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A Division Algorithm for the Gaussian
Integers” Minimal Euclidean Function

Hester Graves

Abstract. The usual division algorithms on Z and Z[i | measure the size of remainders using the alge-
braic norm. These rings are Euclidean with respect to several functions. The pointwise minimum of
all Euclidean functions f : R \ {0} — N on a Euclidean domain R is itself a Euclidean function,
called the minimal Euclidean function and denoted by ¢r. To the author’s knowledge, the integers,
Z,and the Gaussians, Z[i ], are the only rings of integers of number fields for which we have a formula
to compute their minimal Euclidean functions, ¢z and ¢z[;]. This paper presents the first division
algorithm (that the author knows of) for Z[i] relative to ¢7|;], empowering readers to perform the
Euclidean algorithm on Z[i] using its minimal Euclidean function.

1 Introduction

We call Z[i] = {x+yi : x,y € Z,i* = —1} the Gaussian integers because Gauss showed
the domain has unique factorization. Due to Dirichlet’s realization that Euclidean rings
have unique factorization, we say the Gaussian integers form a unique factorization
domain because they are Euclidean for the algebraic (or field) norm, Nm(x + yi) =
x2 + y%. The standard proof that Z[] is Euclidean uses a division algorithm that, given
a,b € Z[i] \ {0}, provides ¢, r € Z[i] such that a = gb + r and Nm(r) < NmT(m (see
Equation 2.2). Accordingly, we call r the Gauss remainder for a and b.

Inspired by Zariski, Motzkin [3] broadened the study of Euclidean domains via
Euclidean functions. A domain R is Euclidean if there exists a Euclidean function
f : R\ {0} — W, where W is a well-ordered set with N as an initial segment, such
that for all @,b € R \ {0}, there exist some ¢,r € R such that a = gb + r, where
either f(r) < f(b) or r = 0. Using this modern terminology, the algebraic norm is a
Euclidean function for Z[i].

Motzkin [3] further showed that if F is the set of all Euclidean functions on R \
{0}, then ¢r(x) = minger f(x) is itself a Euclidean function. For obvious reasons,
we call ¢g the minimal Euclidean function on R. In particular, he showed ¢z (x) =
|log, |x|]. Until 2023, this was the only formula the author knew of to compute the
minimal Euclidean function for any number field.

Just as every integer has a binary expansion, every Gaussian integer has (1 + i)-ary
expansions. This is fitting, as 2 = —i(1 + i) and the quotient Z[i]/({1 + i) has size 2.
We use (1 + i)-expansions of the form x + yi = Z?:o uj(l+ i)/ for some n, where
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uj € {£1, +i,0} and u,, # 0. These expressions are not unique, as
2+i=—i(1+0)?+i=(1+i)+1. (1.1)

Lenstra ([2], section 11) showed that ¢z[;| (x + yi) is the minimal degree of all (1 +i)-
ary expansions of x + yi, e.g, ¢z[;1(2 + i) = deg,,;((1 +i) + 1) = 1. Therefore, if
x +yi € Z[i] \ {0}, then ¢z[;) (1 +)"x) = $z[;)(x) + n and ¢z[;)(ux) = ¢z (x)
for all u in Z[{]’s group of multiplicative units, Z[{]* = {1, +i}. He did not, however,
provide methods to calculate ¢pz[;] for a generic x +yi € Z[i] \ {0}; Equation 1.1 shows
computing ¢z(;] is not straightforward.

The author’s recent research gives an explicit formula for ¢z[;](x + yi), using val-
uations and the sequence {w,,} [1]. Figure 1 shows which Gaussian integers map to
{0, 1,2, 3} under ¢z[;]. An explanation of this work requires a great deal of notation.

1.1 Notations and Definitions

1.1.1 Notation

* Every complex number has a real and imaginary part, denoted by Re(x + yi) = x
and Im(x + yi) = y.

* The complex conjugate of z is 7 = Re(z) — Im(z)i.

* The algebraic norm of z = x + yi € Q(i)isz - 7 = x> + y2.

+ If a divides b, we write a|b. Otherwise, a t b.

* When a€|b but a*! 1 b, we say ¢ is the a-valuation of b, or v, (b) = ¢

* We use gcd(x, y) to denote the greatest common divisor of x and .

