Bull. Aust. Math. Soc. **96** (2017), 374–**379** doi:10.1017/S0004972717000624

A NEW UPPER BOUND FOR THE SUM OF DIVISORS FUNCTION

CHRISTIAN AXLER

(Received 30 March 2017; accepted 12 May 2017; first published online 14 August 2017)

Abstract

Robin's criterion states that the Riemann hypothesis is true if and only if $\sigma(n) < e^{\gamma} n \log \log n$ for every positive integer $n \ge 5041$. In this paper we establish a new unconditional upper bound for the sum of divisors function, which improves the current best unconditional estimate given by Robin. For this purpose, we use a precise approximation for Chebyshev's ϑ -function.

2010 *Mathematics subject classification*: primary 11A25; secondary 11Y70. *Keywords and phrases*: Riemann hypothesis, Robin's inequality, sum of divisors function.

1. Introduction

Let *n* be a positive integer. The arithmetical function $\sigma : \mathbb{N} \to \mathbb{N}$ is defined by

$$\sigma(n) = \sum_{d|n} d$$

and denotes the sum of the divisors of *n*. The function σ is multiplicative and satisfies $\sigma(p^k) = (p^{k+1} - 1)/(p - 1)$ for every prime number *p* and every positive integer *k*. In 1913, Gronwall [9, page 119] found the maximal order of σ by showing that

$$\limsup_{n \to \infty} \frac{\sigma(n)}{n \log \log n} = e^{\gamma}, \tag{1.1}$$

where $\gamma = 0.5772156...$ denotes the Euler–Mascheroni constant. In the proof of (1.1), Gronwall invoked a result of Mertens [13, page 53], namely that

$$\prod_{p \le x} \left(1 - \frac{1}{p}\right)^{-1} \sim e^{\gamma} \log x,$$

where p runs over primes not exceeding x. Under the assumption that the Riemann hypothesis is true, Ramanujan [14] showed that the inequality

$$\frac{\sigma(n)}{n} < e^{\gamma} \log \log n$$

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

holds for all sufficiently large positive integers *n*. In 1983, Robin [15, Théorème 1] improved Ramanujan's result by showing that the Riemann hypothesis is true *if and* only *if*

$$\frac{\sigma(n)}{n} < e^{\gamma} \log \log n \quad \text{for all } n \ge 5041.$$
 (1.2)

This criterion for the Riemann hypothesis is called *Robin's criterion* and the inequality (1.2) is called *Robin's inequality*. Robin's inequality holds in many cases (see Choie *et al.* [7, Theorems 1.1–1.2 and Theorems 1.4–1.5], Grytczuk [10, Theorems 1 and 3–4], Banks *et al.* [4, Theorem 2], Solé and Planat [16, Theorem 10] and Broughan and Trudgian [6, Theorem 1]), but remains open in general.

In the other direction, Robin [15, Théorème 2] used a lower bound for Chebyshev's ϑ -function to show that the weaker inequality

$$\frac{\sigma(n)}{n} < e^{\gamma} \log \log n + \frac{0.6483}{\log \log n} \tag{1.3}$$

holds unconditionally for every positive integer $n \ge 3$, which refines (1.1). If the Riemann hypothesis is false, then, by Robin's criterion, the inequality (1.2) is false when $\sigma(n)/n$ is large. However, by (1.3) the ratio $\sigma(n)/n$ cannot be too large. We note that the constant in (1.3) is an approximation to $(\sigma(12)/12 - e^{\gamma} \log \log 12) \log \log 12$, so a better constant can be achieved if we consider (1.3) for $n \ge n_0 > 12$. The advantage of the inequality (1.3) is that it holds for every positive integer n where $\log \log n$ is positive.

We obtain the following improvement of (1.3).

THEOREM 1.1. Set

 $\mathcal{A} = \{1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 120, 180, 240, 360, 2520\}.$

For every positive integer $n \in \mathbb{N} \setminus \mathcal{A}$ *,*

$$\frac{\sigma(n)}{n} < e^{\gamma} \log \log n + \frac{0.1209}{(\log \log n)^2}.$$
(1.4)

2. Preliminaries

A positive integer *n* is called *colossally abundant* if there is an $\varepsilon > 0$ so that $\sigma(n)/n^{1+\varepsilon} \ge \sigma(k)/k^{1+\varepsilon}$ for every positive integer $k \ge 2$. Suppose M_1 and M_2 are consecutive colossally abundant numbers satisfying the inequality (1.2). Then, Robin [15, Proposition 1, page 192] showed that Robin's inequality (1.2) holds for every positive integer *n* such that $M_1 \le n \le M_2$. In 2006, Briggs [5] verified that Robin's inequality (1.2) holds for every colossally abundant number *n* with 5041 $\le n \le 10^{10^{10}}$. Hence, Robin's inequality is fulfilled for every positive integer *n* so that

$$5041 \le n \le 10^{10^{10}}$$

For further results on colossally abundant numbers, see [2].

