity in the group space and of imbedding {Fk}keli. For d > 1 V. Bargmann
[1] in 1961 found a corresponding version in his study of the unitary isomorphism
between L2(Kd) and V. Fock's [10] space of entire analytic functions of d complex
variables. M. Taylor's recent work on pseudo-differential operators [22] involves the
same Lie group of integral operators, the "fractional" Fourier operators. I have shown
[16, 17] constructions that even for the one-dimensional case led to an infinite number
of distinct Lie group imbeddings.

Besides the intrinsic interest in a continuous imbedding there are important areas of
application in quantum mechanics, signal analysis and physical optics. The work of
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Condon, Bargmann and Fock arose in the context of quantum mechanics. Also arising
in this context was the work of E. P. Wigner [24] and L. Cohen [4] in constructing
phase-space distribution functions, functions of conjugate variables (for example,
position and momentum) that had the property that their integral with respect to
one variable gave the correct quantum-mechanical marginal probability distribution
with respect to the conjugate variable. This work of Wigner and Cohen has been
widely discussed in the context of signal analysis (for example, [3, 2, 9]) where
time and frequency are the conjugate variables, the distributions are "time-frequency
distributions" and the marginal distributions for a signal f(t) are its power \f(t)\2 and
its spectral energy density \Ff(co)\2. The recent study of G.B. Folland [11] considers
phase-space distributions in the context of group representations, in particular of the
Heisenberg and symplectic groups, that are significant for signal analysis and quantum
mechanics.

Time-frequency distributions are relevant to the analysis of statistically non-station-
ary signals, speech or music, for example, in which the useful representations of the
signal need to capture something of both its temporal and spectral apsects. The frac-
tional Fourier transform has the same relevance since it allows signal representations
along axes "between" time and frequency.

I have shown elsewhere [15, 17] a result relevant to quantum mechanics and com-
munication theory: that requiring invariance under the group of fractional transforms
leads to a new family of uncertainty principles, the first one of which is stronger than
Heisenberg's. The invariant measure of overall spread described there is related to an
invariant of the moment of inertia tensor of the Wigner distribution.

I am grateful to one of the referees for pointing out that this work also has applica-
tions to some current research in physical optics, the propagation of light in quadratic
graded index media (see, for example, that by Ozaktas and others in [18] and the
further references there).

In Section 2 I give a brief summary of a construction of the fractional Fourier
transform and some of its elementary properties. (See [11], for example, for a
thorough account.)

The main part of the paper, Section 3, then analyses the relationship between the
fractional Fourier transform and the Cohen class of time-frequency distributions. It
is well known thaf among the Cohen class there are many, including the Wigner
distribution, that all have certain desirable properties relating to translations and
marginal distributions along the two time and frequency axes. This paper shows
that the natural generalizations of these properties to axes in all directions involves
the fractional Fourier transform and that the natural generalization of the marginal
distribution property to all directions requires that the time-frequency distribution
be related to the fractional Fourier transform by the Radon transform. (The Radon
transform is the transform that has recently received renewed attention, for example
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[6,12, 19,21], due to its role in the development of computer-aided tomography.) The
principal result of this paper is the theorem that the Wigner distribution possesses these
more stringent properties that are the natural generalizations of the familiar ones and,
moreover, is the only distribution that does so. The standard inversion theorem for
the Wigner distribution, which involves integration in the Wigner-distribution plane
along lines of a special direction, is then extended to cover all directions, from which
it yields the fractional Fourier transform.

The substance of this study was outlined in [14]. See [15] for some related work.

2. The fractional Fourier transform

The Fourier operator F on L'(K) D L2((R) (extending to the Fourier-Plancherel
operator on L2((R)) can be defined symmetrically by

(1)

where inner product and associated 2-norm are defined

(/, g) = (2TT)-1/2 / J(x)g(x)dx and | | / | | = {/, />1/2. (2)

One construction [1, 11, 16, 17] of the fractional Fourier operator Fe (6 e T) is based
on the fact [7] that the set of normalized Hermite functions {/jM}n£N defined by

hn{t) = (2"-1/2n!)-'/2exp(-r2/2)//n(0 (3)

(where Hn(t) = exp(t2)(—d/dt)n exp(-f2), the nth Hermite polynomial) is a com-
plete orthonormal set of eigenfunctions under (2) for F satisfying