1 ifx>0
* Forx € R, sgn(x) =40 ifx=0.
-1 ifx<0

* The £;-normis €; (x + yi) = |x| + |y| and the {-norm is €e (x + yi) = max(|x/|, |y|).

+ The multiplicative units of Z[i] are Z[i]* = {1, +i}.

* If x is a real number and n is the integer such that n < x < n+ 1, we write |[x] =n
and [x] = n + 1. We also use the nearest integer function, given by

[x] f0o<x—|x]<1/2
[x] = .

[x] otherwise

* The minimal Euclidean function on a domain R is ¢r. We calculate ¢7[;] using the
formula in Theorem 1.5; ¢z[;1(x) computes the length of x’s (1 + i)-ary expansion.

1.1.2 Definitions
o , 3.2 ifm=2k
Definition 1.1 We define the sequence w,,, = K .
4-2 ifm=2k+1

We repeatedly use that w4, = 2w, and that if 2! < w,, then 21|wm forallm > n.
Note that if 2! < w,, and 2! t w,,, then w,, = 3 - 2/
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Example 1.1 The sequence begins with wg = 3, w; = 4, w, = 6, w3 = 8, wy = 12,
ws = 16, etc.

Definition 1.2 The function m(z) = €¢1(z) — €« (z) is the minimum of the absolute
values of the real and imaginary parts of z.

Example 1.2 Weseem(7 —2i) =2,m(1+1i) = 1,and m(7) = m(7i) = 0.

Definition 1.3 1f z € C\ Z{1 £ i}, denote the unique unit such that Re(u,z) = € (2)
by u, .If z € Z{1 + i} \ {0}, u, is the unique unit such that u,z = € (2) (1 +1).

Example 1.3 Noteu,y; = 1, u1—; =i, and u_345; = —i.
Definition 1.4 For r € C, we define s(r) = sgn(Im(u,r)).

Example 1.4 If r = =3 + 5i, s(r) = sgn(Im(—i(=3 + 5i))) = sgn(Im(5 + 3i)) =
sgn(3) = 1.

1.1.3 Background

Complex conjugation is multiplicative, so that Xy = X - y, and hence the norm is also
multiplicative. In other words, if a,b € Q(i), then Nm(ab) = Nm(a)Nm(b). The
Gaussians’ multiplicative units, Z[i]* = {£1, i}, have norm one and the set is closed
under complex conjugation, so both the norm and ¢z[;] are invariant under complex
conjugation and multiplication by units. If u € Z[i]* and z € Z[i] \ {0}, then Nm(z) =
Nm(z) = Nm(uz) and ¢z[;1(2) = ¢z[i)(2) = ¢z (uz).

1.2 Using the minimal Euclidean function on Z[i]

Here, we present the formula for ¢7;], and a division algorithm on Z[i] using ¢z[;).

Theorem 1.5 (Graves, [1]) Given x + yi € Z[i] \ {0}, let j = v,(gcd(x, y)) and n be the

. X ) x|+
smallest integer such that max (%, %) <w, -2 Ifllz# < Wpet — 3, then ¢z (x +

yi) = n+2j. Otherwise, ¢pz[;) (x + yi) =n+2j + L

Thus if x and y are N-bit integers, we can compute both ¢7[;}(x + yi) and one of
X + yi’s minimal (1 + i)-ary expansions in O (log N) time, as shown in Section 4 of [1].

Corollary 1.6  (of Theorem 1.5) If z € Z[i] \ {0}, if w(2) < wp — 22* and if
01(2) < Wpy1 — 3 - 220 then ¢71:1(2) < n. Note ¢z;1(z) > n if and only if either
loo(2) > wy — 22O 0r £1(2) > wpyy — 3 -22(2),

Givena, b € Z[i] \ {0}, Theorem 1.7 below shows how to adjust the Gauss quotient
and the Gauss remainder of a and b to find new quotients and remainders ¢, r € Z[i]
such that @ = gb + r, where either » = 0 or ¢z[;](r) < ¢z[;)(b). Interestingly, there
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Figure 1: Pre-images of ¢7[;].
are times we do not have to compute the Gauss remainder to know whether we need to
adapt it for ¢z;.

