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Abstract Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in 

understanding the complex physical processes governing ICF and enabling ignition. 

During the ICF process, the interaction between the high-power laser and ablation material 

leads to the formation of a plasma critical surface, which reflects a significant portion of 

the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic 

energy. Effective diagnostic methods for the critical surface remain elusive. In this work, 

we propose a novel optical diagnostic approach to investigate the plasma critical surface. 
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This method has been experimentally validated, providing new insights into the critical 

surface morphology and dynamics. This advancement represents a significant step forward 

in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the 

uniformity of the driving laser and target surface, ultimately improving the efficiency of 

converting laser energy into implosion kinetic energy and enabling ignition. 

Key words:  inertial confinement fusion (ICF), laser-plasma interaction, critical surface 

evolution, plasma diagnostic techniques, direct drive 

 

I. INTRODUCTION 

The exploration of controlled fusion energy has been ongoing for more than half a century [1]. 

Laser inertial confinement fusion (ICF) is one of the most promising paths to achieve 

thermonuclear ignition, and has achieved the tremendous advancements in both scientific 

understanding and engineering aspects [2]. The first laboratory achievement of target gain Gtarget 

> 1 was reported at the US National Ignition Facility (NIF) in December 2022 [3], demonstrating 

the potential of the laboratory fusion. Both direct and indirect drives typically employ spherical 

targets. As the target surface absorbs laser energy and undergoes ablation, the pressure causes the 

remaining ablation layer and the DT fuel shell to implode inward. When the implosion reaches 

its minimum radius, a hot spot of DT forms, surrounded by colder, denser DT fuel [4]. Low-

mode asymmetries are the dominant factor that degrades implosion performance. In addition, 

mixing of the ablation layer and the fuel also causes significant fuel preheating, further 

degrading implosion performance [2]. Improving the coupling of laser energy into target kinetic 

energy is a key to achieve the ignition. Laser-plasma instabilities [5], such that arise from the 
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interaction between the driving laser and the ablation plasma, can limit the absorption of laser 

energy and also accelerate electrons to the DT fuel layer, thereby reducing the final compression 

and preventing the ignition process [6]. Precise shaping and control of the driving laser pulse is a 

key step in the Inertial Confinement Fusion (ICF) process to reduce Rayleigh-Taylor (RT) 

instabilities and improve energy coupling efficiency [7]. When the laser interacts with the 

ablation layer, a critical surface is formed, and most of the laser energy is absorbed by the 

coronal region due to reflection at this critical surface, limiting the effective conversion to 

implosion kinetic energy [1,2,4-7]. We believe that understanding the evolution of the critical 

surface during the laser-ablation layer interaction will play an important role in improving the 

conversion efficiency of laser energy to fuel kinetic energy. Therefore, exploring the temporal 

evolution of the critical surface can provide a guidance for controlling the driving laser, adjusting 

the laser pulse pointing, and designing of the target, laying the foundation for ultimately 

achieving ignition.  

To explore the complex physical processes in Inertial Confinement Fusion (ICF) and improve 

the coupling of laser energy to the target, various diagnostic techniques have been developed, 

such as VISAR [8], X-ray imaging [9], and X-ray spectroscopy [10]. VISAR measures the 

velocity of moving surfaces by recording the Doppler shift of the reflected light. VISAR is a 

critical diagnostic tool in ICF and high-energy density research, as it can be used to measure the 

velocity of rapidly moving surfaces (typically ~0.1 km/s to >100 km/s) [11-15], measure 

equations of state [16], characterize the strength and structure of materials under extreme 

conditions [17], and optimize the temporal pulse shape of the implosion laser in ICF experiments 

[18]. X-ray imaging can record the information about the shape, volume, and temperature of the 

plasma, providing valuable feedback for adjusting experimental parameters. Pinhole imaging is 
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the most commonly used X-ray imaging diagnostic, as pinholes are easy to fabricate, position 

and be easily replaced if damaged [19]. The principle of pinhole X-ray imaging is similar to that 

of visible light pinhole imaging, and the spatial resolution is limited by geometric optics and 

diffraction. X-ray spectroscopy can be used to diagnose the mixing of ablator material into the 

hot spot in indirect-drive experiments [20] and to characterize the state of the target [21]. 

