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Floating particles deform the liquid—gas interface, which may lead to capillary repulsion or
attraction and aggregation of nearby particles (e.g. the Cheerios effect). Previous studies
employed the superposition of capillary multipoles to model interfacial deformation for
circular or ellipsoidal particles. However, the induced interfacial deformation depends
on the shape of the particle and becomes more complex as the geometric complexity
of the particle increases. This study presents a generalised solution for the liquid—gas
interface near complex anisotropic particles using the domain perturbations approach.
This method enables a closed-form solution for interfacial deformation near particles
with an anisotropic shape, as well as the varying height of the pinned liquid—gas contact
line. We verified the model via experiments performed with fixed particles held at the
water level with shapes such as a circle, hexagon and square, which have either flat or
sinusoidal pinned contact lines. Although in this study we concentrate on the equilibrium
configuration of the liquid—gas interface in the vicinity of particles placed at fixed
positions, our methodology paves the way to explore the interactions among multiple
floating anisotropic particles and, thus, the role of particle geometry in self-assembly
processes of floating particles.

Key words: interfacial flows (free surface), contact lines

1. Introduction

The study of floating objects has garnered attention since the middle of the 20th century
due to various practical applications. These include the use of colloidal particles to
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stabilise emulsions (Binks & Horozov 2006; Tavacoli et al. 2012), the ability of insects and
spiders to move on water surfaces (Gao & Jiang 2004; Bush & Hu 2006) and capillary-
driven self-assembly involving particles floating at a liquid—air interface (Whitesides &
Boncheva 2002; Whitesides & Grzybowski 2002; Delens, Collard & Vandewalle 2023).
Liquid—air interface deflections by partially wet ellipsoids are known to cause chaining
(Loudet et al. 2005, 2006; van Nierop, Stijnman & Hilgenfeldt 2005; Lewandowski
et al. 2008) and result in aggregates of particles with complex shapes and selectively
functionalised faces, which can be used to create tuneable devices like lenses with
adjustable focal lengths (Bucaro et al. 2009).

Self-assembly processes of objects that float on the surface of a liquid are driven by local
liquid interface deformation around the objects, which depends on their shape, buoyancy
and wetting properties (Kralchevsky & Nagayama 1994; Danov & Kralchevsky 2010;
Gat & Gharib 2013; Poty, Lumay & Vandewalle 2014). Based on the calculations of the
surface height in the neighbourhood of a single bubble at rest on a horizontal surface of a
fluid, Nicolson (1949) examined the implications of the fluid—fluid interface distortions for
bubble-bubble interactions in particle rafts. Chan, Henry & White (1981), Kralchevsky &
Denkov (2001) and Vella & Mahadevan (2005) found that the resulting shape of the liquid
surface elevation, which was previously studied by Nicolson (Nicolson 1949), causes the
attraction/repulsion between bubbles.

Interaction between two floating particles occurs when the distance between them is
of the order of the capillary length. For similar particles with similar capillary lengths,
this means that the regions of interface deformation caused by each particle overlap,
lead to mutual interaction (Loudet, Yodh & Pouligny 2006). Particles with similar
wetting properties and shapes tend to attract one another and form floating aggregates
(Kralchevsky & Nagayama 2000). Lucassen (1992) showed theoretically that interparticle
interaction will take place as soon as the regions with deformed surfaces around two
adjoining particles begin to overlap, where this interaction was calculated for particles
with wetting perimeters of a sinusoidal shape. Yao et al. (2013) studied particles at
interfaces with contact-line undulations having a wavelength significantly smaller than
the characteristic particle size. By using theory and experiment, they showed that identical
microparticles with features in phase attract each other, and microparticles with different
wavelengths, under certain conditions, repel each other in the near field, leading to
a measurable equilibrium separation. Equilibrium and mutual attraction or repulsion
of objects supported by surface tension were also studied by Mansfield, Sepangi &
Eastwood (1997). These phenomena are commonly called the Cheerios effect and were
highlighted by Vella & Mahadevan (2005) as well, who discussed some examples of
particles’ attraction and repulsion taking into account their weight and buoyancy. Capillary
interactions between particles trapped at the interface have been widely studied, both
experimentally and theoretically. Botto et al. (2012) provides a comprehensive discussion
of the physical mechanisms governing interface deformations around anisotropic particles
and their resulting pairwise interactions. More recently, Forth et al. (2019) expanded
this by highlighting how such interactions can be harnessed to design dynamic and
reconfigurable assemblies at complex liquid interfaces, connecting fundamental physics
to functional material architectures. These studies emphasise the central role of interface
shape in determining particle interactions and configurations.

Singh & Joseph (2005) proposed a direct numerical simulation method to describe
the nonlinear mechanism of capillary attraction between floating particles. Based on
level sets, their numerical scheme allowed them to simulate the evolution of single
spheres and disks to their equilibrium depth and the evolution to clusters of two and
four spheres and two disks under capillary attraction. The interaction between adjacent
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floating particles may also be explained by using an analogy between capillary and
electrostatic forces. Attachment of particles is introduced by ‘capillary charges’ referred
as poles (Kralchevsky & Nagayama 2000; Kralchevsky & Denkov 2001; Danov et al.
2005; Danov & Kralchevsky 2010), which characterise the magnitude of the interfacial
deformation and could be both positive and negative. For multipoles, the sign and
magnitude of the capillary force depend on the interplay between the curvature signs of the
interfacial deformations in the vicinity of the interacting particles. Capillary multipoles
have been experimentally investigated by Bowden et al. (1997, 1999) and Wolfe et al.
(2003), who observed that particles located along an interfacial surface meniscus with the
same sign attract one another, while those along a meniscus with opposite signs repel one
another. The strength and directionality of the interactions can be tailored by manipulating
the heights of the faces, the pattern of the hydrophobic/hydrophilic faces and the densities
of the three interacting phases. In a recent study, Eatson et al. (2024) explored the impact
of particle shape on both short-range and long-range interactions by using colloidal
building blocks composed of polygonal plates with uniform surface chemistry and
wavy edges. Utilising minimum energy calculations alongside Monte Carlo simulations,
which defined the interaction potential through multipoles, they showcased how colloidal
building blocks could be customised to form diverse two-dimensional structures, such as
hexagonal, honeycomb, open Kagome and quasicrystalline lattices. In addition, Soligno,
Dijkstra & van Roij (2016) numerically investigated, by energy minimisation, the capillary
deformations induced by adsorbed cubes at fluid—fluid interfaces for various Young’s
contact angles. In particular, they showed that strongly directional capillary interactions
drive the cubes to self-assemble into hexagonal or graphene-like honeycomb lattices.

The notion of poles was also used in the theoretical studies of Kralchevsky & Denkov
(2001), Danov et al. (2005) and Danov & Kralchevsky (2010), who theoretically predicted
the meniscus shape around the particle under the assumption that it can be expanded into
Fourier series. By integrating the linearised Young—Laplace equation along the midplane
between the two particles and by using superposition, they derived a general integral
expression for the capillary force and interaction energy between capillary multipoles of
arbitrary orders.

A number of studies focused on the case of semi-submerged cylinders resting at
the liquid interface. Janssens, Chaurasia & Fried (2017) introduced a study utilising
the Young-Laplace equation to explore the configuration of the liquid—gas interface
surrounding a floating particle. They examined the forces and torques on a partially
submerged circular cylinder, considering surface tension disparities. Zhang, Zhou & Zhu
(2018) evaluated how surface tension influences both the vertical and rotational stability of
floating cylinders with differing cross-sectional shapes by altering the surface’s curvature
radius. Their research concluded that a diminished radius of curvature enhances rotational
stability. Tan, Zhang & Zhou (2022) applied bifurcation theory to analyse the stability of
multiple menisci formed in small concave arcs of cylinders. Additionally, Zhang & Zhou
(2023) combined the Young—Laplace equation and bifurcation theory to study the stability
of a floating cylinder situated between two parallel vertical plates and partly immersed in
a liquid bath. Zhang et al. (2023) developed a novel methodology to forecast the stability
of floating objects of any shape, anchored on the contact angle and geometrical features at
the contact point, including object concavity and convexity.

