7

Cosmological implications and
experimental bounds

In the previous chapters solitons were examined largely as theoretical constructs.
Let us now address the question of whether they exist as actual physical objects.
Condensed matter systems with structures analogous to kinks and vortices cer-
tainly exist and have been well studied; some of these have already been briefly
mentioned. However, there has been as yet no confirmed experimental or obser-
vational evidence of a soliton in a relativistic quantum field theory. The natural
question, then, is what conclusions can be drawn from this. The most plausible
source of domain walls and strings is as relics surviving from the early uni-
verse. The same is true of magnetic monopoles if, as in grand unified theories,
their masses are far beyond the reach of possible accelerator experiments. As we
will see, all of these could have been produced during the course of symmetry-
breaking cosmological phase transitions. Comparison of the expected production
rates with the present-day bounds on the abundances of these objects yields
important constraints on the underlying field theories and cosmological scenarios.

7.1 Brief overview of big bang cosmology

There is strong evidence, both from the spatial distribution of galaxies and,
especially, observations of the cosmic microwave background radiation, that the
universe (or at least the part accessible to our observations) possesses a high
degree of spatial homogeneity and isotropy. Any homogeneous and isotropic
spacetime can be described by the Robertson—Walker metric, which can be
written as

dr?

2 2 2

+ r2d6? + r*sin 92d<p2> . (7.1)

Here k indicates the nature of the spatial slices. It has three possible values,
yielding flat Euclidean space (k = 0), a three-dimensional sphere (k = 1), or a
three-dimensional hyperboloid (k = —1). These are referred to as flat, closed,
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7.1 Brief overview of big bang cosmology 131

and open universes, respectively. In an open or a closed universe the scale factor
a(t) is the time-dependent curvature radius. For a flat universe the overall scale
of a is arbitrary, but the ratio of its values at two different times is a measure of
the cosmic expansion and is physically meaningful.

The coordinates used here are comoving coordinates. A worldline with fixed
r, 0, and @ is a geodesic, with ¢ measuring the proper time along the worldline.
One can view a(t) as being a conversion factor between a comoving coordinate
distance and a physical distance. Two comoving objects separated by a proper
distance lpnys = a(t)leoora recede from one another with a velocity

da¢ hys . a
% = agcoord = E gphys = Héphysu (72)

where overdots denote time derivatives and

G
H=- 7.3
. (73)
is the Hubble parameter.
Homogeneity and isotropy imply that the energy-momentum tensor 7, can
be expressed in terms of just two functions of ¢, the energy density p(¢) and the
pressure p(t). Einstein’s equations then imply the Friedmann equation,

N2
a 8mp k

-] == - = 7.4

<a> 3ME,  a®’ (7-4)

where the Planck mass is related to Newton’s constant by Mp, = G]_\,l/ 2 =

1.2 x 10* GeV.
The fact that T}, is covariantly conserved gives the equation

p=3H(p+p). (7.5)

Given an equation of state, this determines the evolution of p as the universe
expands. The contents of the universe today can be classified into three com-
ponents which, because their mutual interactions are relatively weak today,
separately obey Eq. (7.5). Nonrelativistic matter, including both ordinary matter
(baryons and electrons) and the dark matter, is essentially pressureless, and so
obeys

Pmatt ~ @, (7.6)

which can be understood as conservation of particle number. Massless radiation
(e.g., photons), with p = %p, obeys

prad ~ a_4. (7.7)

Finally, current observations are consistent with the dark energy being a
cosmological constant with py = —p = constant.
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132 Cosmological implications and experimental bounds

Today, the dark energy dominates, with p roughly three times ppatt, and
prad much smaller. These densities, together with the current value of H, deter-
mine the magnitude of the k/a? curvature term in the Friedmann equation.
We can then work backward to trace the evolution of the universe at earlier
times. Doing so, we see that while the dark energy makes the greatest contribu-
tion to p today, nonrelativistic matter was dominant before that, and at earlier
times (those in which we will be most interested here) the universe was in a
radiation-dominated regime. We also find that the curvature term in the Fried-
mann equation, which makes only a small contribution today, was completely
negligible at earlier times, so we can safely set £k = 0 in our considerations. It
then follows that a ~ #>/3 during the matter-dominated era and a ~ t'/? during
the radiation-dominated era.