Many of the aforementioned diagnostic techniques often work with streak cameras and rely on 

algorithmic reconstruction to obtain plasma parameters. Furthermore, existing diagnostic 

methods tend to focus on the compressed core region, lacking diagnostics for the critical surface 

of the ablation plasma. We believe that the lack of understanding of the evolution of the plasma 

critical surface hinders the improvement of laser energy coupling efficiency. In this paper, we 

propose an all-optical diagnostic method based on ultrashort lasers to diagnose the critical 

surface formed by the interaction between the driving laser and the ablation layer in the ICF 

process, and experimentally verify the feasibility of the method. 

II. METHODS 

We have developed a femtosecond laser-based fusion plasma measurement method. This 

method utilizes the rich frequency components of femtosecond lasers, using dispersion to 

temporally stretch the probe pulse, thus make the probe with time-frequency chirp, as shown in 

the figure below. We use a pulse with a center wavelength of 808 nm and a pulse width of 30 fs, 

which is then stretched to 1.7 ns by a pulse stretcher, with a spectral range of 780-860 nm. It is a 

flat-top s-polarized pulse with a fast rise of approximately 100ps. This probe beam is then made 

to interact with the evolving plasma under study, where different wavelengths can record 

information at different instant time. Finally, we record the spectral changes of the probe beam 

before and after the measurements, and by analyzing these changes, we can obtain the expansion 
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velocity of the critical surface as well as the time-resolved evolution of the critical surface 

morphology. 

 

Figure 1. A femtosecond laser pulse with a center wavelength of 808 nm and a pulse duration of 30 fs is 

coupled into a pulse stretcher. The pulse stretcher introduces group velocity dispersion, which stretches 

temporally the pulse duration by frequency-time chirp. This results in the generation of a chirped probe pulse 

with a duration of 1.7 ns and a spectral range of 780 nm to 860 nm. The time-dependent wavelength 

distribution of this stretched probe pulse allows for time-resolved probing of the evolving plasma dynamics 

under investigation. 

 

In a linearly temporal stretched femtosecond laser pulse, different time points correspond to 

different wavelengths. When this chirped probe pulse interacts with the critical surface, the 

spectral components of the measured probe pulse are recorded using a spectrometer. By 

analyzing and comparing the spectral changes of the probe pulse before and after the interaction 

with the critical surface, the evolution dynamics of the critical surface within the probe pulse 

duration can be obtained. To evaluate the velocity of the critical surface, the probe beam is first 

compressed to a narrow pulse of several tens of femtoseconds using a parallel grating 

compressor, and the pulse width is measured using an autocorrelator before the probe beam 

interacts with the plasma critical surface. After the probe beam interacts with the plasma, it is 
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compressed again using the same parallel grating compressor, and the change in the probe beam 

pulse width Δt can be measured. This change in pulse width Δt reflects the expansion velocity v 

of the plasma critical surface. By analysis, a relationship can be established between the change 

in pulse width Δt, the probe beam pulse width τ, the incidence angle θ, and the critical surface 

expansion velocity v, as shown in the following equation, 

2

cos

v
t

c




 


                                                                        (1) 

where c is the speed of light. The CCD image recorded captures the temporal evolution of the 

critical surface topography. The spatial information on the CCD corresponds to the temporal 

evolution of the critical surface, with each position on the CCD representing a different time 

delay relative to the initial probe pulse. 