Fhn = e-'mnllhn (4)

so that if / has the Fourier-Hermite series

f = J2{hn,f)hn (5)

its Fourier transform is

Ff = £>„, fte-Wh,

and so a "fractional" Fourier transform is naturally defined

F"7' =
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that is, writing Fa = Fe where 6 = an/2 (0 € T),

Fef = J > n , f)e-'m0hn. (6)

Interchanging the order of integration and summation in (6) (provided 9/n £ Z ) one
gets for 0 < \9\ < n

= (Kg(s,t),f(s)) where Kg{s,t) = Y,eMhn{s)hn{t). (7)
neN

The series for the kernel Kg(s, t) of the integral operator in (7) can be evaluated in
closed form [1, 11, 16] yielding eventually the definition of Fe for 0 < \9\ < n as

where

Fef {t) = - = / exp - l — — f(s)ds (8a)

C(0) = | sin^r1/2 exp [ - - ( - sgn6-9 ) ] (8b)

while for 9 = 0 and n one has Fo = I, the identity operator, and Fn = F2, the parity
operator.

Defining operators D and X by (Df)(t) = (d/dt)f(t) and (Xf)(t) = tf{t) and
then differential operators J+, J~ and J by J* = 2~}/2(±D - X) and J = J+J~ =
2~l (—D2 + X2 — /) (the Schrodinger representation of the one-dimensional harmonic
oscillator) then it is well known [8, 13, 23] that the hn are the eigenfunctions also of
/ , satisfying Jhn = nhn. The infinitesimal generator of the Lie group {Fe} is — iJ
[16, 22] so Fe = e~lSJ. The set of operators {/, / , J±] constitutes a basis for an
irreducible representation of a 4-dimensional Lie algebra and was used to develop the
Fg-invariant uncertainty principles [15, 17] mentioned earlier.

The kernel of the integral transform Fe is no longer a group character, so many
of the elementary properties enjoyed by Fourier transforms no longer apply in their
simple general shape.

The parity operator F2 (mapping f(t) to /(—/)) is just Fn so as {Fe} is Abelian
one has FeF

2 = F2Fg so under Fe, as under F, even functions transform into even
functions and odd transform into odd.

Complex conjugation is related to the inverse transform F_e in the usual way:

Fef = F_ef. (9)

Defining the translation and modulation operators Ta and Ma by (Taf)(t) = fit—a)
and (Maf)(t) = e"" f{t) (a e K) the standard Fourier transform results appear as
FTa = M-aF and FMa = TaF. From (8) one gets the corresponding results for Fg :

FgTa = exp (--a2 sin9 cos9) TaC0SgM_asingFg (10a)
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FeMa = exp (-a2 sin0 cos6M TasineMacoseFg (10b)

or the combined result

FeTaMb = e""TaMpFg (10c)

where

1
(j) = <p(a,b,0) = -sin0[(a2 -

and

\a1 _ f cos0 sin6>~| fa "I
IP] ~ L~ sin 6> costfj [b\

showing that a simple translation or modulation of the signal leads to both a translation
and a modulation (together with a phase shift^of its fractional transform. From these
one can see the corresponding effects on the energy density function \Fef\

2:

\FeTaMbf\
2 = Tacose+bsine\Fef\

2. (11)

3. The Wigner distribution and the fractional Fourier transform

The Wigner time-frequency distribution has been discussed recently along with
others from the point of view of their membership of Cohen's generalized class
of phase-space distributions and the constraints imposed on this class if the resulting
distributions are to have certain desired properties, for example, [3,2,9]. For conveni-
ence in what follows write fe = F$f (so f0 = Fof = f and fn/2 = FK/2f = Ff).
To each kernel function <S> the corresponding Cohen representation C/ (x, <J>) of the
one-dimensional signal / ( / : K —>• C) on the two-dimensional x-space, where
x = (t, co) e K2, can be written:

C/0(x, <D) = (2TT)-3/2 f exp[i(£r - z c o - £«)]<&(£, r ; x)

-T-)dudTd!;. (1)

The particular case 4> = 1 yields the Wigner distribution W/i

Wh(x) = C/0(x, 1) = (2TT)-1/2 $ e-"»f0 (t + *-) Jo (t -
 T-) dx (2a)
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(or, equivalent̂ , Wfo(x) = (In)'"2 je*1 fn/2 L + 0 Jm L - 0 rfA (2b)