The motivation for this study is to provide a solution to the Young—Laplace equation
with varying boundary height for non-circular boundaries, assuming pinned conditions
at the boundary, and to evaluate the correlation between this theoretical solution
and experimental data. Although domain perturbation is a well-established asymptotic
technique for solving differential equations in general domains, it has not previously

1021 A22-3


https://doi.org/10.1017/jfm.2025.10727

https://doi.org/10.1017/jfm.2025.10727 Published online by Cambridge University Press

A. Reizman Einhorn, J.T. Jose, A. Zigelman, A.D. Gat and O. Ram
(a) ()

Figure 1. (a) A 3D printed particle held at the liquid—gas interface, where the outer particle’s height is
prescribed by 0.5sin(80) mm. (b) A sketch of the rotated particle and (c) a side view of a particle which
is held fixed on a liquid, where the height of its boundary is prescribed by f(6).

been applied to the particle-liquid configurations examined here. To the best of our
knowledge, all previous works have utilised multipoles as a solution method. Furthermore,
while the assumption of pinned conditions at particle edges simplifies the theoretical
analysis, experimental validation of this boundary condition remains uncertain. The
complexity is further amplified for non-circular geometries, where significant deviations
from circularity could render first-order solutions inadequate. This study demonstrates
that, for weakly non-circular geometries, the domain perturbation technique is effectively
applicable and yields good agreement with experimental results, confirming its efficacy as
a versatile theoretical tool. However, for geometries with larger deviations from circularity,
higher-order terms become necessary to accurately capture the observed behaviours.

The insights gained from these findings are vital to advancing our understanding of the
collective behaviour and aggregation dynamics of multiple anisotropic floating particles
and can be used to explain how different particle shapes affect their aggregation processes.
In §2, we present our solution, which employs the domain perturbation methodology,
as well as the leading- and first-order solutions for the liquid—gas interface for a general
particle shape. Then, in § 3, we discuss our experimental procedure and our methodology
for analysing the data. Section 4, provides a comparison between the experimentally
obtained liquid—gas interface and the analytical results for a set of anisotropic particle
shapes. We conclude our findings in § 5. Appendix A provides additional details of the
derivation of the leading- and first-order solutions for the second-order partial differential
equation describing the interface shape. In Appendix B we express the solution in the
dimensional form. Appendix C contains expressions for the deviations of equilateral
polygons from circular arcs of the auxiliary circle in several specific cases. Finally,
Appendix D discusses the error estimation in contact inclination angle at the particle
boundary due to the liquid height uncertainty and Appendix E provides the formula for the
second-order term in the asymptotic expansion of the height of the liquid-gas interface.

2. Analysis

We examine the steady-state interfacial deformations induced by anisotropic particles held
at the liquid—gas interface. By applying domain perturbations, we formulate a general
solution for the height of the liquid—gas interface that is pinned to the circumference of
anisotropic particles. The assumption of pinned boundary conditions was explicitly used
in several studies concentrating on particles with pinned contact lines, e.g. Yao et al.
(2013, 2015) and Prakash, Perrin & Botto (2024). While the assumption of the pinned
boundary condition is reasonable, it is typically taken as granted. As described below,
our study shows that pinned boundary conditions provide good agreement with
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experimental measurements even for non-circular particles with sinusoidal boundary
conditions.

Consider a particle on top of a liquid where the particle consists of a hollow cylinder
attached to a thin surrounding surface, as seen in figure 1(a). A cylindrical coordinate
system (r, 8, z), as depicted in figure 1(b) is adopted, where the origin (r, 8) = (0, 0) is
located at the particle’s centre and where z = 0 is the liquid height sufficiently far from the
particle, as shown in figure 1(c). We denote the outer radius of the circular particle by 7,. In
the case of non-circular particles, 7, represents the radius of the auxiliary circle inscribed
in the particle’s boundary circumference. Additionally, d,(6) > 0 denotes the deviation
of the outer circumference of the boundary from the circular arc of the inscribed circle
with radius r,. We also assume that the thickness of the surface along the circumference
boundary is very small relative to the thickness of the particle. Thus, we can use the pinned
boundary conditions along the rim of the particle. Accordingly, the rim of the models that
we fabricated for the experiments was kept as thin as possible (see § 3).

We denote the height of the liquid—gas interface above z = 0 outside of the particle as
h(r, 6). Here, we shall find an asymptotic approximation for 4(r, 8) in the domain (7, ) €
(ro + d,(09), 00) x [0, 2m), while accounting for various particle rim boundary shapes.
For 6 € [0, 27r) the outer boundary of the particle is determined by the functions d, (8) and
f(6), where f(0) denotes the particle’s height at the contact with the liquid—gas interface.
Both these functions determine the shape of the interface and will serve in defining the
boundary conditions for our problem.

The interface geometry is described by the Young—Laplace equation (Landau & Lifshitz
1987), Ap =2y, where k denotes the mean curvature of the surface, Ap = p, — p(h),
y is the surface tension of the liquid, p, is the atmospheric pressure and p (k) denotes
the pressure acting on the liquid—gas interface p(h(r, 6)) = p, — pgh(r, ), with p and
g denoting the fluid density and gravitational constants, respectively. For a surface
(r, 8, h(r, 0)) it is well known (see e.g. Kralchevsky & Nagayama 1994; Rotman 2009)
that the mean curvature is given by x =0.5V - [VA/y/1 + (Vh)?2]. Under the assumption
that i (r, 0) is sufficiently small (|i(r, 8)| < 1) and with bounded derivatives, the Young—
Laplace equation can be linearised yielding that y Ah = Ap, which may be expressed in
polar coordinates as

18%h  10h  0%h

Y2902 T rar T a2

Using the aforementioned definitions we can write the boundary conditions for our
problem as

) = pgh(r, 9). 2.1)

hlr=r,+a,0) = f(©0), (2.2)

where, for simplicity, we assume that f(0) is a 2 periodic function and is sufficiently
regular so it is possible to expand it into Fourier series in 6 € (0, 27), namely
fO)=wo/2+ Zzozl (gy sin (n0) + wy, cos (nd)), where g, and w, denote the Fourier
coefficients.
First, we render the problem dimensionless, by defining the following transformations:
=" R=T p=% 0, =" w="" a-o01... @3
he Ty ety he he
where we assume that the maximal deviation of the circumference of the outer
particle’s boundary relative to the inscribed circle is sufficiently small, namely ¢ :=
maxge[o,27) (|d-(0)]/1,) satisfies 0 < & < 1. Note that . # 0 denotes the characteristic
liquid—gas interface height, whose value is unimportant, since both the equation and the
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boundary conditions are linear and thus /4. cancels out. Moreover, note that the definition
of r, as the radius of the inscribed circle implies that we solve the dimensionless problem
in the domain R > 1. As we shall show in the continuation of this section, our solution
involves infinite series which contain Bessel functions, and thus the requirement that R > 1
is necessary to ensure convergence of the corresponding series.

Substituting the transformations in (2.3) into (2.1)—(2.2), we get that the dimensionless
version of the problem is given by

iH +R oH + R_aZH B,R’H =0 (2.4q)
i — =0, Ada
362 dR IR ?
Wo >
H|poivep,0) == T D (W cos (n8) + Qy sin (n6)), (2.4b)
n=1
H|, =0, (2.4¢)

where B, = groz(,oL — pg)/y is the Bond number, which reflects the ratio of the
gravitational force to the surface tension force. The Bond number typically appears in
the analysis of interfacial phenomena such as of bubbles and drops (de Gennes, Brochard-
Wyart & Quere 2003). Here, p;, denotes the liquid density and pg denotes the gas density,
where the underlying assumption is that pg < pr, thus we define pr — pg = p.