Theorem 1.7 Suppose a, b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;)(r) >
¢71:1(b) = nand a = qb + r. Consider the following conditions:

(0 220 fw,
(2) Im(upb)Im(u,r) >0
(3) m(r) + m(b) < €w(r)

(4) m(b) < Lu(r) < m(b) +m(r) and e (b) —m(r) > wy_; — 272(0)+

If any of the conditions hold, then a = (q+':t—’r’)b + (r—';—lr’b), with

bz (r - Z—lr’b) < ¢z1i1(b). If none hold, then a = (q + e ) b+ (r -

s(r)u,
bz[i) (r - s(l,uﬁb) < ¢z1)(b).

e b), with

The rest of the paper builds the machinery to prove Theorem 1.7. Section 2 presents
the standard division algorithm.

Note that while Theorem 1.7 gives an algorithm to find a quotient and remainder
using the minimal Euclidean function, the quotient and remainder are not necessarily
unique. The two expansions in Equation 1.1 give two different quotient and remainder
pairs with respect to the Gaussian’s minimal Euclidean function for 2+i and 1+i, (2, —i)
and (1, 1).

It also constructs and presents properties of the ensuing (Gauss) remainder fora, b €
Z[i]. Section 3 shows that if v,(r) < v,(b), then ¢z;)(r) < ¢z[;)(b). Section 4
presents two possible alternate remainders for when ¢z[;1(r) > ¢z[;)(b):r — Z—i’b and
3 (i:)bu, b. Both sections introduce properties of r and b when ¢z[;1(r) > ¢z(;](D).
Lemma 5.1 shows the absolute values of the real and imaginary parts of the alternate
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remainders are respectively elements of
{lleo (D) = Loo(r)|,m(b) + m(r)} and {leo (b) —m(r),|le(r) —m(b)[}. ~ (1.2)

We therefore use the bounds on € (7), €1(r), m(r) and £w(b) — € (r) calculated in
Section 4 to bound the sums and differences in (1.2). Lemma 4.6, Proposition 4.12, and
Section 5’s lemmas each assume one of the conditions in Theorem 1.7. They appro-
priately bound a subset of Equation (1.2)’s terms to prove which alternative remainder
x satisfies ¢z[;1(x) < ¢z[;](b). Every Proposition and Lemma cited in Theorem 1.7’s
proof is followed by an example illustrating our division algorithm in the corresponding
scenario.

2 The standard division algorithm
Suppose a, b € Z[i] \ {0}, witha = x + yiand b = ¢ + di. Then 7 equals

ab _ ab _ (xc+yd) + (yc —xd)i

bb  Nm(b) Nm(b)

If go = {xc?;,ﬂ,m = VN;_();,C)I-I, Jo= f\(]f;(b) qo,and fi = Nin(f)] q1, then

ab 1

Nm(b) = (qo + q10) + (fo + fii), where | fol, | fil < =

[\.)

Multiplying through by b shows
a=(qo+qi)b+ (fo+ fii)b, 2.1)
where go + q11, (fo + fii)b € Z[i]. The norm is multiplicative, so

Nm(b)
Nm(b) < ——= 5

2 2
Nm(r) = Nm((fo + fii)b) = Nm(fo + fui)Nm(b) < ((%) (1)

(2.2)

We call fy + fii the Gauss fractional remainder of ¢ and b and (fy + f1i) b the Gauss
remainder of a and b.

Example 2.1 Whena =7+ 5iand b =5+ 3i,

ab _(7+450)(5-3i) _ 50+4i L8+

Nm(b) = 52+32 34 17

bl

so the Gauss fractional remainder of a and b is %. Weseea =1-b +r,where

8 +2i . .
r= (5+3i) =2+2i.
17

Lemma 2.2 Suppose a, b, z € Z[i] \ {0}. The pair a and b have Gauss remainder r if and
only if za and zb have Gauss remainder zr.
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Proof The fraction ZZ % simplifies to £ 75020 and zb have the same Gauss fractional

remainder as a and b. This means that the Gauss remainder of za and zb is za—qzb = zr,
or z times the Gauss remainder of a and b. [ ]

Example 2.3 Continuing Example 2.1,2+12i = (7+5i) (1+i) and 2+8i = (5+3i) (1+i)
have Gauss remainder 4i = (2 + 2i)(1 +1i).