If "t" and "a>" are to be interpretable as time and frequency variables in Cf then
time and frequency translations of the signal / must produce the corresponding
translations in Cf; that is, defining translators 7^ in the 9 direction on functions *(x)
by T^y(x) = *l>(x — ao) where &$ = a(cos0, sin#) then one must have

Cr . / = raoC/ and CMaf = Tan/2Cf. (3)

Recalling that Maf0 = F-n/2Tafn/2 the two requirements (3) generalize to the more
stringent requirement to cover translations of all the fractional transforms fg along
their axes:

W el CF_eTah = T^Ch. (4)

Properties (3) alone entail the independence of <& from x (see [3]) and I assume this
from now on. It is then elementary to show that this assumption is suffic;ent to satisfy
(4) also.

For the marginal distribution of Cf along the /-axis (the O-direction) to represent
the signal power and the marginal distribution along the &>-axis (the 7r/2-direction) to
represent the spectral energy density, Cf must satisfy

(27ryl/2fcfo(t,co)da> = \fo(t)\
2 and (2n)-^2 ICfo(t,co)dt = \f*/2(a>)\2. (5)

It is well known that the Wigner distribution (2) does satisfy the two requirements (5)
as also do some other distributions of the Cohen class (1), for example (see [3]), those
denned by taking either (J>(£, T) = e™^ or <&(£, r) = cos(a£r) (see [3]).

The two requirements (5) combine and naturally generalize to the more stringent
requirement that

V0€T (27T)-'/2 / Cf{x)dl = \fe(r)\2 (6)
Jt(r,6)

where di is the element of Euclidean arc length along the line £(r, 9) whose equation
is X\ cos# + ;t2sin# = r. Equation (6) is precisely the statement that the energy
density function |/o(r)|2 of the fractional Fourier transform f6, now regarded as a
function on K2 in polar coordinates r and 9, is the Radon transform of the phase-space
distribution C/ (see [6]).

THEOREM. There is exactly one member of the Cohen class of phase-space distri-
butions that satisfies the generalized translation property (4) and the generalized
marginal distribution (or Radon transform) property (6) and that is the Wigner dis-
tribution Wf.
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PROOF. I first show that the Wigner distribution satisfies (6). Define new variables
r, y in the t — co plane along axes at angle 9 to the t, co axes by the substitution

1 = |c \ \ r \ (where c = cos 9 and s = sin 6) (7)

and write W9j(r, y) = Wf(t, co) then, using (2),

(2TT)-1/2 / Wf(x)dt = (2nyi/2 f Wg,f(r, y)dy
JUr.B) JW.

= (27T)-'

Now put sr + cy = u to get

WfOQdt
>)

= (27TICI)-1 I e~™f ( - - -u + J ) / ( - - -I* - ^ ) drd«. (8)
yK2 Vc c 2 / Vc c 2 /

The energy density \fe(r)\2 of the fractional transform fg is, using (8) of Section
2,

/ expl—-(-(w2 + r2)c + 2wr)\ f(w)dw\ x
.JR

 l 25 J J
| fe(r) |2 = (2n\s\r

= (2n\s\)~} I exp[—- {-(w2 - v2)c + 2(to - v)r}~\ f(w)J(v)dwdv.
JR2 L 2S J

Now put w = (—su + r)/c + x/2 and v = (—su + r)/c — r /2 to get

\Mr)\2 = (2n\c\)-{ f e-^f ( - - - « + T-) J ( - - - « - J ) drd«. (9)
y R 2 \c c 2 / \c c 2)

Comparing (8) and (9) shows that Wf satisfies (6); that is that the energy density
\Mr)\2 °f t n e fractional Fourier transform is the Radon transform of the Wigner
distribution.

To show that the Wigner distribution is the only function with this property one
needs a uniqueness theorem for the Radon transform. As well as that in Radon's ori-
ginal 1917 paper (reproduced in facsimile in Helgason [12] and in English translation
in Deans [6]) there are several uniqueness theorems relating to the Radon transform.
Theorem 2.4 in Helgason [12], the "Schwartz theorem", simplified here for K2, is
briefly as follows.
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Let g be a function on R2\ let t(r, w) be the line in K2 specified by the unit vector
w = (101, w2) = (cos 6, sin 6) and the parameter r e OS through the equation x • w = r
and let P2 denote the set of all lines in R2. Then the Radon transform & maps a
function g on K2 to a function g#,g on IP2 according to the definition (omitting the
constant I include in (6))