Note that the application of the boundary conditions at the particle’s boundary given
in (2.4b) to obtain a closed-form analytic solution is not straightforward in a general
case since the shape of particle’s boundary may be rather complicated. To overcome
this problem, we use the domain perturbations method (Leal 2007) which provides an
approximate mean to solve this problem under the assumption that 0 < ¢ < 1, allowing us
to replace the exact boundary condition with an approximate boundary condition that is
asymptotically equivalent for 0 < ¢ < 1, but applied at the boundary R = 1.

Note that by the definition of ¢ it follows that |D,(6)| < 1. Hence, we may expand
H|r=1+¢D, 0) into a Taylor series in ¢ around & = 0, as follows:

oH
H|g ivep, oy =Hlgoi +eDr@ |  + 0. 2.5)
’ IR |g=y
Moreover, expanding H in regular asymptotic series in &, namely
H(R,0)=Hy(R,0) +eH|(R,0)+ O(e), (2.6)

and using these expansions in (2.4), we get that the leading-order problem with respect to
& is given by

9*Hy =~ 0Hy = 9%Hp
R? R — B,R*Hy =0, 2.7
JR2 + 3R + 962 0 0 ( a)
Wo i
Holg_y = = + D (Wa cos (n0) + Qy sin (n6)), (2.7b)
n=1
Hol, .. =0. (2.7¢)

Using separation of variables, we obtain that the general solution to the problem in (2.7)
is given by

Ho(R, 6) = + 3" Kn(v/BoR) [Ay cos (nf) + B, sin (nf)],  (2.8)

n=1

Ko(v/BoR)Ag >
2
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where K,,,n =0, 1, 2, .. ., denotes the modified Bessel function of the second kind (Olver
et al. 2010) and A,, B, are constants which are determined by using the boundary
conditions in (2.7b), namely

W,
Ay=—> and B =L. (2.9)

K.(VE) 'K (VB

Next, similarly to the discussion above, we get at the first, O(¢), order the following
problem:

,3°H,  3H, 3*H,

R — B,R*H, =0,
IR2 oR T pez Do
9 H,
|, =D, (9)_0 , (2.10)
- R=1
1|R~>OO=0'

Using again the separation of variables and the solution for Hy given in (2.8), we obtain
that the first-order solution is given by

«/ oR) Ay &
Ko(VEB.R) Ao + 3 Ku(vBoR)[Ay cos (n) + By sin (nd)], (2.1

n=1

Hi(R,0)=

where the constants A, and B,, which are determined by using the boundary conditions
in (2.10), are given by

_ ‘B 2w
An:—O/ G(0)cos (n6)dd, n=0,1,2,...,
21Ky (v/Bo) Jo

(2.12)
. VB, /2” .
By=——— GO 0)do, =1,2,...,
n ann(m) A (6) sin (n6) n
where for brevity we use the following notation:
K_1(v/B Ki(vBo)) A
G@©) =D, ®) {( 1(vBo) +2 1(VBy)) Ao
(2.13)
+ Z —|— Kni1 (\/B>0))[Am cos (m@) + By, sin (m6)] }

Thus, we obtalned an approximate solution for the liquid—gas interface height outside
of a particle held at the liquid—gas interface with a non-circular shape and anisotropic
height at the pinned contact line. The dimensionless solution is provided by H(R, 6) =
Hy(R, 8) + ¢H{ (R, 0), where the leading- and first-order terms Hy(R, 6) and H{(R, 0)
are given in (2.8)—(2.9) and (2.11)-(2.13), respectively. Note that, by our construction, the
solution is valid for R > 1, which follows from defining 7, as the radius of the inscribed
circle. The reason for this choice is the convergence issues. It is known (Olver et al. (2010),
see formula 10.30.2) that K,,(R) — I"(v)/(2(R/2)") when v # 0, R — 0. Therefore, the
sum Y o2, Ky (v/BoR) /K, (v/B,) is not convergent for |R| < 1. On the other hand (Olver
et al. 2010, see formula 10.25.3), K, (R) ~ (n/ZR)l/ze_R for R — o0 and fixed v, so
that Y >, Kv(v/B,R)/K,(x/B,) converges for |R| > 1. Thus, defining r, as the radius of
the inscribed circle, we obtain that the dimensionless radius satisfies R > 1, so that our
solution is indeed convergent.

The dimensional form of the solution is given in Appendix B.
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Figure 2. (a) The experimental set-up. The particles are held at the water—air interface, where the water is
painted with a low concentration of Rhodamine 6G. A Nd:Yag 532 nm laser is used to excite the Rhodamine 6G,
causing it to fluoresce at a wavelength of 550 nm. An optical set-up is used to form a thin laser sheet (~0.1 mm)
that illuminates a cross-section of the water’s interface across the particle. The images were acquired by a
camera with a band-pass filter attached to its lens, with a cutoff wavelength of 550 nm. (b) A raw scan of
the free surface without any model present. The figure also indicates the regions captured by each camera:
red indicates the area recorded by camera 1, and blue corresponds to camera 2. The standard deviation of the
free-surface measurements is 0.02 mm, although this variation is too small to be discernible in the figure.
(c) A raw scan result obtained for a flat hexagon, which is placed 0.5 mm higher than the air—liquid interface.
The displacement is magnified by a factor of 10 for visual representation. These results are obtained by a camera
which is placed at an angle of 30° in relation to the central plane, marked in grey, and at an angle of 10° to the
horizon. The far side of the model was captured by the second camera.

3. Experiments

Measuring relatively large surface deformations on a transparent fluid surface poses
unique experimental challenges. While interferometric techniques offer high accuracy
for very small surface deformations, they are generally unsuitable for large-amplitude
measurements. This limitation arises because interferometry relies on precise optical
phase differences, and large height variations typically exceed the coherence length
of conventional interferometric set-ups, leading to ambiguity and loss of measurable
interference fringes (Hinsch 1978). Alternative techniques such as structured-light
profilometry or standard optical three-dimensional scanning methods depend on a
diffusely reflecting, opaque surface to reconstruct three-dimensional profiles accurately.
Consequently, their application is severely limited by the transparent and reflective nature
of water surfaces, resulting in unreliable or non-existent signal detection (Zhang 2018).
Due to these constraints, the present study utilised a fluorescence-based laser sheet
scanning approach combined with stereo imaging, enabling accurate measurement of
significant liquid surface elevations around particles held at the liquid—gas interface
without the aforementioned limitations.

