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1. Introduction

Oldroyd (1) considered non-Newtonian liquids for which the stress tensor
sik and the rate of strain tensor eik = \(vkt,+vuk) are related as follows

•S.fc = Pik-Pdik, " - ( I )

k ik + ikJ + J ' " < = 2r,0 (eik+X2 £ eik + v 2 e % l 9
i k \ (2)

Here vt denotes the velocity vector, p an isotropic pressure, gik the metric
tensor, and t time; r\0 is a constant having the dimensions of viscosity and
^•D 2̂» J"o> vi> V2 a r e constants having the dimension of time. Covariant
suffixes are written below, contravariant above and the usual summation
convention is employed. A suffix i following a comma indicates covariant
differentiation with respect to the space variable x'. The derivative denoted

by ^- is the " convected derivative " (2). For any second order contravariant

tensor B'k we have

D'k Difc i *,JD*fe i i r>mk i , (fc Dim ni nmk nk

B B +vJB + B +wB eB e
— B =—B +vJB,j + w.mB +w.mB -emB -emB ,
ot at

where wik = \{vKi-vi<k).
Provided that the five constants Xu X2, fi0, v1; v2 satisfy certain inequalities,

Oldroyd showed that in theory liquids of the class defined by equations (1)
and (2) exhibit for all rates of shear non-Newtonian flow properties which
have been observed in polymer solutions. These liquids have a variable
apparent viscosity in simple shearing, decreasing with increasing rate of strain
from a value rj0 at low rates of strain to a value >h(< fo) a t h'gh rates. They
show the Weissenberg climbing effect and have a distribution of normal stresses
associated with an extra tension along the streamlines in many types of simple
flow, having an isotropic state of stress normal to the streamlines. Also for
flow at low rates of shear such liquids are characterised by three constants,
a coefficient of viscosity r]0, a relaxation time Al5 and a retardation time A2.
The author (3) showed that for a Stokes flow past a sphere the theoretical
predictions are qualitatively in agreement with experiment.
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The aim of the present paper is to present some further solutions of equations
(1) and (2) and the equations of conservation of mass and momentum for an
incompressible liquid of density p,

e\ = 0, j
J ( 3 )

The problem considered is that of an infinite flat plate immersed in a
liquid characterised by equations (1) and (2) and set in motion with a velocity
At* along a straight line in its own plane, where A is a constant. Solutions
as expansions in terms of time are obtained for both small and large time for
the full equations. A solution of the equations in linearised form is obtained
for all time by a Pohlhausen technique.

For a Newtonian fluid the drag on a flat plate whose velocity is At* is a
constant independent of time. For the non-Newtonian liquid considered the
drag is initially different from this constant value by a factor (A2/Ai)*. Since
X2 is less than Xt (4) this factor is less than unity and may be as small as one
half (5). At large times (>10 Xt) the non-Newtonian drag is less than the
corresponding Newtonian value, the difference being of order A2X\lv0, where
v0 is the kinematic viscosity t]op~l. The Pohlhausen solution estimates the
drag for intermediate times and suggests that it quickly assumes its asymptotic
value.

2. The Equations of Motion
Cartesian co-ordinates x, y, z are chosen such that the flat plate occupies

the plane x = 0 and moves parallel to the .y-axis. All tensor quantities are
expressed in terms of their physical components referred to these co-ordinates.
Let u, v, w be the components of the velocity vector. Since the plate is infinite
a solution of the form

u = 0, v = v(x, t), w = 0

is examined. From symmetry

Pxz = Pyz = 0,

and we seek a solution in which the other partial stresses pik are functions of
x and t only, all vanishing at large x; and/) is a function of x and t which tends
to the constant pressure P at large x. Equations (2), (3) become

(4)
at ox \oxj

8 , „. , 3u , ~ , \ (dv\2

~ Pyy + iVi-2/.J — p = (v2-2X2)rj0[ — , (5)
dt 8x \dxj

<L +v — = v f—Y (6)
dt " 1 dx xy 2 °\dx) '
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- 9 . dv , dv , . ( dv , . 82v\ ,_.
dt dx dx \8x dxdtj

dpxx _dp dv _ dpxy

ox ox dt ox

The boundary conditions are that there is no slip at the plate and that
there is no disturbance initially or at large distance from the plate, i.e.

when t^O, v = 0 for all x, )
when r>0, v = At* a tx = 0, J (9)

v = 0 at x = oo. J

Since there is no disturbance initially it is assumed that in the fluid the stress
is zero initially. This gives the following boundary conditions,

when t^O, Pxx =/»„ = pzz = pxy = 0 for x>0 (10)

3. Solution of the Equations
To obtain solutions of the equations (4)-(8) for the boundary conditions

(9), (10) a similarity variable s = x/2f* is introduced and s, t are taken as
independent variables.