III. EXPERIMENT SETUP 

The experiment is conducted with SGII nanosecond laser facility and SG-5PW femtosecond 

laser system. The probe beam employed in our experiment is sourced from the SG-5PW front -

end and expanded to about 100mm×100mm in size [22-24], in which two optical parametric 

chirped pulse amplification (OPCPA) links make up the whole beam, and each of the OPCPA 

link has two BBO crystals. These BBO crystals are cutting in TYPE 1 configuration, with a 

phase matching angle of 23.8° and a non-collinear angle of 2.36° within the crystal. The 

frequency-doubled Nd: YAG laser independently developed by our laboratory is used as the 

pump source of the OPCPA links at a repetition rate of 1Hz. The femtosecond seed pulse is 

generated by a commercial Ti: Sapphire laser (FEMTO LASERS). The seed pulse width is 10fs, 

the repetition rate 75MHz, and the average power 150mW. After passing through the stretcher, 
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the seed pulse is temporally broadened into a chirped pulse with a full width at half maximum 

(FWHM) of 0.85ns and a chirp rate of 21.3ps/nm. 

The experimental setup utilizes one beam of the SGII, a 526 nm, 1 ns, 200 J laser pulse as the 

driving laser. It drives the formation of fusion plasma from a CD target (a commonly used low-Z 

ablator material in ICF experiments). The focused peak power density is 1×1015 W/cm2. The 

temporal profile of the drive laser is a square wave, with a rise time of approximately 110 ps. 

The probe beam is a chirped pulse, as mentioned in the previous section. As shown in Figure 2, 

this time-resolved imaging technique leverages the interaction between the probe beam and the 

plasma critical surface. The driving beam is incident vertically on the target surface, while the 

probe beam is focused by an off-axis parabolic mirror and incident on the target surface at an 

angle of 21°. In the experiment, the time synchronization between the drive laser and the probe 

beam was measured at the target location using a photodetector. The photodetector’s response 

time is 60 ps, and the accuracy of the time synchronization is 10 ps RMS. The time delay 

mentioned in the subsequent text refers to the temporal difference between the leading edges of 

the two laser pulses. 

 

Figure 2. The experimental setup consists of the following optical components: M1-M7 are reflective 

mirrors, BS1 and BS2 are beam splitters, L1 and L2 are focusing lenses, G1 and G2 are gold-coated diffraction 
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gratings, and P is an aperture plate. Notably, M1, M2, and the target are all situated within a vacuum target 

chamber. 

 

After interacting with the fusion plasma, the probe beam is collimated by lens L1 and reflected 

by mirror M2 to be extracted from the vacuum target chamber. The probe beam is then split by 

beam splitter BS1, with one portion directed to a spectrometer to measure the probe spectrum. 

The other reflected by M3 is sent through a pair of diffraction gratings G1 and G2 to recompress 

the probe beam back to its original femtosecond pulse duration, which is then reflected by mirror 

M4 and directed into an autocorrelator to measure the pulse width of the compressed probe 

beam. The remaining portion of the probe beam is diffracted by the grating pair G1 and G2, 

collimated, and transmitted through BS2. This beam then passes through an aperture plate P 

(with six pinholes corresponding to wavelengths of 809 nm, 815 nm, 821 nm, 826 nm, 833 nm, 

and 837 nm) and lens L2, and is imaged onto a CCD camera. By comparing the brightness of the 

spots on the CCD before and after the injection of the drive beam, the synchronization between 

the drive and probe beams can be assessed, providing a reference for adjusting the time delay 

between the two beams. 

IV. RESULTS AND DISCUSSION 

In order to further analyze the experimental data, we utilized the radiation 

magnetohydrodynamics code FLASH [25-26] to perform simulations. FLASH is capable of 

multi-temperature treatment of the plasma, enabling it to model high energy density physics 

experiments driven by lasers. Based on the laser and target parameters in the experiment, we 

conducted laser-driven ablation simulations on a 50 μm thick, 1 g/cm3 density CD target using a 

526 nm wavelength, 1×1015 W/cm2 intensity, 1 ns duration laser. The initial setup of the 
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simulation is shown in Figure 3. The simulation domain size was 280 μm × 80 μm with a grid 

size of 0.1 μm. Subsequently, we reconstructed the experimental optical path of the probe beam.  