A schematic representation of the experimental set-up is shown in figure 2(a). The set-
up was developed to quantitatively measure the liquid surface elevation around particles
placed at the free water surface, using a laser sheet scanning method combined with stereo
imaging from two high-resolution cameras (LaVision CX-25). The measured surface
elevations were subsequently compared with the theoretical asymptotic solution. Particles
used in the experiment were fabricated using a Formlabs Form 3 stereolithography (SLA)
3D printer utilising Formlabs’ Tough 1500 UV-cured resin. Each particle featured a
thick, stable base and a thin peripheral rim, specifically designed to minimise geometric
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distortions caused by resin shrinkage during printing and the curing processes. After
complete UV curing, the particles underwent visual inspection and manual dimensional
verification to confirm conformity with the intended design. Although precise deviations
were not systematically quantified, no significant discrepancies were detected. Given
Formlabs’ documented high-resolution capabilities and extensive prior experience with
the Form 3 printer, we considered the fabricated geometries sufficiently accurate for the
purposes of this study. Each particle was carefully placed onto the free water surface using
a rigid supporting base rod to eliminate any motion during measurements, thus ensuring
the best possible reconstruction quality. The tank was filled with purified water doped with
a dilute concentration of Rhodamine 6G fluorescent dye. Although the water level was
adjusted carefully, experimental constraints limited precise control to within +0.05 mm
of the desired water height. The analytical solution assumes that the far-field liquid
level is zero. Hence, considering this uncertainty will introduce an effective deviation
to the relative height of the model edge, where the fluid is pinned. The uncertainty in
the water level will effectively introduce a change to inclination angle of the meniscus
close to the contact line. Appendix D presents a derivation of the inclination angle and
examines the effects of the water level uncertainty in the experiments. It shows that
the maximum uncertainty of £0.05 mm in the measurement of the liquid—gas interface
at far field results in the error of the order of &1 % in the inclination angle of the
meniscus. Because the solution is decaying to the flat surface boundary, the maximal error
in the solution is bounded by the measurement uncertainty applied to the boundary. In
addition, analysis of the measurement presented in figure 2(b) shows that overall shape
of the measured surface is correct, i.e. flat in this case. Consequently, it is reasonable to
assume that the main findings and comparisons are mostly unaffected by this relatively
small experimental limitation. A Nd:YAG laser (Quantel Evergreen-200), emitting at a
wavelength of 532 nm, was utilised to excite the Rhodamine dye, resulting in fluorescent
emission at approximately 550 nm. The laser beam was transformed into a thin laser sheet
(~0.1 mm thickness) using a cylindrical lens, illuminating a vertical cross-section of the
water’s surface around the particle. Fluorescent emissions were recorded using two high-
resolution LaVision CX-25 cameras, each equipped with a 100 mm macro lens achieving
a magnification of 54.3 (pixels mm™!). To enhance image quality and signal-to-noise
ratio, each camera lens was fitted with a 550 nm long-pass optical filter (Edmund Optics
#84-757), effectively eliminating scattered laser light and isolating the dye fluorescence.
Cameras were symmetrically positioned £30° horizontally from the particle’s central
axis and inclined at approximately 10° above the horizontal plane. This dual-camera
configuration significantly reduced shadowing artefacts caused by elevated portions of the
particle rim, thereby ensuring clear visualisation of the illuminated intersection line on the
water’s surface. The laser sheet and both cameras were mounted on a precision motorised
translation stage, enabling incremental spatial scanning in steps of 0.1 mm across the
particle with a positional accuracy of approximately 0.001 mm. To maintain sharp imaging
throughout the scan, each camera employed a Scheimpflug adapter to compensate effec-
tively for focal-depth variations occurring during stage translation. As the cameras were
placed on one side of the tank, only the front-facing half of the particle was captured. The
recorded images were analysed using an in-house image processing algorithm designed to
extract surface elevation profiles from each cross-sectional image. These profiles were then
compiled to reconstruct a detailed three-dimensional representation of the water surface
surrounding the particle. To validate the reconstruction accuracy, we performed repeated
scans of the undisturbed free surface in the absence of any model. An example of such a
scan is shown in figure 2(b). Across the scanned region and between both cameras (each
camera scan region is marked by a different colour), the standard deviation in the measured
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10 mm

Figure 3. The 3D printed particles made of Tough 1500 V1, with a reference auxiliary diameter circle of 10
mm held at the liquid—gas interface. The outer particles’ height is prescribed by 0.5 sin(80) mm for (a) circle,
(b) triangle, (c) square, (e) pentagon, (f) hexagon and by 0.5 sin(40) mm for (d) circle.

surface height was found to be approximately 0.02 mm. This value is significantly smaller
than the typical interface deformations observed in our experiments, and thus confirms
that the measurement system provides sufficient precision for reliable comparison with the
theoretical predictions. An illustrative example of the reconstructed water surface is shown
in figure 2(c), where the elevation scale has been amplified by a factor of ten for improved
visualisation. Prior to analysis, the mean far-field water level was subtracted from the
measurements, establishing the undisturbed free-surface reference at zero elevation. While
there are occasionally small regions which cannot be detected in the raw images due to
light reflections or some impurities at the water’s surface, leading to small void regions in
the experiments, the technique has proven reliable and the results are reproducible. To en-
sure that the measurement system performs well we quantified the standard deviation of the
measured water surface elevation in the undisturbed far-field region away from the particle
model, which consistently yielded an estimated precision of approximately 0.02 mm.

Figure 3 shows a series of SLA 3D-printed particles held at the liquid—gas interface,
each featuring a central reference circle of 10 mm diameter. The images illustrate various
particle geometries: (a,d) circles, (b) triangle, (c¢) square, (e) pentagon and (f) hexagon.
The outer edges of the particles incorporate sinusoidal undulations defined by amplitudes
of 0.5 sin(80) mm for the polygonal shapes (b,c,e,f) and 0.5 sin(49) mm for the circular
shape shown in (d). Off-axis illumination was employed to enhance visualisation of the
particle surface features and the associated deformation of the liquid—gas interface around
the rims. The visible interface distortions around each particle highlight the interplay
between particle geometry and surface tension effects, emphasising both the fidelity
achievable through SLA printing and the subtle liquid interface deformation investigated
in this study.
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Figure 4. Analytical results for the liquid—gas interface for particles placed by held at the liquid—gas interface
with 7, = 20 mm, where the outer particles’ height is prescribed by: (a) 0.5 sin(49) mm and (b) 0.5 sin(86) mm.
(c) Maximum heights (at any r) of the liquid—gas interfaces versus r obtained by solving the Young—Laplace
equation with different boundary conditions, given by £|,—20 = 0.5 sin(nf) mm, where the uppermost and the
lowermost curves correspond to n = 2 and n = 42, respectively.

4. Results

This section presents results obtained for two cases, circular and non-circular particles,
as well as a comparison between the theoretical and experimental results. In the case
of the circular boundary of the particle, the solution to the Young—Laplace equation
is obtained analytically. However, in the case of a non-circular boundary, we use the
domain perturbation technique, which yields an asymptotic solution to the Young—Laplace
equation. This asymptotic solution depends on the difference in absolute value between the
circular and the perturbed boundary. For all results presented in this section, except § 4.4,
we employ the sum of the leading- and the first-order terms in the asymptotic expansion of
H(R, 0),namely H(R, 6) ~ Hy(R, 68) + ¢ H1 (R, 0), where both, Hy(R, 0) and H1(R, 0),
contain 20 modes in the Fourier series. In §4.4, we show an example of convergence
relative to the number of terms in the asymptotic expansion. This is achieved by comparing
the results obtained using HO(R,0)=Hy(R,0), HV(R, 0) = Hy(R, 0) + ¢Hi (R, 0)
and H® (R, 0) = Hy(R, 0) + ¢H; (R, 6) + ¢2H>(R, 0), where Ho(R, 6), Hi(R, 6) and
H>(R, 0) contain 20 modes in the Fourier series. Note that the expressions for Hy(R, 0)
and H| (R, 0) are given in § 2 and the expression for H>(R, ) is derived in Appendix E.
Convergence details relative to the number of modes are given in figure 9 in Appendix A.

4.1. Analytic results for circular particles

Figure 4(a,b) shows two examples of the liquid—gas interface obtained by using the solu-
tion given in (2.8), calculated for a circular particle with sinusoidal boundary conditions.
As expected according to the boundary conditions, the interface is sinusoidal in the
rotating angle 6 along the particle’s boundary, and it is flat and vanishing far enough
away from the particle. This is reasonable since the Bessel functions appearing in the
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Figure 5. The perturbation functions ¢ D, (6) relative to the unit circle for (a) a hexagon, (b) a pentagon, (¢) a
square and (d) a triangle. The sketches of the corresponding circumferences of the particles in our experiments
and in the asymptotic solutions are shown in the insets.

leading-order solution, which is exact in the case of the circular particle, are decreasing
functions of r. The boundary conditions of figures 4(a) and 4(b) have a proportional value
to sin(460) and sin(86¢) mm, respectively. Based on these figures, when the frequency of
the sinusoidal wave increases, not only does the density of the peaks increase, but they
also vanish at a faster rate as r increases towards the far boundary. The dependency of the
influence of the particle’s distance on its rim undulation frequency is further emphasised
in figure 4(c), where we show the maximal liquid—gas interface height (at any r) versus r
for different frequencies of the sinusoidal wave prescribed along the outer boundary of the
particle. According to figure 4(c), as the rim undulation frequency increases the liquid—gas
interface flattens closer to the particle.