Lemma 2.4 If a,b € Z[i] \ {0} have Gauss remainder r # 0 and if ¢7[;1(b)
then €1(r) < {w
Ly
>+

YRRl
m S

(D) < wy and Leo(r) < 4 (b) < wp_1. Equality occurs only if
.
Proof For expositional ease, let b = x + yi and denote the Gauss fractional remainder
by fo + fii. Equation 2.1 shows r = (xfo — y f1) + (xf1 + y fo)i, so

i
2%

(b) Wn+1

loo(r) = max(|xfo — yfil, [xfi + ¥ fol) £ —— 5 = Wn-i
(2.3)
and
t1(r) = max(|xfo — yfi +xf1 +yfol, [y f1 = xfo +xf1 +yfol)
= max(|fo(x +y) + fi(x = )|, [fo(y —x) + fi(x + y)]) 2.4)
< L) + lo(b) — m(D) =l (b) < wy.
2 2
Inequalities (2.3) and (2.4) are strict, unless fp, f1 € {0, i%} [ ]

Corollary 2.5 Ifa,b € Z[i]\ {0} have Gauss remainder r # 0 and ¢z;;)(r) = ¢z[i)(b),
then loo(r) < 22 and €,(r) < Lo (D).

Proof If fo, fi € {0,1}, then & € (Z[i1) {(1 + )", (1 +i)7%} and ¢z (r) €
{¢z[i1(b) = 1, ¢z;1(b) — 2}. Thus ¢z[;] (r) = ¢z[;](b), our inequalities are strict. W

Example 2.6  Staying with Example 2.1, note ¢z(;) () = ¢Z[z](”) =3,
0(r)=4<5=Clu(b) <8=wsandlu(r) =2 < 8P =8 =4 < 6=,

3 Gauss remainders and the minimal Euclidean function

Lemma 2.4 shows that if a and b have Gauss remainder r, ¢z[;1(r) is often less
than ¢z[;1(b). Sometimes, we can determine whether ¢z[;1(r) < ¢z[;)(b) without
computing r.

Lemma 3.1 Ifa,b € Z[i] \ {0} have Gauss remainder r # 0 and v,(r) < v,(b), then
$z1i1(r) < ¢z[i1(b) = n.
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Proof If we assume either €1 (r) = € (b) or 20 (r) = £1(b), then Lemma 2.4 shows

5 € i%{l,i, 1 + i}, and hence ¢z[;1(r) < ¢z[;1(b). We therefore assume neither

equality holds. Our hypothesis therefore implies

220 < 01(F) < Lo (D) < wy — 2020 <y — a2 ()HL

which leads to the observation 3 - 22(") < w,,. Since 3 - 22" < y,,, 2V2(") |w,, for all
m > nand

O(r) < wp—3-2%20)

Our hypothesis also implies

_3.ow(r)
La(r) < t1(b) < Wy — 327 ’
2 2

50 Lo (1) < wy_y — 2"+ and ¢z1i1(r) < n—1< ¢z1;1(b). [ ]

Corollary 3.2 Ifa, b € Z[i] \ {0} have Gauss remainder r # 0 and v,(a) < v,(b), then
$z1i1(r) < ¢z (D).

Example 3.3 The Gauss remainder r of @ = 9 + 4i and b = 3 + 5i satisfies ¢p7[;1(r) <
¢71i1(b) because 2 divides neither a nor b.

Corollary 3.4 If a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;1(r) >
¢Z[i] (b) =n, then 2‘}2(}))+1|Wn,

Proof We prove the contrapositive and assume 2*2(®)*1 § . Jointly, our hypotheses
and 2" < £,(b) < w, — 2"P)*! demonstrate w,, = 3 - 2"2(?), By Lemma 2.4,
27201 < £1(r) < leo(b) = 2"P), Lemma 3.1 then shows dz111(r) < ¢z1:1(D). [

Example 3.5 Suppose k = v,(b) and ¢z[;1(b) = n. The condition 2K ¥ w,, holds if
and only if £, (b) = 25, n = 2k, and m(b) = 0. For all a € Z[i], the Gauss remainder r
of a and 2* satisfies 7111 (r) < dz1i1(D).