The microwave background radiation today has a Planck spectrum correspond-
ing to a temperature 7" = 2.7 K. Because the interactions of this radiation with
matter (and with itself) are negligible today, this is only a nominal temperature,
characterizing the spectrum of the microwave background, and not a measure of
a system in thermal equilibrium.! However, at the higher densities of the early
universe, the matter and radiation interacted rapidly enough to maintain the uni-
verse in true thermal equilibrium. The temperature fell as the universe expanded,
but the expansion was slow and smooth enough that it can be treated as an
adiabatic process, with entropy conserved and the entropy density S obeying

a®S = constant. (7.8)

In a radiation-dominated era the energy and entropy densities (in units with
Boltzmann’s constant equal to unity) are

71'2 4
o2
S = %NT‘S. (7.10)

Here N' = Nj + gN t, where IV, and Ny are the numbers of effectively massless
bosonic and fermionic degrees of freedom. These count the number of spin states
of particles with mass much less than T, and so are approximately stepwise
constant, with a step downward each time the temperature falls below another
particle mass.?2 Equations (7.8) and (7.10) imply that aT is constant between
such thresholds.

I Even in the absence of interactions, the redshifting of massless radiation is such that an
initially thermal distribution maintains the Planck form, but with 7" varying as 1/a. This is
the case here.

2 Note that A was at least of the order of 102 at early times; for temperatures above the
electroweak scale the standard model particles alone give N/ = 106.75.
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7.2 Symmetry restoration 133

Substituting Eq. (7.9) into Eq. (7.4) and using the fact that the expansion is
adiabatic leads to a differential equation for T'(¢) in the radiation-dominated era.
Its solution is

45 \ V4 [0 [N
o N RV VY b SR VS VY e (7.11)
1673 t t

The integration constant here has been chosen so that ¢ = 0 is the time at
which the temperature and energy density diverge and the scale factor a — 0. Of
course, these are only formal statements, since the Friedmann—Robertson—Walker
approximation must break down at sufficiently high 7', and certainly cannot be
trusted if 1" is Planckian in size.

Causality considerations will be of particular importance for us. Consider a
light signal emitted from r» = 0 at time ¢y. At a later time ¢, it will have traveled
a coordinate distance (assuming a flat universe)

bodt
Ecoord(toat) :/ TN (712)
to a(t’)
that corresponds to a physical distance
boat
l to,t) = a(t . 7.13
pstto,) = a(t) [ (1.13)

Setting to = 0 gives the size

dy(t) = alt) /O %) (7.14)

of what is called the particle horizon. If two objects are separated by more than
twice this horizon distance, their past light cones have no points in common, and
the objects are causally disconnected. For a flat radiation-dominated universe,

we find
1/2 MPI.

T2
An analogous calculation gives dy = 3t for a matter-dominated universe.

dy = 2t = 0.60N~ (7.15)

3

7.2 Symmetry restoration and cosmological phase transitions

It is a common phenomenon that symmetries that are spontaneously broken at
low temperature are restored at high temperature. The magnetization of a ferro-
magnet, which spontaneously breaks the rotational symmetry of the Hamiltonian,

3 Tt is believed that there was an earlier era of cosmological inflation during which the
universe, or at least our portion of it, expanded exponentially fast [120]. As a result of this,
the actual horizon distances would be vastly larger than the expressions above; indeed, this
is precisely how inflation explains the homogeneity of the presently observed portion of the
universe. However, the expressions given here are the appropriate ones for determining the
maximum causal influence of events occurring in post-inflationary times.
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134 Cosmological implications and experimental bounds

disappears above the Curie temperature. The crystal structure of a solid breaks
both translational and rotational symmetry, but these are restored if the crystal
is heated to its melting temperature.

A similar high-temperature symmetry restoration can occur in a quantum
field theory [121-124]. To understand this, consider a weakly coupled theory in
which a complex scalar field ¢ interacts with a massless fermion field ¢ and
an Abelian gauge field A,, giving them masses G|¢| and g|¢|, respectively. At
zero temperature the equilibrium value of ¢ is determined by minimizing the
energy density of a uniform configuration, V' (¢). [More precisely, one should find
the minimum of the effective potential, Vog(¢), which includes the higher-order
quantum corrections to the tree-level potential [125].] At a finite temperature T
the quantity to be minimized is the free energy density, usually expressed as a
finite temperature effective potential Vog (¢, T').

With weak coupling, the various particle species can be treated as essentially
ideal gases. The free energy density is then given, to a first approximation, by the
sum of the zero-temperature energy density V(¢) and the ideal-gas free energies
of the various particle species. The latter depend on the masses of the particles,
which in turn depend on ¢. For M < T, the free energy density per spin degree
of freedom of an ideal gas of bosons with mass M is

2 M?
F=——T'4+—T%+... 1
90 + 2 4+ (7.16)
while for fermions of mass M we have
T M?
F=——T'4+—T%+.... 7.17
720 + 48 + ( )
Hence, if the tree-level potential is
1
V(9) = =26l + SNl (7.18)

with p? > 0, the finite temperature effective potential for small |¢] is [123]

2
Ver(9.T) = —goNT* + (=42” + oT*)|8 + O(9I"), (7.19)
where 1 L 1
2 2
_ ! = - 2
o =39 +12G +3)\ (7.20)

reflects the contributions to the free energy from the ¢-dependent part of the
masses of A,, 1, and ¢ itself, with the coefficients including factors for the
various possible polarizations.