4.2. Asymptotic results for non-circular particles

Here, we show the liquid—gas interfaces for the following particle’s shapes: equilateral
hexagon, pentagon, square and triangle. As presented in the insets in figure 5, we define
an auxiliary inscribed circle and scale the problem by using its radius 7,. To obtain
the asymptotic solution by using the domain perturbation technique, we refer to the
circumferences of these shapes as to a small deviation €D, (6) from a circle. Note that
as the sides number of an equilateral particle decreases, the deviation from the circle
increases. Figure 5 illustrates, however, that the largest deviation between the studied
shapes, which is equal to one, occurs at the corners of the triangle. As a result, our method
becomes inapplicable, regardless of the number of terms in the asymptotic expansion, at
the vicinity of the triangle’s corners only.

More specifically, for each 8, ¢ D, (6) denotes the distance between the corresponding
shape and the inscribed circle, expressed in radial coordinates. The graphs of ¢ D, (6), are
shown in figure 5 and the corresponding expressions for ¢ D, (6) are given in Appendix C.
As expected, the maximum of € D, () increases as we move from a hexagon to a pentagon,
from a pentagon to a square and from a square to a triangle, which reflects the fact that
the circumference of the hexagon is the closest (among the discussed shapes) to those of
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Figure 6. The liquid—gas interface obtained by the asymptotic solution for (a) hexagonal, (b) pentagonal (c)
square and (d) triangular particles, whose outer heights are prescribed by 0.5 sin(8¢) mm and where 7, =5 mm
in all cases.

the inscribed circle and the circumference of the triangle is the furthest from those of the
inscribed circle.

Figure 6 presents results for the liquid—gas interface obtained using the asymptotic
solution given in (2.6) including both the leading- and first-order solutions prescribed
in (2.8) and (2.11), respectively. The asymptotic results were calculated for equilateral
hexagonal, pentagonal, square and triangular particles with sinusoidal boundary
conditions. The liquid—gas interface is pinned to the particle, and hence its boundary
conditions are determined according to the particle’s boundary outer height. As the
particle circumference approaches the circle, the liquid—gas interface near the particle’s
boundary approaches the sinusoidal wave (for a given r, as a function of ), as the
asymptotic approximation becomes more accurate. As we move along the particle’s
boundaries towards the corners, where the deviation from a circle is maximal, the
amplitude of the sinusoidal-like wave decreases, since the asymptotic approximation is
less accurate there. When 0 < ¢ < 1, this inaccuracy may be improved by adding additional
terms of higher orders to the asymptotic expansion in (2.6), (for an additional discussion,
see §4.4). Moreover, similar to the circular particles, the maximal height (in absolute
value) of the liquid—gas interface decreases along the radial direction as we move from the
particle’s boundary until the interface flattens.
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Figure 7. A comparison between experimental (upper half of the panels a—c) and theoretical (lower half of
the panels a—c) results for the liquid—gas interface in three cases: (@) a hexagonal particle held at the liquid—
gas interface at the height of 0.5 mm, () a circular particle with the outer height of 0.5 sin (86) mm and (c)
a hexagonal particle with the outer height of 0.1 4+ 0.5 sin (89) mm. In all panels the radius of the inscribed
circle is 7, = 20 mm and the height of the particles is relative to the liquid—gas interface sufficiently far from
the particle. The colour bar refers to both cases (experimental and theoretical) for all panels.

4.3. Comparison between theoretical and experimental results

In figure 7 we show a comparison between experimental (upper half of all panels)
and theoretical (lower half of all panels) results for the liquid—gas interfaces for the
following particle shapes: an equilateral flat hexagonal particle which is above the liquid
level by 0.5 mm, a circular particle where the outer particle’s height is prescribed by
0.5sin(80) mm and an equilateral hexagonal particle where the outer particle’s height
is prescribed by 0.1 + 0.5 sin(80) mm. The circumference radius of the inscribed circle
is 20 mm for all particles. As can be seen, in all cases there is a quantitative agreement
between theory and experiment, except probably in close vicinity of the hexagon’s corners.
This inaccuracy in theoretical results might be easily improved by taking into account more
terms in the asymptotic expansion of A (r, 6), as discussed in § 4.4.

4.4. Limitations of the method

As mentioned in § 2, the asymptotic nature of the theoretical approach employed in this
study implies the need to use small values of ¢, 0 < ¢ < 1. Moreover, note that the error

of the asymptotic expansion H(M)(R, 0) .= an/lzo ™ H,,, where M =0,1,2,3 ..., 1s
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Figure 8. An example of the convergence analysis relative to the number of terms in the asymptotic expansion
for a square-shaped particle with an outer height of 0.5 sin (86) mm using (@) only the leading-order term
HO(R, 0), (b) the sum of the leading- and the first-order terms HWD(R, 0), (c) the sum of the leading-, the
first- and the second-order terms H@ (R, 0) and (d) a comparison between experiment (upper half of the panel)
and H® (R, 0) (lower half of the panel). In all panels the radius of the inscribed circle is 7, = 20 mm.

of order O(eM*1), namely (H (R, 0) — HM (R, 0)) = O(¢¥*!). Thus, as ¢ increases
towards 1, we get a larger deviation of the asymptotic expansion HD(R, @) discussed
above from H (R, 0), which implies that, in order to get satisfactory accuracy for relatively
large 0 < ¢ < 1, higher-order terms in the asymptotic expansion are required.

To illustrate the effects of the expansion order on the accuracy of the solution, we
performed an experiment with a square-shaped particle, where the radius of the inscribed
circle is 20 mm and the particle’s outer height is given by 0.5 sin (8¢) mm. It is easy
to verify that, for a general square-shaped particle, ¢ =1/ cos (7/4) — 1 = 0.414, which
is visualised by the maximum values in figure 5(c). This value of ¢ is relatively large
and, as shown in figure 8(a), results in a significant error in the leading-order term
solution H @ (R, 6) = Hy(R, 6) given in (2.8)—(2.9). As shown in figure 8(b), this error
considerably decreases when taking into account the sum of the leading- and first-order
terms HD(R, 0) = Hy(R, 0) + ¢H (R, 6), where H{(R,0) is given in (2.11)—(2.13).
However, the decrease in error is not sufficient, since the solution HW (R, #) misses
the correct behaviour near the corners of the square, where €D, (#) is the largest and
approaches 0.414. Thus, figure 8(c) depicts the solution H® (R, 6), which takes into
account the sum of three terms: the leading-, the first- and the second-order terms, where
the expression for H>(R, 0) is derived in Appendix E. Figure 8(d) visualises the agreement
between the experimental measurement of the liquid—gas interface for a square-shaped
particle (upper half of the panel) and the solution H @)(R, ) (lower half of the panel).
According to this figure, it is obvious that including additional terms in the asymptotic
expansion significantly improves the accuracy of the solution, and in particular, taking 3
terms in the expansion allows us to get the correct behaviour along the sides of a square,
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including its corners. Note that there is an excellent agreement between the asymptotic
solution with 3 terms in the expansion and the experimental measurements.

In summary, figure 8 demonstrates that the theoretical method proposed in the current
study can be applied to more complex geometries. However, if ¢ increases, additional
orders in the asymptotic expansion are required. Specifically, while asymptotic solutions
are typically employed for 0 < ¢ < 1, here, we show that, by employing higher-order terms
in the expansion, we may obtain satisfactory results even for a relatively large €, ¢ & 0.414.
Note that, for the hexagon shown in figure 7, the value of ¢ was relatively small, ¢ & 0.15,
and hence even the solution HV (R, #) composed of the leading and first terms only
agrees well with the experiments.