4 Constructing Alternate Remainders

Example 4.1 shows that, unlike in Corollary 3.2, computing a remainder for a,b €
Z[i] \ {0} and ¢z[; is not so simple when v,(r) > v,(b). In this section, we construct
alternate remainders, for when ¢z[;1(r) > ¢z[;](). The new remainder determines
the new quotient. If R is the new remainder, then the associated quotient is the integer
-R

T

Example 41 Observe v,(4 +1) = 0, ¢z;1(2) = 2 = ¢z[;1(4 + i), and that the Gauss
remainder of 9 and 4 + i is 2i, so 2i is not the pair’s remainder for ¢z;.
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4.1 Valuations and Preliminaries
Lemma 4.2 If ¢pz[;1(b) =n > 0, thenm(b) < wy_1 — 2v2(b)+1,

Proof Since2"2(?) <y, —2v2(B)+1 3.9m(P) <y and 22(0)*1|y, forallm > n+1.
The bound

2m(b) < b(b) < wpyy — 3 -2
therefore implies

2m(b) < wpyy — 42720,
Dividing by two finishes the proof. ]
Example 43 1fb = 5+3i,¢7[;1(b) = 3,v2(b) =0,wy =6andm(b) =3 < 6-2=4.

Lemma 4.4 Ifa,b € Z[i] \ {0} have Gauss remainder r # 0 and ¢z1i1(r) = bz (b) =
n, then €oo(b) — m(b) < w,, — 3 - 2%2(0),

Proof If m(b) > 0, then

loo(b) = m(b) < w,, — 272+ v () =y, 3. 9v2(B)

by Theorem 1.5. Corollary 3.4 states 2220+ |y, s0 2V2(P)*1|(y,, — 22(P)+1) ‘When
m(b) = 0, we see 2"2(P)*1 y £, (b). Theorem 1.5 therefore implies

loo (b) = m(b) = lo(b) < wy — 2201, (4.1)

Since 2*2(?) divides all terms in Equation 4.1, our claim follows. [ ]

Example 45 The pair a = 21 + 8i and b = 13 + 8i have Gauss remainder r = 8, and
¢21i1(8) = 6 > 5 = ¢z(;) (13 + 8i). Observe 22(¥) = 2, w5 = 16, and

loo(b) —m(b) =13 -8 =5 < 16 — 3.

Lemma 4.6  Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;(r) =
¢z111(b) = n.IfZVZ(’) 1 Wp_1, thenm(r) = O. Furthermore, ¢z; (r - ”—”b) < ¢z111(b).

U,

Proof Since Lemma 2.4 shows 2" < £(r) < @ < Wp—1, our hypothesis

implies w,, = 2"2(")*! and thus

2720 < 0 (r) < O(r) < Loo(b) < wy, = 272
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We infer o (r) = €1(r), m(r) = 0,and upb — u,r € {({o(b) — € (r)) = m(b)i}.

Lemma 4.2 shows

loo(Upb — u,r) < max(leo(b) — loo(r), m(b))
< (Wn _ 2vz(b)+1 _ 2vz(r)’ Wi — 2vz(b)+l)

S Wn—l _ 2V2(b)+1;
we observe
C1(upb —uyr) = €1(b) — (1)
< Wpel — 3. 2Vz(b) _ 2V2(")

=w,—-3- 22 (b)
As vz(ubb — urr) = vz(b), (ﬁzm (}" - Z—i’b) = ¢Z[i] (ubb — I,trl") < (}52[;] (b) [ ]

Example 4.7 Continuing Example 4.5, recall ¢7[;1(b) = 5 < 6 = ¢z[;)(r). We see
upb —u,r = (134 8i) —8 =5+ 8i and ¢z[;1(5+ 8i) =4 < 5 = ¢z;1(b).

Since we understand what happens when ¢z[;1(r) > ¢z[;1(b) and 22y
we study when 22 |w,,_;.

Lemma 4.8  Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0, where ¢z[;1(r) >
dz111(b) = n. IF 272 \w,,_y, then 2" |\w,, for allm > n — 1 and either

loo(r) =Wy — v2(r) o a@r) = wy, - ov2(r)+1
In both cases,
loo(r) 2wy —wy_1and €1(r) 2 wy_q — ova(r)

If oo (1) # Wy_1 — 220 then m(r) > wy — Wp_1.

Proof The first line of Lemma 4.6’s proof shows 2"2(") < £, (r) < wy_1, 50 £e(r) <
Wn-1—2"20") Since 22"+ <y, _| Definition 1.1 shows 2"2(") |w,, forallm > n—1.
Our assumption that ¢z[;1(r) > n — 1 and Corollary 1.6 show either £o(r) = w,_1 —
220 or 1 (r) = wy, =224 Since £1(r) > Lo (r) and wy, =220+ > v, | —2¥2 (1)
we see that in both cases, £;(r) > w,_; — 2"2(").