For solutions for small time let

Pxy =

From equations (4)-(8),

9o =

2g'o = a2p/o". (11)

h'0 = k'0 = 0,

where a2 = v0k2l^i and ' denotes differentiation with respect to the similarity
variable s. The relevant boundary conditions are

fo(O) = A, /0(oo) = 0,

0o(co) = h0(co) = k0(co) = 0.

The solution of equations (11) for those boundary conditions is

fo(s) = A(e-sl<al-2sla erfc(5/a)),

9o(s) = - "pA erfcfa/a),

hQ(s) = ko(s) = 0,
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where

From equations (4)-(8)

F. M. LESLIE

erfcx - J . •"•"*•
g'i =p(3fi-sfD>

2X1(2g1-sgi)+4g0 = 2

2A1(2fc1 - ski) + 2(vt - 2X1)gof£ =

The appropriate boundary conditions are

.(12)

- 2A2)/0'2.

and tgu thu tk^O as r->0. The second of equations (12) may be written

— - erfc(j/a)aV;

which is readily integrated to give gt in terms of fv Substituting for gt in
the first of equations (12) gives an equation for f1. The relevant solution of
equations (12) is

s , , A(X1-X2)Vf2s3 , \ - , . . s2 __2/.2~|
M s ) = -1 . 2 — + s a ) e r f c ( j / f l ) - - 2 e s/a \,

XyX2 l\a3 J a J

f00 e~"
where £((x) = —

For solutions for large time let

du.

From equations (4)-(8)

= 2r,0F^,

4K0 = Fi{{v2-

...(13)
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The boundary conditions (9) give

Fo(0) = A, F0(co) = 0.

The second of equations (13) reduces to

8G0 = 4IJ0F£ + F J 2 ( I J 0 ( X 2 F J - 2fflG0), (14)

where

The first of equations (13) and equation (14) can be expressed in non-
dimensional form by the following substitutions,

s = v^9, a1 = o^A2, a2 = <x2X\,

Fo = Ap, Go = Apv%q.

The equations become

(15)
o<7 = ip +x~p '(x2p — z<xtq), )

where T2 = -. The boundary conditions for equations (15) are

p(0) = 1, p(oo) = 0.

Since Xi is of order 10"1 sec. and r\0 is of order 10 pse or greater, T2 can be
assumed small provided A is not too large. Writing

P =

q =
equations (15) give

I'o = PO-SP'O>

2<Zo = Po.
where

Po(O) = 1, PoCoo) = 0.

Thus

q0 = — erfcS.

The equations for the coefficients of T2 are

q\ =p1-9p'u

q1
where

Pl(0) =
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Hence

P1 = (a1-«2)|^-^(2SerfcS-i
O

3 + \e~92(erfcS)2 + \*9 erfc(3*£>) - | e "- 29(erfc9)3 + \e~92(erfcS)2 + \*9 erfc(3*£>)

erfc9+ ^ e-*2(erfc5)2-fe-292 erfcS+f* erfc(3*S) 1

In the original notation,

F0(s) = ̂ (e-J )2-29 erfc9) + \ ( 2

L 8

* 3 9 2 l + 0

= -pv*A erfc9+

i e - 2 9 2 erfcS + f* erfc(3*9)l

J V
H0(s) = p y i V a - f ^ )

K0(s) = pA2(v2 - Vl + 2(/lx - A2))(erfc9)2+0
\ "o

where & = s/v$ = x/2(*v0)*.
It is possible to proceed and evaluate Fx, Gu Hu K^ However, these

terms contain an undetermined constant due to the fact that a complementary
function is zero at both boundaries. This is not surprising since the situation
is similar to that in boundary layer problems where undetermined constants
appear in the solution. The unknown constant in the present problem could
be found by matching with a solution for smaller time.