5. Conclusions

This study leverages the domain perturbation technique to analyse the liquid—gas interface
deformation in the vicinity of an anisotropic particle held at the liquid—gas interface,
where the liquid—gas interface is assumed to be pinned to the particle’s edges. We obtain a
closed-form solution for particles with non-circular complex shapes and varying contact-
line heights. This technique provides an appealing method for non-circular domains,
complementing previously used techniques, such as multipoles, which were implemented
for circular or ellipsoidal particles (Kralchevsky & Denkov 2001; Danov et al. 2005;
Danov & Kralchevsky 2010).

Our theoretical results were validated by experiments performed using high-resolution
laser scanning that captured the deformation of the liquid—gas interface around 3D printed
particles held at the liquid—gas interface. We tested circular, hexagonal and square-shaped
particles with flat and sinusoidal rims which are placed at, or at a shifted height from,
the liquid—gas interface. The overall comparison shown in figures 7 and 8 reveals that the
surface shape around the particle and the consequent effects it has on its vicinity seem to
be well correlated between experiments and theory. This provides us with confidence that
the analysis method and the assumption of pinned boundary conditions employed in this
study provide a good estimation of the effects of particles on the surrounding liquid—gas
interface. Note that we decided to concentrate on polygonal shapes in order to highlight
the robustness of our approach, which succeeds in yielding a good agreement between
theory and experiment, even though polygons contain sharp edges, which generally may
complicate the theoretical modelling. For the cases of polygons that have relatively large
deviations from a circle, such as a square, taking into account additional terms in the
asymptotic expansions is required to resolve the accuracy issues in the vicinity of the
corners, as shown in figure 8.

Building on this work, future studies can generalise the present approach to systems
of multiple floating anisotropic particles, enabling analysis of their collective capillary
interactions and self-assembly dynamics. By combining the domain perturbation method
with bipolar coordinate techniques, as discussed by Kralchevsky & Nagayama (2000), the
model can be extended to derive explicit solutions for pairwise interface deformations
and interaction forces induced by complex particle shapes. This will help to clarify how
particle anisotropy and orientation dictate not only attractive or repulsive capillary forces
but also significant capillary torques that can induce mutual rotations, an effect discussed
by Koens et al. (2019), who highlighted the distinct roles of near-field and far-field
effects in the self-assembly of magnetic capillary disks. Moreover, adopting superposition
approximations similar to those employed by Singer (2004) and Beatus, Bar-Ziv & Tlusty
(2012) could simplify the modelling complex particle self-assembly. Collectively, such
advances will offer a more complete picture of anisotropic capillary interactions and
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inform the design of self-assembled interfacial particle networks, paving the way toward
programmable interfacial materials with tailored assembly properties (Poty et al. 2014).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.
10727.
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Appendix A. Approximate solution of the problem in (2.4)

We begin by solving the leading-order problem given in (2.7). We assume that the solution
may be obtained by separation of variables, namely that there exist two functions, R(R)
and ®(0), so that the solution of (2.7) may be expressed as Ho(R, 8) =R(R)O(6).
Substituting this separation of variables into equation (2.7a) and employing standard
mathematical manipulations, we obtain the following equation:
R*3>R  RIR 1 0%
— 4+ —— —B,R*=———. (A1)
R 0R? TR IR © 362
Since the left-hand side of the equation in (A1) depends only on R and the right-hand side
of this equation depends only on 6, there exists a constant A, so that
R*3°R  ROIR 5 19?0
4 T _BR=—__ _ —. A2
RORZ ROR O 362 (A2)
Considering the equation for ® in (A2) and noting that, according to the boundary
condition in (2.7b) ®(0) is 2x periodic in #, we may conclude that the eigenvalues A are
necessarily of the form A = n?,forn=0,1,2,..., and the corresponding eigenfunctions
are given by

®,0)=A, cos (nf)+ B, sin (nd), n=0,1,2,.... (A3)
Then, for these eigenvalues the resulting equations for R are given by

PR OR

RszrRﬁ—(BoRernZ)R:o, n=0,1,2,.... (Ad)
This type of equation is known as a modified Bessel equation and its solutions are called
modified Bessel functions (Olver ef al. 2010). Due to the fact that the modified Bessel
function of the first kind, 7, (R), is unbounded as R tends to infinity, and we seek a solution
that satisfies (2.7¢), we may only use the modified Bessel function of the second kind,
K, (R) (which tends to 0 when R — 00). Hence, for the problem in (A4) we will use the
eigenfunctions

R(R)=K,(vVBoR), n=0,1,2,..., (A5)

so that the general solution to the equation in (2.7a) is given by (2.8). Imposing on the
solution in (2.8) the boundary conditions in (2.7b), we obtain that the constants A, and
B,, are as prescribed in (2.9).

Note that since the equation for Hj as given in (2.10) is exactly of the same form as the
equation for Hy, by using the same procedure as described above, we get the same general
solution for H; as for Hy, see (2.11). Imposing the boundary conditions in (2.10) on the
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Figure 9. The error, Err defined in (A8), arising from the truncation of a finite number of modes in the Fourier
series of the asymptotic solution H (r, ) versus the number of modes, K. The full circles represent results
obtained by simulation for the hexagon, pentagon, square and triangle, which correspond to the results shown
in figure 6, and the curves, which were obtained by least square fitting to the simulation results, are to guide
the eyes.

general solution for H in (2.11) and substituting (2.8), we get that

Ko(
0 Z K A cos (n6) + By, sin (n@)]

B dKo (VBoR)| Ao o 9Kn (VBoR) .

= —D,(@){a—R 7 +2_: — e R:I[An cos (n0) + By, sin (nd)]¢,

(A6)
where A, and B,, are given in (2.9).
In order to get explicit expressions for A, and B,, we use the following property of the
Bessel functions K, (Olver et al. 2010):

OKu(VBoR) _ m( Kn—1(VBoR) + Kut1(vBoR)). (A7)

oR

Next, expanding the right-hand side of the equation in (A6) into Fourier series in the
interval 8 € (0, 2m), we get exactly the expressions which were given in (2.12)—(2.13).

In order to check Fourier series convergence relative to the number of modes in the
approximate solution, containing both the leading- and the first-order terms, we calculated
the error which we denote by Err and define as

Err=hc[|H(r,0; K =50) — H(r, 0; K)llco, (A8)

where H(r, 0) is as given in (2.6), (2.8) and (2.11), with the number of terms in the
truncated series denoted by K and where ~ denotes the L°°— norm in the two-
dimensional domain (7, ) € (r,, 3.57,) x [0, 27). In figure 9, we show the error graphs
for the results shown in figure 6, corresponding to the hexagon, pentagon, square and
triangle versus K. According to figure 9, it can be seen that in all cases the Fourier series
converges exponentially relative to the number of modes in the series.
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Appendix B. The solution in dimensional form

To obtain the dimensional solution, we first recall that the boundary conditions in
dimensional notation are given by

o
wo .
Blr—d @ = =+ D _ (qn sin (n6) + 1wy cos (n6)). (B1)

n=1

Now, we substitute the variables transformation given in (2.3) back into the
dimensionless solution given in (2.8)—(~2.9) and (2.11)—(2.13) and use the definition of B,,.
Thus, we get that h(r, 8) = ho(r, 6) 4+ h1(r, ), where we denote for brevity

maxge(0,2r) |dy(0)]

To

hi(r,0) = hy(r, 0). (B2)

As to the leading-order solution, we get for r > r, that

Ko (Vgp/vr)

ho(r, 0) = 5

D 3" Kul(V/20/vr) [an cos (n6) + b, sin (n0)],  (B3)

n=1
where a, and b,,, the dimensional versions of A,, and B,,, are given by
Wy qdn

h=——" and by=— "
¢ Kn (Vg0 /v10) o Kn (Vg0 /v10)

As to the first-order solution, we get for » > r, that

Ko(v/gp/vr)ao
2

(B4)

hi(r, 0) = + Y Ku(v/gp/yr)[an cos (nf) + by sin (n0)],  (BS)
n=1

where a,, and l;n, the dimensional versions of A » and En, are given by

G ~Nerly
" 27TKn(V 8p/vro

2
) / g(@)cos(n)dd, n=0,1,2,...,
0

(B6)