If boo(ry S Wpo1 — 27200+ then € (r) = Lo (r) + m(r) > wy, — 220)* implies

m(r) > wy =220 _ (o =22y —
In both cases, €o (F) > Wy — Wn_1, as oo (r) > min(m(r), wn_; — 2"2(")) and

2(wpo1) =220 =y =270 >,
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Example 49 In Example 2.1, ¢z(;1(r) = ¢z(;)(b) = 3. Note 2"2(") = 2 divides w, = 6
and all w,,, m > 2. We see loo(r) = 2 = wy — 220 and £ (r) = 4 > w3 — 27200+ =
8 — 8 = 0, so our example is in both of Lemma 4.8’s (non-exclusive) scenarios. We see
loo(r) =m(r) =2=ws—wyand {;(r) =4 > wy — 220" =6 -4 =2.

Corollary 410 Suppose a, b € Z[i] \ {0} have Gauss remainder r # 0, with ¢z[;1(r) =
G211 (D) = n. If 22 |wy_y, then m(r), €oo (r), and €oo(b) = Loo(r) < wyq — 27201,

Proof Lemma 3.1 shows v,(r) > v,(b), so
m(r) < leo(r) < wy_1 — 2v2(r) <wp_q— 2v;(b)+1'
By Lemma 4.8,

oo () = Coo(r) < (wp = 2"P) — (W = wysy) = oy — 2720)F0

Example 411 Continuing Example 2.1,we see m(r) = €oo(r) = 2and € (b) —lo (r) =
5—2 = 3are both less than w, — 272"+ =6 — 2 = 4,

4.2 When imaginary parts align

Determining an alternate remainder is fairly straightforward when Im(upb)Im (1, r) >
0, i.e., when upb and u,r lie in the same quadrant. They lie in the same quadrant, and
not just the same half-plane, because Definition 1.3 ensures Re(upb), Re(u,r) > 0. The
next section shows things become much more complicated when upb and u,r lie in
different quadrants.

Proposition 4,12 Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with
(ﬁz[i](r) > ¢Z[i](b) = n. If Im(upb)Im(u,r) > Othen dz[i] (r - Z—Ir’b) < ¢Z[i](b)-

Proof Lemma 4.6 lets us assume 2*2(") |w,, for all m > n — 1. Since
upb —uyr € {(leo(b) = Lo (r)) = (m(b) — m(r))i},
Corollary 4.10 shows
loo(ph — upr) < max(loo(b) — Loo(r), m(b), m(r)) < wy_y — 2200+
Observe that, due to Lemmas 4.4 and 4.8,
C(upb — upr) = max(£1(b) — £1(r), leo (b) = m(b) + m(r) — luo(r))
< max(wysq — 32" — (w_y =270, £ (b) — m(b))

< max(wp,_; +2"2) =3.2720) 4y 3.72(0))

<w, -3-2n0)

2025/10/13  14:01
https://doi.org/10.4153/50008439525101331 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439525101331

A Division Algorithm for the Gaussian Integers’ Minimal Euclidean Function 11

Lemma 3.1 shows v, (upb — u,r) = v(b) and thus ¢z[; (r - Z—lr’b) = ¢z (upb —
urr) < ¢z[i1(b). u

Example 413 Continuing Example 2.1, note Im(upb)Im(u,r) =3 -2 = 6 > 0 and
Gz (upb — upr) = ¢z1i1 (3 +1) =2 < 3 = ¢z[i1(b) = dzpi) (r).

5 Proving our Main Result

When Im(upb) and Im(u, r) have opposite signs, finding alternate remainders becomes
more complicated. It only partially depends on how r relates to m(b). In this section,
we construct alternate remainders for when ¢z[;1(r) > ¢z[;1(b) and
Im(upb)Im(u,r) < 0, allowing us to prove Theorem 1.7.

Lemma 5.1 Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;(r) 2
¢71i1 (D) = n. If Im(up, b)Im(u,r) < O, then

upb — uyr € {(boo(b) = Loo(r)) £ (m(b) + m(r))i}
and

upb + s(r)iuyr € {(fo(b) —m(r)) £ (m(b) — £o(r))i}.
Proof The first equation follows from the definitions. The assumption
Im(upb)Im(u,r) < 0 implies that if upb = oo (b) £ m(b)i, then u,r = € (r) F m(r)i
and iu,r = +m(r) + € (r)i. Since s(r) = sgn(Im(u,r)), s(r)iv,r = —m(r) F € (r)i.