An inspection of the first two terms of the solution for small time suggests
that it is valid provided that t is small compared with At and thus the solution
is valid for only very small times. The series for large time would appear to
be valid for time large compared with At.

For a Newtonian fluid this problem has the exact solution

pxy= -Apv% erfcfl,

Pxx = Pyy = Pzz = 0.

Initially both the velocity and the shear stress are significantly less for the
non-Newtonian liquid than they are for the Newtonian liquid. The differences
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between the velocities and shear stresses decrease with time and at times large
compared with the relaxation time the non-Newtonian values are smaller

2 i 2AXthan the Newtonian values by a factor of order 1 (since O1>CJ2 (1)). In

fig. 1 the velocity profiles are compared for small time and in fig. 2 the shear
stresses are compared for small time. Initially the normal stresses are zero
but at large time there is an extra tension along the streamlines.

10

FIG. 1.—The velocity profiles compared at small time (Ai = 4A2).
Newtonian. Non-Newtonian.

The drag D on the plate is given by

for small time, and for large time by

where the Newtonian drag DN = p^v°n) . i n fig. 3 the drag D is compared
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FIG. 2.—The shear stresses compared at small time (Ai = 4A2).
Newtonian. Non-Newtonian.

0 5

FIG. 3.—The drag against time f Ai = 4A2,
VQ

• Newtonian. Non-Newtonian.
Asymptotic Non-Newtonian value. — • — • Pohlhausen.https://doi.org/10.1017/S0013091500010877 Published online by Cambridge University Press
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with this constant Newtonian drag. At first D is much less than this value
but increases rapidly with time. The asymptotic value for large time is a
constant slightly smaller than the Newtonian value. From the first of equations
(8) it can be seen that the normal component of stress on the plate is a constant
pressure P.

4. Approximate Solution by a Pohlhausen Method
If the dimensionless parameter Alxlv% is small compared with unity, the

non-linear terms in equations (4)-(7) can be neglected to give

d
Pxx + lftP**= '

p,,+A1ipw=0, j- (16)

v +k - v = 0,
" 1 dt "

and

p +xt-P =no(- +*2—) (17)
xy dt xy \dx dxdtj

Also
Sv dpxy

Pr = 7-' (18)
dt dx

From the equations (16) and the boundary conditions (10)
Pxx = Pyy = Pzz = 0-

In this section an approximate solution of the equations (17), (18) is obtained
in order to find an estimate of the drag on the plate at intermediate times.

Since the velocity and the shear stress are known at both large and small
time from the solutions of the previous section, profiles are chosen for the
velocity and the shear stress for all time such that they agree with the known
values at small and large time. The profiles chosen are

v = Ati(e~B2/d-23l5* erfc(S/5*)),

where 9 = sj\% = x/2(/vo)i and 8 and /? are functions of time. If 5 and P
are both equal to unity, the profiles are those obtained in the previous section
for large time if terms of order A2AI/V0 are neglected. If 5 and /? are both
equal to A2/A!, the profiles are those obtained in the previous section for small
time. Thus the boundary conditions for 5 and /? are

S = p = X2\ky, when f = 0,

<5 = /? = 1, when t = oo.
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The functions 8 and /? are determined from the equations obtained by integrating
the equations (17) and (18) with respect to x from 0 to oo,

f00 d f°° d
Pxydx + Xi—X pxydx= -t]0vx = 0-t\0X2- {vx = 0), (19)

Jo «'Jo dt
and

p - \ vdx= -(pxy)x = o (20)

From equation (19),

1 dt
and hence

= l - ( l - -2 - ' r * e"2du.
\ ^-1/ t Jo

From equation (20),

From which 8 can be found;

8 = 1-

The drag on the plate, Z>, is given by

_

In fig. 3, Z) is shown as a function of time when /^ is equal to 4A2- The drag
increases quite quickly at first but approaches its asymptote rather slowly.

By comparing the quantity I — 1 with its value from the previous
\dtj

section an indication of the accuracy of the Pohlhausen solution is obtained.
For the Pohlhausen solution

( dD\ _ p(von)iA(Xl — X-

and for the series solution
(dD\ _
\dtj,.o

Thus this quantity is too small by 30 per cent, in the Pohlhausen solution
and this suggests that the drag would tend to its asymptotic value more rapidly
than indicated by this approximate solution.
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