I
Jx

= I g{x)dm(x)
Jxet

where dm(\) is the Euclidean measure on £ so that is, writing vr1 = (— sin#, cos6),

, w)) = / g(rw + 5WX) ds.
JR

Let ^ (K 2 ) denote the Schwartz space of rapidly decreasing C°° functions on K2

and let J^W(P2) denote the space of all those C°° functions <p on P2 such that
V)t € N /K (p(l(r, y/))rk dr is a homogeneous polynomial of degree k in ui\ and
u>2. Then M is a bijection from ^(K2) to ^//(fP2).

Now because ^ ( K 2 ) is dense in L2(K2) M is a bijection in the L2 sense from L2(K2)
and therefore if the equation \fe(r)\2 = &Cf(£(r, 0)) is satisfied for Cf = Wf, as
I have just shown, it is satisfied by no function distinct from Wf in the L2 sense.
Therefore although perhaps other candidates from the Cohen class share the limited
property (5) and even some other desirable properties [3] only the Wigner distribution
has the Radon transform property (6), corresponding to the natural imbedding of the
property of yielding two correct marginal distributions | / | 2 and \Ff\2 into that of
yielding all the correct marginal distributions, the fractional Fourier transform energy
densities \Fef\

2.

There is an inversion formula involving an integral of Wf along a line in the
7r/2-direction that gives / ( / ) except for a phase constant [24]:

/ ( 0 7 ( 0 ) = (27r)-i/2 I Wf(t/2, co)eila) dco (10)

and a similar one involving an integral of W/(t, cu/2) in the n -direction that gives

/(ftj)/(0). In the light of the theorem just proved one expects the following proposi-
tion to be true.

PROPOSITION. In the notation of the theorem and its proof an integral corresponding
to (10) involving Wej(r/2, y) along the line l(r,9) yields the fractional Fourier
transform f$(r) to within a phase constant fe(0):

fe{r)fe(fl) = (2n)~1'2 [ We,f(r/2, y)eir> dy. (11)
J
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PROOF. Write S0j(r) for the right-hand side of (11); substitute the appropriate ex-
pression for Wgj using (7); write Sej as a double integral and then

Se,f(r) = (2n)-1 I exp[-i {(sr/2 + cy)p - ry)}
Ju2

f{cr/2 -sy + p/2)J(cr/2 - sy - p/2) dpdy.

Change the variable y by putting u = cr/2 — sy — p/2 so then (invoking Fubini)

Se,f{r) = (2n\s\yl f j exp T g {- ( r 2 + p2)c + 2rp - 2u(cp - r)]\

f(u + p)dpj(u)du.

Replace p by p — u in the inner integral to get

S$J{r) = (27TI5I)-1 j j exp t {-(r2 + p2)c + 2rp + u2c]\ f(p)dpj(u)du

which one can now write as a product of integrals and confirm from (8) of Section 2
that it is equal to

Obviously one can construct the Wigner distribution from any fractional Fourier
transform fe by applying the defining formula (2a) to f6 and then rotating the result.

4. Conclusion

From the results here one can see that the Wigner distribution is a specially dis-
tinguished member of the Cohen class of phase-space distributions and that (except
for phase constants) there is a complete correspondence determined by the Radon
transform between {fe(r)}eeJ, the set of all the Condon-Bargmann fractional Fourier
transforms of a function / , and the Wigner distribution, W/(x), of the function. Each
is an invertible integral transform of / that gives a time-frequency or intermediate
representation of a signal. The exponential expression appearing in the definition
of the Wigner distribution is conveniently bilinear but the transform itself is not a
linear transform. The fractional Fourier transform, on the other hand, has the in-
convenient quadratic expression in its exponential but it is a linear transform and
this may recommend its application in some studies. Defining scaling and "chirp-
ing" operators Sa (a e K - {0}) and Cb (b e R) by Saf(t) = \a\l/2f(at) and
Cbf(t) = exp(—ibt2/2)f(t) then one can always write the fractional Fourier trans-
form operator as a product of these with the usual Fourier operator F:
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g SCSC0 F Ccotg

where ae = exp[(—i/2){(7r/2) sgn0 — 9}], a phase constant. This representation
might be a starting point for an adaptation of the fast Fourier transform algorithm for
numerical approximations to fe.
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