At zero temperature ¢ = 0 is a local maximum of the potential and the sym-
metry is spontaneously broken. For T > T* = /u?/o, the coefficient of |¢|? is
positive, and ¢ = 0 is a local minimum of the effective potential. For sufficiently
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Vetr(@)

Fig. 7.1. Evolution of the shape of the finite temperature effective potential
for a second-order phase transition. The curves correspond to T > T. (solid
line), T = T, (dashed line), and T < T, (dotted line). Arbitrary constants
have been added to make the curves coincide at ¢ = 0.

large T this is always the global minimum, but to determine whether this is the
case for T' ~ T* we need to know the behavior of the effective potential at all val-
ues of ¢. For weak coupling, this can be done by diagrammatic methods that sum
all one loop vacuum graphs in the presence of a spatially uniform background
@ [122]. The case of strong coupling is more difficult to address analytically, but
can often be studied by numerical lattice field theory methods.

Generically, there are two possible behaviors, depending on whether or not the
equilibrium value of (¢) is continuous at the critical temperature. The former
case, called a second-order transition, is illustrated in Fig. 7.1. In this example the
origin goes directly from being the global minimum to being a local maximum at
T, which is therefore the critical temperature T,. As the universe cools below the
critical temperature, (¢) increases from zero until it reaches its zero-temperature
value. If this is the case for the example of Eq. (7.19) and ¢g? ~ G? ~ ),

T - @ ~ \/f ~ (8o (7.21)

where (@)¢ is the zero-temperature vacuum expectation value.

The other possibility, a first-order transition, is illustrated in Fig. 7.2. In this
example, at very high temperature ¢ = 0 is the only minimum of Veg. An asym-
metric local minimum appears at 7T}, becomes degenerate with the symmetric
minimum at 7. < 73, and is the global minimum for 7" < T.. In the example
outlined above the symmetric minimum disappears at 7™, but for other theories
it may persist down to 7" = 0. In a first-order transition the low-temperature
phase does not emerge smoothly from the high-temperature phase. Instead, the
transition proceeds by the nucleation of bubbles of the low-temperature phase, a
process which we will examine further in Chap. 12. Assuming that the nucleation
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Veir(®)

¢

Fig. 7.2. Evolution of the shape of the finite temperature effective potential for
a first-order phase transition. The curves correspond to T > T, (solid line),
T > T. (dashed line), T = T, (dotted line), and 7' < T. (dot-dashed line).
Arbitrary constants have been added to make the curves coincide at ¢ = 0.

rate is large compared to the rate at which the universe is cooling, these bubbles
expand and eventually merge to form a uniform low-temperature phase.*

In particular, it is believed that at T ~ 102 MeV the universe went from a
QCD phase with manifest chiral symmetry and unconfined quarks, to the present
confining phase with broken chiral symmetry. Earlier, at a higher temperature,
T. ~ 10% GeV, there was an electroweak transition from a phase in which the
SU(2)xU(1) symmetry was manifest, to the current low-temperature phase in
which this symmetry is spontaneously broken. If there is a grand unified theory,
there would have been at least one, and possibly more, transitions corresponding
to the breaking of the GUT symmetry at still earlier times.

7.3 The Kibble mechanism

Let us consider a phase transition from a symmetric phase characterized by a
vanishing scalar field ¢ to an asymmetric phase in which the effective potential
has degenerate minima at nonzero values of ¢. (For simplicity, I will refer to
these as vacuum values of ¢, but it should be kept in mind that the minima of
the effective potential at finite 7" are not necessarily the same as those at 7' = 0.)
If the transition is second-order, then as the universe cools past the critical
temperature ¢ will become nonzero and move toward one of its vacuum values.
Because the vacua are all physically equivalent, all vacuum values are equally
probable. Although it would be energetically favorable for the same vacuum to

4 If the nucleation rate is small relative to the cosmological expansion, the universe enters a
regime of extreme supercooling, and the transition is never globally completed [126, 127].
For the present discussion I will assume that this is not the case, and that the transition is
completed.
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7.8 The Kibble mechanism 137

be chosen everywhere, the choice can only be uniform over a finite distance,
leading to a system of domains characterized by a correlation length .

If the transition is first order, then the vacuum can be uniform within a single
bubble (at least until it collides with another bubble), but the choices in different
bubbles will be uncorrelated. When the bubbles coalesce, a domain structure
again appears, with the characteristic bubble size at coalescence playing the
role of &.

Once the transition is completed, the dynamics will tend to smooth out the
variations in the field at the domain boundaries. However, as pointed out by
Kibble, there can be topological obstructions that prevent this, leading to the
creation of topological defects [128].