Fo_ v&p/v el . ~

bn_ ZnKn(WTO) /0 g(e) s (I’l@)de, n= 1’29 ceey

and where g(0), the dimensional version of G (), is given by
K_1(Vap/vro) + Ki(vgo/vro
g(@):dr(g){( 1( gp/yr) . 1( g,O/yr))ao
+ Z gp/)/ro) + Kint1 (Wro))[am cos (m@) + b, sin (m@)]},

(B7)

Appendix C. The expressions for ¢ D, (#) for different shapes

In this section we shall give the expressions for ¢ D, (9) in four cases: equilateral hexagon,
pentagon, square and triangle, which are shown in the insets of figure 5. In all cases the
dimensionless radius of the inscribed circle is assumed to satisfy R = 1.
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Let us start our discussion from equilateral hexagon, which is shown in the inset of
figure 5(a). It is easy to verify that the sides of the hexagon, which we denote by L;,
i=1,2,...,6 (as indicated in the inset of figure 5a), are given by

Li: y1=«/§x—2,
Ly y2=—«/§x—2,
Li: y3=—x/§x—l—2,

Li: ya=~3x+2, (C1
Y5
Ls: =1, = =cot (0),
50 )5 = B cot (9)
Y6
Lg: =-—1, = = — cot (0).
6° Y6 x= B cot (8)

Now, if we wish to express the sides L;, i =1, 2, 3, 4, in polar coordinates, namely in
the form (r; cos (0), r; sin (8)), where 6 is within the corresponding ranges, which are
denoted by [;, i =1, 2, 3, 4, respectively, and are given in (C7), we need only to find r;.
However, according to (C1), it follows that

2

V3 cos (8) — sin (6) -

2

- _ . i=2,
. (0) = ﬁcosz(e) + sin () ©2)

V3 cos (0) + sin (0)’ 7

— 2 . i=4.

V3 cos () — sin (0)
Then, using the definition of ¢ D, (8), for sides of the form, (r; cos (0), r; sin (0))

eDy(0) = \/ (1 —ri(6))* cos? () + (1 — ri(6))* sin* (6) = —(1 — r;(9)), (€3)

with (C2), we readily find e D, (0) for i =1, 2, 3, 4. The correct sign of the square root
in (C3) is minus, because if one refers to D, (6) as to a vector, it points from the circle
towards the sides of the hexagon.

Next, expressing € D, (0) for Ls and L¢ (given in (C1)), where the corresponding ranges
of 6 are Is and Ig, respectively, we get that

D, (0) = \/(cos (6) —cot (9))* + (sin (6) — 1)?, (C4)

and

eD,(0) = \/(cos (0) + cot (8))? + (sin (9) + 1)2. (C5)

To summarise our results in (C2), (C4) and (C5) we may conclude that € D, (0) in this case
is given by
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2
-1 , 9el,
T Beos @) —sin 0) €
2
—1- , 0¢el,
V3 cos (0) + sin (6) €
2
—1+ , 0¢€l,
eD,(0) = V3 cos () + sin (8) € (C6)
2
—1- , 0¢ly,
3 cos () — sin (9) <
\/(cos () —cot (9))> + (sin (9) — 1)?, O €ls,
\/(cos (6) + cot (9))* + (sin (0) + 1)*, 0 €I,

where the various intervals are given by

11: 5—7-[,271'),
| 3
[ 4x
12=-7T,?),
!
14: '2_7.[’ JT>’ (C7)
| 3
,Sz'z,z_ﬂ),
(373
)
373

The function given in (C6) is shown in figure 5(a).
Next, we examine the expression for € D, (9) in the case of the pentagon, which is shown
in the inset of figure 5(b). Note that the length of the pentagon’s side is

A =2tan (7/5). (CY)

Hence, it is easy to verify that the sides of the pentagon, which we denote by L;,
i=1,2,3,4,5 (as indicated in the inset of figure 5b) are given by

) A
L.: | — [ - 1 -~ 1 9 .:]‘72,
e yi=daix ( * 2 tan (rr/lO)) !

) |
Li: vi=ax+——, | =3, 4, (C9)
PV AN e 10) :
= Y5
Ls: =—1, = = —cot (0),
510 x n @) cot (0)

where

_y 2w . 2w _y 4 . % (C10)
a; =tan 5 ) a) = — tan 5 ) az =tan 5 ) a4 = —tan 5 )

Now, if we wish to express the sides I:i, i =1, 2,3, 4, in polar coordinates, namely in the
form (r; cos (0), r; sin (0)), where 6 is within the corresponding ranges, which are denoted
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by I;,i =1, 2, 3, 4, respectively, and are given in (C16), we need only to find r;. However,
according to (C9), it follows that

ajri cos (8) — (1 ) =r;sin(@), i=1,2, (C11)

+ 2 tan (7/10)

and

1 . .
a;ri cos (0) + m =r;sin(9), i=3,4. (C12)

Hence,

A
_ + 2 tan (7/10)
sin (0) — tan (27/5) cos (6)’
A
. + 2 tan (7t /10)
sin (@) + tan (27r/5) cos ()’
1
sin (37/10) [sin (8) — tan (47/5) cos (6)]
1
sin (37/10) [sin () + tan (47/5) cos ()]

ri(0) = =2, (C13)

Then, using the formula in (C3) with (C13), we readily find ¢ D, (0) fori =1, 2, 3, 4.
Finally, expressing & D, (8) for Ls (given in (C9)), we get that

eD,(0) = \/(cos (0) + cot (8))? + (sin (9) + 1)2. (C14)

To summarise our results in (C13) and (C14), we may conclude that € D, (6) in this case
is given by

L +2tan(7r/10) 9el

sin (0) — tan (277/5) cos (0) b
L 1+2‘[an(7r/10) el

£D,(0) = sin (6) + tan (277/5) fos @)’ ’ C15)

— 14— ; , Oels,

sin (37/10) [sin (6) — tan (47/5) cos (6)]

1

' (37/10) [sin () + tan (47r/5) cos ()]’ o€k
\/(cos (6) + cot (6))* + (sin (6) + 1), 0 €I,

where the various intervals are given by
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17
n=[o. 2 0] 2),
10 10

97 137
12: _7_ b
(10 10 ]
I —(” ”] Cl16
3_ 107 2 9 ( )
T 9w
I4= A 1n |0
(2 10:|

13 177
Is={—, — .
10~ 10
The function given in (C15) is shown in figure 5(b).
Now consider the expression for € D, (6) in the case of the square, which is shown in the

inset of figure 5(c). It is easy to verify that the sides of the square, which we denote by L;,
i=1,2,3,4 (as indicated in the inset of figure 5¢), are given by

Li: x=1, y =x tan (0) =tan (0),

L,: x=-1, y=xtan(d)=—tan(H),

o __ Yy _ C17)
Ly: y=1, = =cot (8), (
30y X tan @) cot (¢)

~ y

Ly: =-1, = = —cot (0).