C. Axler

Let φ be Euler's totient function. Since φ is multiplicative and $\varphi(p^k) = p^k(1 - 1/p)$ for any prime *p* and any positive integer *k*,

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

for every positive integer *n*. Let $n = q_1^{e_1} \dots q_k^{e_k}$, where q_i are distinct primes and $e_i \ge 1$. It is easy to show (see, for example, [10, Lemma 2]) that σ and φ are connected by the identity

$$\frac{\sigma(n)}{n} = \prod_{i=1}^k \left(1 - \frac{1}{q_i^{1+e_i}}\right) \frac{n}{\varphi(n)},$$

which implies the inequality

$$\frac{\sigma(n)}{n} < \frac{n}{\varphi(n)}.$$
(2.1)

3. Proof of Theorem 1.1

Let *k* be a positive integer. Throughout this section, we write $N_k = p_1 \dots p_k$, where p_i is the *i*th prime number. Chebyshev's ϑ -function is defined by

$$\vartheta(x) = \sum_{p \le x} \log p,$$

where *p* runs over primes not exceeding *x*. Clearly,

$$\log N_k = \vartheta(p_k). \tag{3.1}$$

For $k_0 = \pi(e^{23.85981}) + 1 = 1\,009\,322\,602$, we have $p_{k_0} = 23\,024\,161\,471$. Applying (3.1) and [3, Theorem 1.1],

$$\log \log N_{k_0} = \log \vartheta(p_{k_0}) \le \log p_{k_0} + \log \left(1 + \frac{0.15}{\log^3 p_{k_0}}\right) \le 23.85983.$$

Hence, we get the upper bound

$$N_{k_0} \le e^{e^{23.85983}} \le 10^{10^{10}}.$$
(3.2)

Now we give the proof of Theorem 1.1. For this purpose, we use a lower bound for Chebyshev's ϑ -function, obtained by Dusart [8, Theorem 4.2] in 2016, and an upper bound for the product

$$\prod_{p \le p_k} \left(1 - \frac{1}{p}\right)^{-1}$$

given in [3, Proposition 6.1].

376

PROOF OF THEOREM 1.1. Let

$$a_0 = 0.01001 + 1/17.2835$$
 and $k_0 = \pi(e^{23.85981}) + 1 = 1\,009\,322\,602$

and take $k \ge k_0$. Then $p_k \ge e^{23.85981}$. From (3.1) and the result of Dusart [8, Theorem 4.2],

$$\log N_k > p_k - \frac{0.01 p_k}{\log^2 p_k}.$$
(3.3)

.....

Consider the function $f : (1, \infty) \to \mathbb{R}$ given by $t \mapsto \log(1 - 0.01/t^2) + 0.01001/t^2$. Note that $f'(t) \le 0$ for every $t \ge 3.17$ and $\lim_{t\to\infty} f(t) = 0$. Hence, $f(t) \ge 0$ for every $t \ge 3.17$. Together with (3.3), this implies

$$\log \log N_k > \log p_k - \frac{0.01001}{\log^2 p_k}.$$
(3.4)

Note that $x \mapsto x + e^{\gamma} a_0 / x^2$ is a strictly increasing function on $(\sqrt[3]{2e^{\gamma}a_0}, \infty)$. Combining this remark with (3.4),

$$e^{\gamma} \log \log N_k + \frac{e^{\gamma} a_0}{(\log \log N_k)^2} > e^{\gamma} \log p_k \left(1 + \frac{a_0 - 0.01001}{\log^3 p_k} \right).$$
(3.5)

Next, by [3, Proposition 6.1],

$$\prod_{p \le p_k} \left(1 - \frac{1}{p} \right)^{-1} < e^{\gamma} \log p_k \left(1 + \frac{1}{17.2835 \log^3 p_k} \right).$$

Together with (3.5), this yields the inequality

$$e^{\gamma} \log \log N_k + \frac{e^{\gamma} a_0}{(\log \log N_k)^2} > \prod_{p \le p_k} \left(1 - \frac{1}{p}\right)^{-1} = \frac{N_k}{\varphi(N_k)}.$$
 (3.6)

Now, let *n* be a positive integer satisfying $N_k \le n < N_{k+1}$. We use (2.1), (3.6), the inequality $e^{\gamma}a_0 \le 0.1209$ and the fact that $N_k/\varphi(N_k) \ge n/\varphi(n)$ to get

$$e^{\gamma} \log \log n + \frac{0.1209}{(\log \log n)^2} \ge e^{\gamma} \log \log N_k + \frac{e^{\gamma} a_0}{(\log \log N_k)^2} > \frac{N_k}{\varphi(N_k)} \ge \frac{n}{\varphi(n)} > \frac{\sigma(n)}{n}.$$

Hence, the required inequality holds for every positive integer $n \ge N_{k_0}$. From (3.2), we conclude that the inequality (1.4) is correct for every positive integer $n \ge 10^{10^{10}}$. Since Robin's inequality holds for every positive integer n such that $5041 \le n \le 10^{10^{10}}$, the required inequality (1.4) also holds for every positive integer n with $5041 \le n \le 10^{10^{10}}$. A direct computation for smaller values of n completes the proof.