Perhaps the simplest case to visualize is that with a discrete symmetry leading
to two distinct vacua, with (¢) = £v. Once the fields have settled down after
the transition there will be regions of positive (¢) and ones with negative (¢),
with domain walls—(3+1)-dimensional generalizations of the kink—along the
boundaries between them. Any region with volume more than a few times &3
would be expected to have at least one domain wall traversing it.

A second possibility is that the phase transition corresponds to the breaking
of a symmetry group G to a subgroup H, with 7 (G/H) being nontrivial. For
definiteness, consider a theory where a complex scalar field ¢ develops a nonzero
vacuum expectation value. Figure 7.3 shows a caricature of the domain structure
along a two-dimensional spatial slice just after the transition is completed, with
the arrows indicating the phase of ¢ in the various domains. The field dynamics
will tend to align the phases of neighboring domains. However, this relaxation
to a uniform phase cannot be complete, because there will inevitably be some
domain junctions, such as the ones shown in Fig. 7.4, with a net vorticity that

Fig. 7.3. Domain structure shortly after a phase transition in which a U(1)
symmetry is broken by a nonzero complex scalar field. The arrows indicate the
phase of the field.
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N FIN
Nk

Fig. 7.4. Domain junctions leading to the formation of a vortex (left) or an
antivortex (right).

cannot be smoothed away. Instead, these will lead to the formation of topological
strings that appear as a vortices on this two-dimensional slice. The number of
strings per unit area will be roughly

ny ~ py€ 2, (7.22)

where py measures the probability of nontrivial vorticity arising at a domain
junction from the random phases in the adjacent domains. The value of py
depends on the details of the theory, but it cannot be much less than order
unity; a reasonable estimate is py ~ 1/10.

Finally, if the transition corresponds to a symmetry breaking with nontrivial
mo(G/H), there can be point defects at domain junctions, leading to point-like
solitons such as magnetic monopoles. By arguments analogous to those for the
strings, we see that the initial density of these will be

nar ~ pué S, (7.23)

with pps again being a number not much less than unity.

The crucial quantity in these estimates is the correlation length £. Its value
depends on the detailed dynamics of the fields involved in the transition and
on the rate at which the universe cools past the critical temperature. Whatever
the dynamics, we know that there cannot be causal correlations of the field on
distances greater than the horizon, so that the initial domain size cannot be
greater than dp at the time that the defects form [129]. One’s first thought
might be to take this to be the time when 7" = T, but this is not quite right.
In a second-order transition there will still be thermal fluctuations back to the
symmetric phase until the universe has cooled to the slightly lower Ginzburg
temperature. In a first-order transition the defects will form at the time that the
bubbles coalesce to complete the transition. Because of supercooling, this will be
at a temperature somewhat less than the critical temperature. If we denote the
temperature at which the defects form by T, then in the radiation-dominated
era the causality bound on the initial correlation length is [129]
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7.4 Gravitational and cosmological consequences 139

§<du(Te) ~ —= (7.24)

This upper bound on ¢ implies lower bounds on the initial densities of the various
topological defects. It must be stressed that in many, if not all, cases the actual
value of £ will be much less than the horizon distance, so that these lower bounds
may vastly underestimate the actual initial densities. They will, however, be
sufficient for our purposes.

One might object to applying these arguments in a gauge theory, because they
have been phrased in terms of the group orientation of the scalar field, which
is not a gauge-invariant quantity. This is easily remedied. To give a concrete
example, consider the production of monopoles in a theory where a triplet Higgs
field breaks SU(2) to U(1). Now consider a spherical surface of radius L > ¢&.
According to Eq. (4.41), the topological charge contained within this surface is

Ng = éeijk/dsi ¢ -0;¢ X 0. (7.25)

Using Eq. (5.55), this can be rewritten as a surface integral with a gauge-invariant
integrand,

No= et [ a5, (6 (D;6 x i - ). (7.26)

We can analyze this integral by arguments similar to those we have been using.
At any point on the integration surface either sign for the integrand is equally
likely, and so we would expect the sign to be correlated only over distances of
order £. Hence, the integral should be viewed as a sum over roughly (L/€)?
patches, with signs assigned randomly in each patch. The difference in the num-
bers Ny and N_ of monopoles and antimonopoles should then be of the order
of the square root of the number of patches,

Ny — N_| ~ % (7.27)

Because our previous arguments showed that the total number of monopoles and
antimonopoles was

3
Ny +N_ ~ (?) : (7.28)

we might have expected that [N, — N_| ~ (L/€)3/2. The fact that this quantity
is only linear in L indicates a correlation between the positions of the monopoles
and the antimonopoles.

7.4 Gravitational and cosmological consequences of domain
walls and strings

Both domain walls and cosmic strings would be recognized primarily by their
gravitational effects. We will see that the effects of the walls are disastrous except
at very low mass scales, thus placing very stringent conditions on theories with
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spontaneous breaking of discrete symmetries. Strings, on the other hand, could
quite plausibly be detected.

