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Abstract. We define and study some properties of spectral maximal projections
of a bounded operator on a complex Banach space. Then we apply these results to the
new concepts of weakly projection-relative decomposable operators and projection-
relative decomposable operators in the spirit of the works of C. Foias [6], A. Jafarian
[7], I. Erdelyi and R. Lange [5].
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1. Introduction. Let X be a complex Banach space, B(X) the algebra of all
bounded linear operators on X , and � the field of complex numbers. For an operator
T ∈ B(X), σ (T) is the spectrum of T and ρ(T) = σ (T)c its resolvent. For λ ∈ ρ(T) we
shall use the notation R(λ, T) = (λ − T)−1. When f is an analytic function defined on
an open neighborhood of σ (T) we can define the bounded operator f (T) on X by

f (T) = 1
2π i

∫
�

f (λ)R(λ, T)dλ,

� being an admissible contour surrounding σ (T). Let T ∈ B(X). An invariant bounded
projection under T is a bounded projection p on X such that pX is invariant for T .
Invariant subspaces Y of X or invariant bounded projections p produce the restrictions
T | Y or Tp as well as the coinduced operators TY or Tp on the quotient spaces X/Y or
X/pX . We say that Y or p are σ -invariant under T if σ (T | Y ) ⊂ σ (T) or σ (Tp) ⊂ σ (T)
which implies σ (T) = σ (T | Y ) ∪ σ (TY ) or σ (T) = σ (Tp) ∪ σ (Tp). Moreover Y or p
are said to be hyperinvariant for T if Y or pX is invariant under each R ∈ B(X) that
commutes with T . T ∈ B(X) is said to have the single-valued extension property if for
every function f : D → X (D open in �) analytic on D, the condition (λ − T)f (λ) ≡ 0
on D implies f ≡ 0. For such an operator, the local resolvent set ρT (x) is defined for
every x ∈ X and there exists a unique X-valued analytic function x̃T satisfying the
equation (λ − T)x̃T (λ) = x on ρT (x). Lastly XT (F) = {x ∈ X |σT (x) ⊂ F} for a subset F
of �.

2. Spectral maximal projections.

DEFINITION 2.1. Given T ∈ B(X), an invariant bounded projection p for T is called
a spectral maximal projection of T if for any invariant bounded projection q under T ,
the inclusion σ (Tq) ⊂ σ (Tp) implies qX ⊂ pX .
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REMARK 2.2. If Y is a spectral maximal space of T ∈ B(X) such that Y is
complemented in X, then there exists a spectral maximal projection p such that
Y = pX . In particular, if X is a Hilbert space, the spectral maximal subspaces are
exactly the invariant subspaces Y = pX in which p is a spectral maximal projection
of T .

EXAMPLE 2.3. Let T be a quasispectral operator of class � with a spectral measure
E(.) of class �, then XT (F) = E(F)X for all closed F ⊂ � [1, Lemma 1]. Hence E(F) is
a spectral maximal projection of T for each closed F ⊂ �.

EXAMPLE 2.4. Let T ∈ B(X) and σ (T) be totally disconnected. Let δ be a separate
part of σ (T) and AT (δ) = 1

2π i

∫
�

R(λ, T)dλ be the spectral projection corresponding
to δ, where � is a system of curves situated in ρ(T) and surrounding δ. Then AT (δ)
is a spectral maximal projection of T , AT (δ)X being a spectral maximal space of T .
See [3, Proposition 1.3.10].

THEOREM 2.5. Every spectral maximal projection of T ∈ B(X) is hyperinvariant
under T and σ (T) = σ (Tp) ∪ σ (Tp).

Proof. Let R ∈ B(X) commute with T . Then for each λ ∈ ρ(T), λ − R is an
isomorphism in B(X) commuting with T . We can write (λ − R)pX = qX where q is the
bounded projection defined by q = (λ − R)p(λ − R)−1. From Tq = (λ − R)Tp(λ − R)−1

it follows that σ (Tq) = σ (Tp) which implies qX ⊂ pX . Hence RpX ⊂ pX .