 

Figure 3. The initial conditions for the simulation 

 

At time t, the probe beam wavelength components λ were incident on the laser-ablated plasma 

at uniform angles θ ranging from 16° to 26°. The different wavelengths λ and incident angles θ 

correspond to different densities of the reflection surface. Based on the FLASH simulation 

results, we obtained the critical surface position, velocity, reflectivity, and tangential angle 

(reflecting the critical surface morphology) at that time and location. We then calculated the 

Doppler shift in wavelength and the reflection angle due to the Doppler effect, and performed ray 

tracing to determine the portion of the light that could pass through the subsequent optical 

components and reach the spectrometer, thereby obtaining the simulated spectrometer signal. 

The results calculated without considering the changes in surface morphology at the critical 

surface are shown in Figures 4(a), 4(c), and 4(e), where the red line represents the spectrum 

received by the spectrometer in the experiment, and the blue line shows the calculated spectrum. 

Without considering the changes in surface morphology, the wavelength range that can reach the 

spectrometer is very wide, and the periodic peaks and valleys reflect the oscillation of the critical 
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surface driven by the hydrodynamic force. When the changes in surface morphology are 

considered, the calculated results are shown in Figures 4(b), 4(d), and 4(f), where the red line 

represents the spectrum received by the spectrometer in the experiment, and the blue line shows 

the calculated spectrum. The calculated results agree well with the experimental results. 

 

Figure 4. Measured probe beam spectrum (red line) and calculated spectrum (blue line). Without 

considering the change in the critical surface morphology, the probe beam is delayed relative to the drive beam 

by (a) 250 ps, (c) 940 ps, and (e) 1035 ps. Considering the change in the critical surface morphology, the probe 

beam is delayed relative to the drive beam by(b) 250 ps, (d) 940 ps, and (f) 1035 ps. 
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To explain the changes in the spectrum, we consider the critical surface in the probe beam 

interaction region as a curved arc. In the initial phase of the interaction of the probe with the 

plasma surface, most of the probe is reflected by the surface which works like a convex mirror, 

so only a small part light energy enters into the subsequent optical path. After some time, the 

curvature of the curved arc decreases due to the probe beam's action, and the portion entering the 

subsequent optical path is maximized. Meanwhile, the reflective mirror formed by the two ends 

of the curved arc rotates towards the direction perpendicular to the probe beam due to the probe 

beam's action. After several hundred picoseconds, the reflected probe beam can no longer enter 

the subsequent optical path due to the change in the reflection angle. The changes in the surface 

morphology of the critical surface are caused by the actual surface profile of the planar target 

used in the experiment and the non-uniformity of the driving laser. Therefore, our measurement 

method can reflect the time-dependent changes in the surface morphology of the critical surface. 

Additionally, it is worth noting that the different spectra at different delays are due to the 

changes in the position of the critical surface, and the cessation of the driving laser results in the 

termination of the isothermal expansion, leading to changes in the density distribution of the 

plasma induced by the rarefaction wave.  

The CCD images before and after the drive beam injection are shown in Figure 5. 
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Figure 5. the image on the CCD sensor (a) without driving laser (b) with driving laser. Specifically, the 

zero-point in the figure represents the moment when the probe beam begins to interact with the target. 

 

In the absence of the drive beam injection, the light spot on the CCD corresponds to the 

reflection of the probe beam from the target surface itself, exhibiting relatively weak brightness. 