One would expect a planar domain wall to have large and obvious gravitational
effects. In Newtonian gravity such a wall would give rise to an attractive force that
was independent of distance. However, the general relativistic analysis leads to
rather different results. Let us focus on a planar domain wall that is described by
the extension of a one-dimensional scalar field kink solution to three dimensions.
If the wall is in the z-y plane, we have

(ZS(LL',y,Z) = ¢kink(z)~ (729)

The energy—momentum tensor is

THV = u(b al/(b - gHV‘Ca (730)

so that
Top = —T11 = —Ta2 = %¢/(z)2 + V(#(2)),
Ty = 36/ = V(9(:), (7.31)

where the prime indicates a derivative with respect to z. Integrating across the
thickness of the wall, we find negative pressures (i.e., positive tensions) in the
z- and y-directions with magnitudes equal to the energy density per unit area,
while the net pressure in the z-direction vanishes by virtue of the virial identity
in Eq. (2.20). These negative pressures have a repulsive effect that is twice the
attractive effect of the energy density, so that an observer at the wall sees test
particles moving away from the wall with constant acceleration. However, the
spacetime away from the wall is actually flat [assuming that V(¢) vanishes at
its minimal, very much like a higher-dimensional analogue of Rindler spacetime.
In fact, one can find coordinates in which the metric on one side of the wall is
that of a portion of Minkowski spacetime surrounded by a spherical wall that
collapses to a minimum size and then expands, always with a constant outward
acceleration [130-132].

More relevant for cosmology is the effect, not of a single wall, but of the network
of domain walls produced via the Kibble mechanism during a phase transition
where a discrete symmetry is broken. This network will evolve as the universe
cools. The general tendency will be for walls to become more planar and for closed
walls that enclose finite domains to contract until the domain has disappeared.
The average size of the domains that remain will increase with time.

Even without a detailed study of the dynamics of this evolution, we can obtain
a useful constraint just from causality. The same arguments that tell us that the
correlation length just after the phase transition must be less than the horizon
length at that time imply that the characteristic domain size at any later time
cannot be greater than the horizon length at that time. It follows that at any
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time ¢ the total domain wall area per unit volume must be at least of the order
of 1/dy(t). The energy density from domain walls is therefore

>_7
Pwall < dH(ty (732)
where o is the wall mass density per unit area; from our analysis of the kink
solutions we know that o ~ m3/\, where m and A are the mass and coupling
constant associated with the fields underlying the domain wall.

In both the radiation- and matter-dominated regimes the horizon distance is
proportional to ¢, implying that the wall energy density falls more slowly than
those of radiation and matter, and could potentially come to dominate them.
However, the subsequent evolution of a wall-dominated universe is sufficiently
different as to be clearly in conflict with cosmological observations. Exclud-
ing this possibility places an upper limit on o [133]. For example, requiring
that horizon-crossing walls not dominate the energy density today implies that
[48, 134]

o < (100 MeV)3, (7.33)

A stronger bound, o < (1 MeV)?, is obtained by considering the effects of walls
on the anisotropy of the cosmic microwave background [48, 133].

Hence, any domain walls surviving to the present must be associated with very
low-energy physics that has so far escaped discovery. Domain walls with a higher
energy scale could have existed in the past, but only if they later ceased to be
stable. This instability could result from a later phase transition that changed
the vacuum structure of the theory, or it could happen if the discrete symmetry
whose breaking led to the domain wall was only approximate. In the latter case
domain walls would persist while the energy difference between the vacua on
either side was negligible compared to the cosmic temperature, but at sufficiently
low temperature the pressure from the lower-energy true vacuum would cause
the regions of higher-energy vacuum to shrink and the walls to disappear.

More detailed discussions of the evolution of networks of cosmic domain walls
and of their observational consequences can be found in [48, 134].

The situation with strings is rather different. By analogy with the argument
for domain walls, a minimum expectation is that there should be at least one
string crossing the visible universe. For strings arising in gauge theories, where
the energy density is concentrated in a narrow core, the gravitational effects are
hardly as dramatic as that of a domain wall. For a straight solitonic string only
one component of the tension is nonzero, with the same magnitude as the energy
density, so a nearby test particle feels neither attraction or repulsion. There is,
however, a conical singularity at the string. This has a lensing effect, so that one
signal of such a string would be double images of galaxies located behind it.