We conclude that upb + s(r)iu,r = (€ (b) —m(r)) £ (m(b) — £oo(r))i. [

Example 5.2 The Gauss remainder of @ = 16 +iand b = 10 + 3i is r = 6 — 2i, with
#71i1 (D) = ¢z[i1(r) = 4and Im(b)Im(r) = —6 < 0. We see

upb —uyr = (10+3i) — (6 = 2i) =4+ 5i = (oo (b) — Lo (1)) + (m(D) + m(r))i
and
upb + s(r)iu,r = (104 3i) —i(6 — 2i) = 8 — 3i = ({eo(b) — m(r)) + (m(b) — e (r))i.

Lemma 5.3 Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;(r) >
21(b) = n. If Im(upb)Im(upr) < 0 and m(b) > Lu(r), then dz;) (r — L rb) <
$z1i1(b).

Proof Harken back to Lemma 3.1 and observe v,(b) = v,(upb + s(r)iu,r). Since
m(b) > € (r), Lemma 5.1 shows

1 (upb + s(r)iu,r) = €,(b) — £,(r). (5.1)
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Our assumption Im(upb)Im(u,r) < Oimplies m(r) # 0.1f Lo (r) = wy_—2"2("), then

O(r) = boo(r) +m(r) > (Wpoy =220y 427200 =y
Equation 5.1 then shows

O (upb + s(r)iuyr) < wppy =320 —yw, = w,y - 32720

demonstrating ¢z;| (upb + s(r)iu,r) <n-—1.

If leo(r) # Wn_1 — 2"2"), Lemmas 4.6 and 4.8 show £;(r) > w, — 220+ and
2"2(")+1 divides both w41 and wp. This means 2"20)*!1 < w0 — wypq, s0 &1 (r) >
Wnt1 — Wy. We deduce from Equation 5.1 that

O (upb + s(r)iuyr) < (Wpe1 — 3 - 2"2(1’)) — (Wpe1 = wp) =w, =3~ 2v2(b)
Corollary 4.10 and Lemma 5.1 show

Lo (tpb + s(r)iuyr) < max(boo(b) — m(r), m(b), €o(r)) < wp_y — 2"

proving ¢z|;| (r - s(i;l)bu, b) = ¢z(i) (upb + s(r)iu,r) < ¢pz;i)(b). ]

Example 54 The Gauss remainder of a = 8 + 8iand b = 30 — 9iisr = 8 + 8i, and
thus upb + s(r)iu,r = (30 — 9i) +i(8 + 8i) = 22 —i. Note ¢z[; (D) = ¢z[;(r) =7,
Im(upb)Im(u,r) = =72 < 0,and ¢z[;1(22 — i) = 6 < ¢z[;1(D).

Lemma 5.5 Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;1(r) >
¢z1i1(b) = n If Im(upb)Im(u,r) < 0 and m(r) + m(b) < {Lu(r), then
bzi] (V - ':,—bb) < ¢z(i1(D).

Proof Lemmas 3.1and 4.8 show v (r) > v2(b) = vo(upb —u,r) and 2P+ divides

Wy, forallm > n+ 1. By Lemma 5.1 and Corollary 4.10,

Coo(upb = u,r) < max(Coo(b) = loo(r), m(b) +m(r))
< max(leo (D) — Lo (1), €o(r))

< w,_q — 2701
and
O(upb = urr) = boo(b) = Coo(r) + m(b) +m(r).
If £ (r) > m(b) +m(r),
O (upb — upr) < oo (b) =220 <, = 3.2,

When £ (r) = m(r) + m(b), 22 |m(b) and thus 2*2P)*|m(b). Hence 2"2(P)*1
Lo (b) and, as 2721 (w,, — 2211 0 (upb — uyr) = Leo(b) < wy — 3-272(0) We

conclude ¢7[;] (r - Z_I:b) = ¢z1i)(ubb —urr) < ¢z (b). u
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Example 5.6 In Example 5.2, we see m(r) + m(b) =5 < 6 = £ (7), sO
bz1i) (upb — upr) = ¢zji) (4 + 50) = 3 < ¢z1;1(b) = 4.

We found alternate remainders when € (r) < m(b) and when £ (r) > m(b) +
m(r), so we examine when m(b) + m(r) > € (r) > m(D).