Starting from the image of the 5th hole (corresponding to a wavelength of 815 nm), i.e., 

approximately 750 ps after the probe beam interaction, the brightness of the light spot is 

significantly reduced due to the damage of the target under laser irradiation. After the drive beam 

injection, the light spot on the CCD is attributed to the reflection of the probe beam from the 

plasma critical surface, with a relatively high reflectivity exceeding 70%, resulting in an 

enhanced brightness of the light spot. Interestingly, we observed that the light spots in the first 

two holes are larger, while the light spot in the third hole is considerably smaller. Based on the 

simulation results, this phenomenon can be attributed to the presence of the pre-pulse. The pre-

pulse arrives before the probe beam and forms an initial plasma distribution. The probe beam, 

having a longer wavelength and a lower critical density, corresponds to a relatively flat critical 

surface morphology. Additionally, the low-density region is farther away from the target surface, 
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and the change in object distance leads to a larger image on the CCD. In this case, the light spot 

on the CCD represents the reflection image of the plasma critical surface within the probe beam 

range. The main pulse arrives between the time corresponding to the second hole and the third 

hole. Due to the high light intensity, the plasma within the main pulse light spot is rapidly 

compressed towards the target surface, while the surrounding plasma is also affected, forming a 

"funnel" shape. In this scenario, the light spot on the CCD corresponds to the reflection image of 

the plasma critical surface within the main pulse light spot, and the other parts within the probe 

beam range cannot enter the CCD due to the change in the plasma critical surface morphology.  

Based on the measurements from the autocorrelation setup, we have calculated the expansion 

velocity of the critical surface, as shown in Figure 6. Figure 6(a) presents the autocorrelation 

signals obtained at different delays between the probe beam and the main pulse leading edge, 

where the delay refers to the relative time between the main pulse leading edge and the probe 

beam leading edge. To avoid the gradual change in the critical surface morphology under the 

influence of the probe beam, as discussed previously, we have extracted the 836-850nm portion 

of the probe beam, corresponding to a broadened pulse width of 300 ps. 

 

Figure 6. (a) Autocorrelation signals at different time delays (0 ps, 200 ps, 400 ps, 600 ps, 800 ps). (b) 

Critical surface expansion velocity measured from the autocorrelation signals (red line) and obtained from 

numerical simulations (blue line). (c) Critical surface position as a function of time measured from the 
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autocorrelation signals (red line) and obtained from numerical simulations (blue line). (The negative sign in 

Figures 6(b) and 6(c) indicates that the direction of the plasma critical surface movement is opposite to the 

direction of the drive laser) 

 

Using Eq. (1), we can calculate the critical surface expansion velocity at different time points 

and compare it with the results from numerical simulations, as shown in Figure 6(b). The 

oscillation in the simulated velocity is due to the effect of radiation pressure, which causes the 

critical surface to oscillate. In contrast, the autocorrelation signal-based velocity represents the 

average motion of the critical surface within the 300 ps interaction with the probe beam. 

Furthermore, we have also calculated the critical surface position at different time points based 

on the measured velocity and compared it with the numerical simulation results, as shown in 

Figure 6(c). The measured results agree well with the numerical simulation, and the critical 

surface expansion velocity is in the range of 1×105-2×105 m/s, consistent with the previous 

reports [22]. The deviations in the results can be attributed to two factors: first, the measurement 

error of the autocorrelation setup, and second, the fact that for the 836-850 nm probe beam, the 

shorter wavelength part corresponds to a higher critical density and reflects at a position closer to 

the target, resulting in a smaller change in the optical path compared to the case where the 

wavelength is constant, leading to an underestimation of the critical surface expansion velocity. 

V. CONCLUSIONS 

We have developed a novel optical measurement technique capable of probing the surface 

deformation and expansion velocity of the critical surface within the ablation layer during the 

inertial confinement fusion (ICF) process. This innovative approach provides new insights into 

the underlying physical phenomena governing ICF, which can inform strategies to enhance the 
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uniformity of the drive laser and target surface. Ultimately, this advancement has the potential to 

improve the efficiency of converting laser energy into implosion kinetic energy. 
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