A major focus has been on the study of the network of strings that would
emerge from a suitable phase transition. It was suggested that with an appropri-
ate choice of the symmetry-breaking scale these could have served as the seeds
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for the density inhomogeneities that grew and evolved to the structure that we
see in the universe today. As a result, considerable efforts, both analytic and
numerical, have been devoted to the study of the problem. However, it has now
become clear that while strings can lead to inhomogeneities of roughly the right
magnitude, they cannot reproduce the detailed features of the cosmic microwave
background spectrum. These are instead much better fit by inhomogeneities aris-
ing from slow-roll inflation, although the possibility of a small contribution from
strings is not ruled out. These considerations place an upper bound on the energy
per unit length p of the string. Some recent studies [135, 136] quote bounds of
roughly

Gp<T7x1077, (7.34)

corresponding to a symmetry-breaking scale no higher than 10'® GeV or so.
Bounds of a roughly similar range are obtained by considerations of the effects
of the gravitational radiation from the strings.

A comprehensive discussion of cosmic strings is given in [48]. Some more recent
reviews are [137, 138].

7.5 Evolution of the primordial monopole abundance

Magnetic monopoles are produced by the Kibble mechanism with an initial den-
sity given by Eq. (7.23). Assuming weak gauge coupling, the monopole mass is
greater than the critical temperature of the transition where they are formed.
They are therefore nonrelativistic, and their initial abundance is considerably
greater than what it would be in thermal equilibrium. Monopoles disappear
through monopole-antimonopole annihilation although, as we will see, the dilu-
tion of the monopole density by the cosmic expansion eventually brings an end
to this annihilation.

Monopole-antimonopole annihilation in the early universe was studied by Zel-
dovich and Khlopov [139] and, with a particular emphasis on GUT monopoles,
by Preskill [140]. It is perhaps best viewed as a two-step process in which the
monopole and antimonopole are first captured into a Coulomb bound state, and
then subsequently move down to lower bound states and eventually annihilate.
It is the capture process that limits the annihilation rate. This is a purely elec-
tromagnetic process, and so does not depend on the details of the monopole’s
non-Abelian core.

The essential requirement for capture is that the initially free monopole and
antimonopole, each with mass m and with magnetic charges +Q,;, lose enough
of their initial kinetic energies that they can form a bound state. At high tem-
peratures they are moving in a plasma of relativistic charged particles. They
undergo Brownian motion with a mean free path

1 m
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where C' ~ (1 —5)N,. if the number of charged degrees of freedom is in the range
1 <N, < 100. As long as this is less than the capture radius,

L@
A7 T’

where the negative Coulomb potential energy of the pair becomes comparable to
their thermal kinetic energy, the drag forces exerted by the plasma can dissipate

Tec

(7.36)

enough energy for the pair to be captured. However, once the universe has cooled
below the temperature Ty ~ (4m)%*m/(C?Q3;) where £ = r., capture is only
possible if an initially unbound monopole—antimonopole pair loses enough energy
through bremsstrahlung to become bound.

In either temperature regime the time derivative of the monopole density n;
can be written as

fing = —Dn2, — 3% o, (7.37)

where D represents the effects of the annihilation processes and the last term is
the effect of the cosmic expansion.

In the high-temperature regime the Coulomb attraction felt by a monopole
at a distance r from an antimonopole is opposed by the drag forces from the
plasma, with the net effect being a drift velocity

Qy 1
e~ M 7.38
bt e OT22 (7.38)
toward the antimonopole. If the typical monopole separation is d ~ n&l/ 3, the
capture time is
d 47 CT?
T~ ~ (7.39)
UDrift QM ny
and )
1 1
D~ ~ Qu (7.40)

™ A CT?
In the low-temperature regime, with an initial monopole thermal velocity ~
\/T/m, the cross-section for radiative capture via bremsstrahlung emission is

2 3/5
Q3 T
Orad ™~ (47;;1—, E 5 (741)
giving
2 \?2 9/10
m
D ~ 00,0 ~ <47rf;fl> (?) . (7.42)

With the above two expressions for D, we can now solve Eq. (7.37) to obtain
the evolution of the monopole density. However, it is better to separate the effects
of annihilation and expansion by working instead with the monopole-to-entropy
ratio

p= M (7.43)
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If the expansion is adiabatic, Eq. (7.8) implies that
7= —DSr?% (7.44)

It is convenient to express r as a function of temperature rather than time. In
a radiation-dominated regime with the number of massless degrees of freedom
constant, so that T/T = —a/a,

dr 1 A\ V2
— =—_DSrt= (" DMp; r2. A
7T 7 Sr ( 15 ) PIT (7.45)
Integrating this gives
1 YR
T) — il 7.46
T( ) |:Tinit * T*(T)} 7 ( )

where 7t is the initial monopole to entropy ratio and

1/2 T.
(%) Mp1/ dT' D(T")

T

r(T) = (7.47)

When the high- and low-temperature expressions for D(T') are substituted
into Eq. (7.47), the integration divides into two regimes, both dominated by the
region near T;. Thus at temperatures below T