In a different direction, Ivić [12, Theorem 1] showed that the inequality

$$\frac{\sigma(n)}{n} < 2.59 \log \log n \tag{3.7}$$

C. Axler

holds for every positive integer $n \ge 7$. After some improvements of the constant in (3.7) (see for example [1], [10] and [15]), the current best such inequality was found by Hertlein [11, Theorem 4] in 2016. Setting $\varepsilon_0 = 5.645 \times 10^{-7}$, he proved that the inequality

$$\frac{\sigma(n)}{n} < (1 + \varepsilon_0)e^{\gamma}\log\log n$$

holds for every positive integer $n \ge 5041$. Now let ε be a real number satisfying $0 < \varepsilon < \varepsilon_0$. We apply Theorem 1.1 to find an upper bound for the smallest positive integer $n_0(\varepsilon)$ so that the inequality

$$\frac{\sigma(n)}{n} < (1+\varepsilon)e^{\gamma}\log\log n \tag{3.8}$$

holds for every positive integer $n \ge n_0(\varepsilon)$.

COROLLARY 3.1. Let $a = 0.1209/e^{\gamma}$ and let ε be a real number with $0 < \varepsilon < \varepsilon_0$. Then the inequality (3.8) holds for every positive integer $n \ge \exp(\exp(\sqrt[3]{a/\varepsilon}))$.

PROOF. This is a direct consequence of Theorem 1.1.

Acknowledgement

I wish to thank the anonymous referee for a careful reading of the paper and helpful comments.

References

- [1] A. Akbary, Z. Friggstad and R. Juricevic, 'Explicit upper bounds for $\prod_{p \le p_{\omega(n)}} p/(p-1)$ ', *Contrib. Discrete Math.* **2**(2) (2007), 153–160.
- [2] L. Alaoglu and P. Erdős, 'On highly composite and similar numbers', *Trans. Amer. Math. Soc.* 56 (1944), 448–469.
- [3] C. Axler, 'New estimates for some prime functions', Preprint, 2017, available at arXiv:1703.08032.
- [4] W. D. Banks, D. N. Hart, P. Moree, C. W. Nevans and C. Wesley, 'The Nicolas and Robin inequalities with sums of two squares', *Monatsh. Math.* 157(4) (2009), 303–322.
- [5] K. Briggs, 'Abundant numbers and the Riemann hypothesis', *Exp. Math.* **15**(2) (2006), 251–256.
- [6] K. Broughan and T. Trudgian, 'Robin's inequality for 11-free integers', *Integers* 15 (2015), Article ID A12, 5 pages.
- [7] Y.-J. Choie, N. Lichiardopol, P. Moree and P. Solé, 'On Robin's criterion for the Riemann hypothesis', J. Théor. Nombres Bordeaux 19(2) (2007), 357–372.
- [8] P. Dusart, 'Explicit estimates of some functions over primes', *Ramanujan J.* (2016), doi:10.1007/s11139-016-9839-4.
- T. H. Gronwall, 'Some asymptotic expressions in the theory of numbers', *Trans. Amer. Math. Soc.* 14(1) (1913), 113–122.
- [10] A. Grytczuk, 'Upper bound for sum of divisors function and the Riemann hypothesis', *Tsukuba J. Math.* 31(1) (2007), 67–75.
- [11] A. Hertlein, 'Robin's inequality for new families of integers', Preprint, 2016, available at arXiv:1612.05186.
- [12] A. Ivić, 'Two inequalities for the sum of divisors functions', Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. 7 (1977), 17–22.
- [13] F. Mertens, 'Ein Beitrag zur analytischen Zahlentheorie', J. reine angew. Math. 78 (1874), 42–62.

378

The sum of divisors function

- [14] S. Ramanujan, 'Highly composite numbers, annotated and with a foreword by Nicolas and Robin', *Ramanujan J.* 1(2) (1997), 119–153.
- [15] G. Robin, 'Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann', J. Math. Pures Appl. 63(2) (1984), 187–213.
- [16] P. Solé and M. Planat, 'The Robin inequality for 7-free integers', Integers 12(2) (2012), 301–309.

CHRISTIAN AXLER, Institute of Mathematics, Heinrich Heine University, Duesseldorf, 40225 Duesseldorf, Germany e-mail: christian.axler@hhu.de

[6]