A =@ - OO

Hence, the distance ¢ D, (6) between the circle and L 1 is given by

eD,(0) = \/(cos ) — 1)2 + (sin (0) — tan (9))2, (C18)

where the corresponding range of 6 is given in I, see (C20).
The rest of the sides of the square are treated similarly, thus overall resulting that for
0 €0, 2m), e D,(0) is given by

\/(cos ) — )% + (sin () — tan (0))*, O €1,

\/(cos (6) + 1)* + (sin (0) +tan ()%, 6 € I,

eD,(0) = (C19)
\/(cos 0) — cot (0))% + (sin (9) — 1)%, O € I3,
\/(cos (0) + cot (0))% + (sin (0) + 1)2, 6 € 4,
where
I, =0, 0.257) U (1.757, 27),
I, =[0.75m, 1.257), (C20)
I3 =[0.257, 0.757),
Iy =[1.257, 1.757].
The function given in (C19) is shown in figure 5(c).
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Finally, we derive the expression for € D, (6) in the case of the triangle, which is shown
in the inset of figure 5(d). It is easy to verify that the sides of the triangle, which we denote

by Li,i=1,2,3 (as indicated in the inset of figure 5d), are given by

. 1
L;: y,-:a,-x—i—m, i=1,2, ©n
L3 y3=—1, x:taf(e):—cot(e).
where
ay =tan 2w /3) = —v/3 and ay =tan (7/3) = V3. (C22)

Now, if we wish to express the sides i,-, i =1, 2, in polar coordinates, namely in the
form (r; cos (6), r; sin (0)), where 0 is within the corresponding ranges, which are denoted
by I;, i =1, 2, respectively, and are given in (C27), we need only to find ;. However,
according to (C21), it follows that

1

airicos(0) + ————=r;sin(0), i=1,2. (C23)

sin (7r/6)
Hence, we may conclude that
1
110 = G 2/6) 5in @) — i cos @)
] ’ (C24)
= 5 l == 13 2a
2(sin (8) £ +/3cos (1))

where /3 corresponds to i = 1 and —+/3 corresponds to i = 2. Then, using the formula in
(C3) with (C24), we readily find e D, (0) fori =1, 2.

Finally, expressing ¢ D, (6) for Ls (given in (C21)), where the corresponding range of 6
is I3 (given in (C27)), we get that

eD,(0) = \/(cos (6) + cot (8))% + (sin (8) + 1)2. (C25)

To summarise our results in (C24) and (C25), we may conclude that € D,-(6) in this case
is given by

1
-1+ , 0el,
2(\/3 cos(6) + sin(6)) :
D@ =] 1 ! beb, (C26)

2(v/3 cos(8) —sin(8))’
\/(Cos () + cot (0))> + (sin (0) + 1>, 0 € I3,

where the various intervals are given by
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T 117
11:[0,—]U —, 27 |,
2 6

n In
L==,—|, C27
2 (2 6] (C27)

Tr 1lnm
L=—,—.
(6 6)

The function given in (C26) is shown in figure 5(d).

Appendix D. Estimation of the error in contact inclination angle at the particle
boundary due to the liquid height uncertainty

The inclination angle of the meniscus near the particle boundary is denoted by o and may
be found according to the formula

h oH
= arccot (D1)
r=rp+d; (0) 0 R |r= 14+eD,(6)

where we used the scaling parameters which were defined in (2.3). Now, from the
expansion in (2.6), it easily follows that

dH 9Ho dH,

— —+0 D2

3R 8R+88R+ (e?). (D2)
According to the solution for the leading-order problem, which was given in (2.8)—(2.9),
and the formula for the derivative of the Bessel functions given in (A7), it follows that

38120 _ AO*/B_O([LI(\/B»OR) +Ki(vBoR))

\/_

<8h
o = arccot | —
or

1(Knt1(vBoR) + Ku-1(v/BoR)).

(D3)
Note that, since, according to (2.11), the expression for H;(R, 0) is the same as for
Hy(R, 6), except that Ag, A, and B,, n=1,2,3, ..., are replaced with Ao, An and I§n,
respectively, also the expression for d H; /9 R is the same as for d Hy/d R, except that Ao,
Ay and B,,n=1,2,3, ..., are replaced with AO, An and l§n, respectively.

In order to assess the effect of uncertainty of the water level in the experiments, which
is £0.05 mm, on the inclination angle «, we calculated « by using the equations in (D1)—
(D3) and the derivative d H; /0 R for 3 representative points, which we denote by Pj, P>
and Pz (see figure 10) located on the boundaries of the square and hexagonal-shaped
particles. One point was chosen close to the centre of the particles’ edge, one is chosen
closer to the corner and one was randomly chosen in between them. This calculation
was repeated for three cases: (i) the centreline of the particle is the same as the liquid—
gas interface height at r — oo, (ii) the centreline of the particle is above the liquid—gas
interface height at r — oo by 0.05 mm, and (iii) the centreline of the particle is below the
liquid—gas interface height at » — oo by 0.05 mm. Our results are summarised in table 1.

According to the representative results shown in table 1, it can be seen that the
uncertainty of £0.05 mm in the measurement of the liquid—gas interface at far field results
in the error of the order of =1 % in the inclination angle of the meniscus.

n=1
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(®)

Figure 10. The liquid—gas interface shape for a square and a hexagonal-shaped particles, for which we
calculated the inclination angles in table 1, where the points P;, P, and P3 are indicated.

Particle shape/point Angle « in case (i) Angle « in case (ii) Angle « in case (iii)
Square/ P —86.0794° —85.08° —87.0812°
Square/ P, —74.9464° —173.9914° —75.9101°
Square/ P3 86.607° 87.0784° 86.1361°
Hexagon/P; —87.2804° —86.4783° —88.0835°
Hexagon/ P, —77.0952° —76.1403° —78.0574°
Hexagon/P3 76.4048° 77.4613° —75.3577°

Table 1. The inclination angle «, calculated according to (D1), on 3 points Py, P, and P3 in three cases:
case (i), case (ii), and case (iii) where in case (i) the centerline of the particle is the same as of the liquid-gas
interface at infinity, in case (ii) the centerline is 0.05 mm above the liquid-gas interface at infinity, and in case
(iii) the centerline is 0.05 mm below the liquid-gas interface at infinity.

Appendix E. The second-order expansion
Here, we derive an expression for the second-order term in the expansion of H(R, ) in

asymptotic series. Similarly to (2.5), we expand (Ho + ¢ H; + 82H2)|R=1+£ D,(6) Into a
Taylor series in € around & = 0, as follows:

d H
, 0
(Ho+eHi+¢ H2)|R=1+8Dr(9) = Holp_ +¢ (Hl 00 dR ) R=1
3H, 9% Hy
5 2
H> + D, (6) 2 4+ 0.5D2(0) 2
+8(2+ r()3R+ r()aR2> R=1
+0(Y). ED
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Next, similarly to the discussion for Hi (R, 0) (see (2.10)), we get at the second, O (g?),
order the following problem:

02 H, OH, 0*H,
R? R — B,R*H, =0,
oR2 TV oR T pez T PeNI2E
92 H, E2
H|o = <D (9)—+0502(9) °> : (E2)
R=1
2|R~>OO=0'

Note that, since the equation for H as given in (E2) is exactly of the same form as the
equation for Hy and Hi, by using the same procedure as described above, we get the same
general solution for Hj as for Hy and Hy, see (2.8) and (2.11), namely

H (R, 6) = m + 3" KalVBoR) [Aycos 6) + Busin (u6) ], (E3)

where the constants A, and B, are determined by using the boundary conditions in (E2).
In order to determine the constants A, and B, explicitly, analogously to the coefficients
A, and B, appearing in the Fourier series of Hi(R, ), see (2.12), we get now that

. \/B_o 2r R _
An_m/() [GB) —G(@)]cos (nB)dd, n=0,1,2,...,
VB, 2 (E4)
anm/(; [G(@)—G(@)] Sin (n9)d9, n=1,2, ey
where for brevity we use the following notation:
- K_1(/B,) + Ki1(v/B,)) A
G(@):D,(G){( 1(\/_)4'2 1(\/_)) 0
00 (ES)
Z + Kn+1 (/BT,))[Am cos (m@) + l§m sin (m@)]},
m=1

and

G®) =

DX(0)V/B, { (K-2(v/Bo) + 2Ko(vB,) + K2(v/Bo)) Ao
4 2

i VBo) + 2K (v/Bo) + Kmt2(v/Bo)) (E6)

X [A,; cos (mB) + By, sin (m0)] }

Note that, in the derivation of the expression in (E6), we used (A7), according to which it
easily follows that

I Kn(VBoR) _ B,

8R2 4 (Kn 2( BoR)+2Kn( BoR)+Kn+2( B()R))- (E7)
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