—1
45\ /2 02\ 02\ %/° m

== C =M 100-1/5 ( =M —_ 7.48
: (WN) ( 4 ) - 4 Mp1 ( )

For C ~ 102, N~ 102, and Qy = 27 /e, and with

m
=— 7.49
T = 1017 GeV (7.49)
this gives
e = 1070 myq. (7.50)
Under the same assumptions Eqgs. (7.23) and (7.24) give a lower bound
1 7.\’

Tinit < = =13 — | - .51
PSR [dn (TP (Mp1> (7:51)

If T, is about an order of magnitude smaller than the monopole mass, this gives
init 2 1077 mi,. (7.52)

From Eq. (7.46), we see that at large times r will be given by the lesser of
Egs. (7.50) and (7.52).
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7.6 Observational bounds and the primordial monopole
problem

Let us now compare the predictions for the monopole-to-entropy ratio from the
previous section to the various observational bounds on the current monopole
density. The simplest of these is obtained by noting that r is related to the
monopole fraction of the critical density, 25/, by

r 1072 m; Q. (7.53)

Even in the rather implausible case that monopoles were to account for all of the
mass usually attributed to dark matter, so that Q,; =~ .25, this exceeds both r,
and 7ini; unless m < 1012 GeV.

Other density bounds follow from the limits on the monopole flux F' in our
galaxy. If the monopoles are uniformly distributed throughout the universe,
nyr = F /v, where v is the typical monopole velocity. If instead they cluster with
the galaxies, the average value of nj); would be up to five orders of magnitude
smaller for a given value of F.

If there were no galactic magnetic field, monopoles in the galaxy would have
typical velocities on the order of 10~ 3¢, which is both the virial velocity in the
galaxy and its peculiar velocity with respect to the rest frame of the cosmic
microwave background. However, our galaxy does have a magnetic field, with a
magnitude of approximately 3 x 106 gauss, that is coherent over distances of the
order of 10%* cm. A monopole with magnetic charge 27 /e would be accelerated
by this field to a velocity

c, m <101 GeV,
Vmag ™ { 10-3m5"%c, m > 101 GeV. (7.54)
Hence, monopoles with masses less than about 10'7 GeV will be accelerated
sufficiently to be ejected from the galaxy, and thus certainly do not cluster with
our galaxy.
The acceleration of these monopoles drains energy from the galactic field.
Requiring that the rate of this loss be small compared to the time scale on which
the field can be regenerated (roughly 108 yrs) gives the Parker bound [141, 142)]

10~ ecm~2sr~tsec !, m < 10M7GeV,

7.55
107 my7; cm™2sr7sec™, m > 10'7GeV. (7.55)

F< FParker = {

The two cases here reflect the fact that while the lighter monopoles are carried
along the magnetic field lines, the heavier ones experience only small deflections
by the field. Applying similar reasoning to an earlier seed field from which the
present galactic field developed gives the somewhat stronger bound [143]

F < [mi7+ (3 x107%)] 107" cm™?sr'sec™ . (7.56)
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Reasoning along these lines can also be applied to the magnetic fields in galactic
clusters, giving a bound which, although less certain, is about two orders of
magnitude tighter than the Parker bound [144].

There are also limits from direct searches for monopoles in cosmic rays. For
monopoles with v > 10~%¢, the MACRO experiment [145] places an upper bound
of about 10716 cm™2sr~'sec~!. Somewhat stronger bounds have been obtained
by other experiments, but these are limited to monopoles with higher velocities.

Even more stringent bounds apply for GUT monopoles that catalyze baryon
number violation via the Callan—Rubakov effect. The essential idea is that such
monopoles would be captured by compact astrophysical objects. They would then
catalyze baryon decay, with the energy released in the decay leading to an increase
in the luminosity of the object. A variety of bounds have been obtained by consid-
ering neutron stars [146-150], white dwarfs [151], and Jovian planets [152]. These
depend on the details of the astrophysical scenario, such as whether monopoles
captured by a progenitor star survive its collapse to a white dwarf or neutron
star, and on the degree to which monopole—antimonopole annihilation reduces
the accumulated density in the object. The bounds obtained in this manner lie
in the range

F (%) < (1071 —107%°) em Zsrtsec ™!, (7.57)

where oap is the cross-section for catalysis of baryon number violation.

For a GUT monopole mass of 107 GeV, with the monopoles not clustering
with the galaxies, we have upper bounds on 7 of 10726 from both the mass density
and Parker bounds, 10727 from direct observation, and perhaps as low as 10736
for monopoles that catalyze baryon number violation. These range from 15 to
25 orders of magnitude below the predictions of Eqgs. (7.50) and (7.52). Even
taking into account the uncertainties in the various estimates involved, there is
a very clear conflict between the cosmological predictions and the observational
bounds. This conflict persists for monopole masses down to about 10'? GeV and
to even lower masses if the monopoles catalyze baryon number violation.