Lemma 5.7 Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;(r) 2
$z1i1(b) = n.If

(1) Im(upb)Im(u,r) <0,
(2) m(b) < b (r) < m(b) + m(r), and
(3) loo(b) —m(r) < wy_q — 22001

then ¢Z[i] (V - X(lruﬁb) < ¢Z[i](b)~

Proof Lemma 3.1 shows v,(r) > v,(b) = vo(upb + s(r)iu,r). By Lemma 5.1 and
Corollary 4.10, we see

oo (upb + 5(r)ityr) < max(Coo(b) = m(r), Loo(r)) < wy_q — 272
and

O (upb + s(r)iuyr) = Coo(b) + (b (r) = (m(b) + m(r))) < wy, — 2201,
Lemma 4.8 shows 2"2(8) |w,,, s0 €, (upb + s(r)iuyr) < wy —3-2"2(?) 'We conclude that

bz1i) (r - #b) = ¢zpi) (upb + s(r)iuyr) < ¢z1i1(b). =

Example 5.8 The Gauss remainder of @ = 16 — 8i and b = 30 + 15{ is r = a. Observe
that ¢7[;1(16 — 8i) = ¢7[;7(30 + 15i) = 7, that Im(16 — 8/)Im(30 + 15i) < O, that
15 < 16 < 8+ 15, and that 30 — 8 = 22 = w¢ — 2. As expected,

¢Z[i] (upb + s(r)iu,r) = ¢Z[i] (30 + 15 — (8 + 16i)) = ¢Z[i](22 -H)=6<7.

Lemma 5.9 Suppose a,b € Z[i] \ {0} have Gauss remainder r # 0 with ¢z[;(r) =
¢z1i1(b) = n. If

(1) Im(upb)Im(u,r) <0,
(2) m(b) < lo(r) < m(r) + m(b), and
(3) loo(b) —m(r) > wy_y — 272(P)+L,

then dz[i] (V — Z—I:b) < ¢Z[i](b)'

Proof For the last time, Lemmas 3.1 and 4.8 show that 2"2(") |wp, forallm > n—1
and v,(r) > v2(b) = v (upb — u,r). Condition (3) is equivalent to

loo(B) = Wyt + 2720 S (). (5.2)
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Using w,, — 2201 > ¢ (b) yields
Wi = Wno1 — 2200 > m(r). (5.3)

Adding m (b) to both sides of Equation 5.2 and recalling w1 — 3 - 22(?) > £,(b), we
realize

Waotr = 22O > (b)Y + m(r). (5.4)

Together, Equation 5.3 and Lemma 4.8 show that, as m(r) < w, — wy,_1, €e(r) =
Wn_1 — 2"2"). This equality, along with Lemma 5.1, Corollary 4.10, Equation 5.3, and
Equation 5.4 demonstrate

Coo(tph — tyr) < max(Loo(b) = Coo(r), m(b) + m(r)) < wy_y — 2"2(0)*1

and
C1(upb — uyr) = oo (b) + m(b) — b (r) + m(r)
< (Wn+1 -3 2v2(b>) - (Wn—l - 2v2(r)) + (Wn —Wp-1— ZVZ(V))
=w, —3-220),
In summary, ¢z; (r - Z—i’b) = ¢z (upb — urr) < ¢z1;1(b). [

Example 5.10 The Gauss remainder of @ = 20 — 4i and b = 28 + 17i isr = a. We see
bz1i1(20 — 40) = i) (28 + 17i) = 7, Tm(20 — 41)Im(28 + 17i) < 0,17 < 20 < 17 +4,
and 28 — 4 = 24 > wg — 2. As claimed,

¢Z[i] (ubb - Mr}") = ¢Z[i] (28 +17i — (20 - 41)) = ¢Z[i] (8 + 21[) =6<7.
We now assemble our lemmas to prove Theorem 1.7.

Proof Proposition 4.12 proves our claim when condition 1 holds, Lemma 5.5 proves
it when condition 2 holds, and Lemma 5.9 proves it when condition 3 holds.

If Im(upb)Im(u,r) < 0 and neither condition 2 nor condition 3 hold, then either
m(b) > €oo(r) or m(b) < Loo(r) < m(b)+m(r) and € (b) —m(r) < wy_y —2"20)*1,
Lemmas 5.3 proves our theorem in the first situation, and Lemma 5.7 proves it in the
second. ]
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