This poses a serious problem for any grand unified theory. All such theories
necessarily predict the existence of superheavy monopoles, and any plausible
unification scale predicts that at least one species of these has a mass well above
102 GeV. [Lighter multiply-charged monopoles, such as the SO(10) example
discussed in Sec. 6.3.2, could have masses this low.] One might therefore decide
to simply abandon all such theories. However, the idea of unification is sufficiently
attractive as to motivate attempts to find a resolution of this primordial monopole
problem that is consistent with grand unification.

The most attractive solution to this problem is based on the inflationary uni-
verse scenario, in which the universe undergoes a period of exponential expansion
followed by a reheating process in which vacuum energy is converted to parti-
cles with a thermal distribution. (Indeed, it was consideration of the primordial
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monopole problem that led Guth to the idea of inflation [120].) If the inflation
takes place after monopoles have been produced, any pre-existing monopoles will
be diluted by an exponential factor. As long as the reheating after inflation does
not raise the temperature of the universe above the critical temperature of the
GUT phase transition, the present-day value of r will be unobservably small.
Although inflation is the most widely accepted solution, there is an alternative
proposal that is of interest, if only for illustrative purposes, that was put forth
by Langacker and Pi [153]. Consider, for example, a scenario with the following

series of phase transitions:®

SU(5) — SU(3) x SU(2) x U(1) — SU(3) — SU(3) x U(1). (7.58)

Monopoles are formed at the first transition, when an SU(5) adjoint field ¢ gets
a nonzero vacuum expectation value, because m2[SU(5)/SU(3) x SU(2) x U(1)]
is nontrivial. At the next transition, the breaking of the U(1) symmetry leads
to the formation of strings. The monopoles cannot survive as free objects after
this transition, because m2[SU(5)/SU(3)] = 0. Instead, they become bound to
strings that have a monopole and an antimonopole at opposite ends. Because
the energy of a string is proportional to its length, the monopole-antimonopole
pair are drawn to each other by a constant force, leading to a rapid and efficient
annihilation.

Free monopoles can exist again once the U(1) symmetry is restored. One might
therefore expect that the horizon bound together with the Kibble argument
would produce monopoles with a minimum density of roughly one per hori-
zon volume. (Since the critical temperature for this transition must be of the
order of the electroweak scale, this would not conflict with observation.) This
reasoning is incorrect. When the fields settle down after the first transition,
the only constraint on ¢(x) is that it be continuous. This allows the config-
uration of ¢ on a sphere with radius > £ to correspond to any element of
m2[SU(5)/SU(3) x SU(2) x U(1)]. After the second transition, when an addi-
tional field ¥ also becomes nonzero, the requirement is that both ¢ and v
be continuous. If there are constraints on the relative orientation of ¢ and 1,
these may eliminate the ¢ configurations corresponding to nontrivial elements
of m[SU(5)/SU(3) x SU(2) x U(1)], so that monopoles do not reappear when
becomes zero again.

5 The final transition may seem a bit odd, since the low-temperature phase has higher
symmetry than the high-temperature one. This is possible in a theory with several scalar
fields. Recall that the effect of finite temperature is to add an effective scalar field mass
oT?2. For the example considered in Sec. 7.2, ¢ was given in Eq. (7.20). In order that V (¢)
be bounded from below, A, and hence the right-hand side of Eq. (7.20), must be positive. In
the more general case, with arbitrary numbers of scalar, spinor, and gauge fields, the
contributions to o from the gauge and Yukawa couplings remain positive. However, it is
possible to have scalar quartic couplings of both signs that give a net negative contribution
to o while still keeping V' (¢) bounded from below. With a negative o, this unconventional
ordering of symmetries is possible.
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To put this more formally [154], let us suppose that we have a theory with two
fields such that (¢) by itself breaks G to H, while the combined effect of (¢) and
(1) is to break G to a subgroup H C H. Every configuration of ¢ corresponds
to an element of mo(G/H), which is assumed to be nontrivial. Every combined
configuration of ¢ and 1 corresponds to an element of WQ(G/H ). Considering
only the ¢ in such a combined configuration gives an element of mo(G/H), thus
giving a map from mo(G/H) into o (G/H). However, this map need not be onto,
and it could even be the case that all elements m5(G/H) map to the identity
element of mo(G/H).

If we start with a symmetric phase with (¢) = (¢)) = 0 and then go directly
to one with (¢) # 0, () = 0, and unbroken symmetry H, then configurations
corresponding to all elements of mo(G/H) can be created. On the other hand, if
the breaking is from G to H to H, then in the final state only those elements
of m(G/H) that lie in the image of mo(G/H) can arise; if this image is just
the identity element of mo(G/H), then no monopoles are created by the Kibble
mechanism.
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