THEOREM 2.6. Given T ∈ B(X), let f : D → � be analytic and injective on an open
neighborhood D of σ (T). A projection p in B(X) is a spectral maximal projection for T
if and only if it is a spectral maximal projection for f (T).

Proof. First we prove the ‘if ’ part of the assertion. Let q be an invariant bounded
projection for T that satisfies condition σ (Tq) ⊂ σ (Tp) ⊂ σ (T) (the last inclusion is a
consequence of the hyperinvariant property of p). Now we can write

σ ( f (T)q) = σ ( f (Tq))

= f (σ (Tq))

⊂ f (σ (Tp)) = σ ( f (Tp)) = σ ( f (T)p)

and it follows that qX ⊂ pX .
Conversely, let p be a spectral maximal projection of T and let q be an invariant

projection under f (T) such that σ ( f (T)q) ⊂ σ ( f (Tp)) ⊂ σ ( f (T)). Then

f (σ (Tq)) = σ ( f (Tq))

= σ ( f (T)q)

⊂ σ ( f (T)p) = σ ( f (Tp)) = f (σ (Tp)),

which leads to the desired conclusion.

DEFINITION 2.7. For T ∈ B(X), we say that an invariant bounded projection p
under T is T-absorbent if, for any x ∈ pX and all λ ∈ σ (Tp), the equation (λ − T)y = x
has all solutions y in pX .

THEOREM 2.8. Given T ∈ B(X) and p a spectral maximal projection for T then p is
T-absorbent.
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Proof. The proof is similar to that of [5, Theorem 3.7] and we shall only sketch it.
Let λ ∈ σ (Tp), x ∈ pX and let y be a solution of the equation (λ − T)y = x. If y /∈ pX ,
by putting Y0 = pX ⊕ �y we see that Y0 = p0X with p0 a bounded projection in B(X)
invariant under T and from the inclusion σ (Tp0 ) ⊂ σ (Tp) we should have p0X ⊂ pX
which is preposterous.

COROLLARY 2.9. Let T ∈ B(X) have the single-valued extension property. If p is a
spectral maximal projection for T, then pX is analytically invariant for T; that is for
every function f : D → X analytic on some open D ⊂ �, the condition (λ − T)f (λ) ∈ pX
implies that f (λ) ∈ pX.

Proof. This result is well known when Y is an invariant T-absorbing subspace of
X and T has the single-valued extension property [5, Theorem 2.26].

3. Weakly projection-relative decomposable operators.

DEFINITION 3.1. T ∈ B(X) is said to be weakly projection-relative (respectively c-
weakly projection-relative) decomposable if for every open cover {Gi}1≤i≤n of σ (T), there
is a system of spectral maximal projections {pi}1≤i≤n of T (respectively commuting with
T) which performs the following asymptotic spectral decomposition.

1. σ (Tpi ) ⊂ Gi for every 1 ≤ i ≤ n.
2. X = ∑n

i=1 piX .

PROPOSITION 3.2. Let T be weakly projection-relative (respectively c-weakly
projection-relative) decomposable. If G ⊂ � is open and G ∩ σ (T) 
= ∅, then there exists
a non zero spectral maximal projection p (respectively commuting with T) with the
property σ (Tp) ⊂ G.

Proof. Let G′ be a second open set such that {G, G′} is a covering of σ (T), σ (T) 
⊂ G′.
Then there are p, q spectral maximal projections of T satisfying σ (Tp) ⊂ G, σ (Tq) ⊂ G′,
X = pX + qX . Now if p = 0, we should have X = qX in contradiction with the choice
of G′.

LEMMA 3.3. If p is a spectral maximal projection of an operator T in B(X) and D is a
domain such that there is a nonzero analytic X-valued function f satisfying the equation
(λ − T)f (λ) = 0 on D, then D ∩ σ (Tp) = ∅ or D ⊂ σpoint(Tp), where σpoint(Tp) is the point
spectrum of Tp.

Proof. We shall follow the proof of [5, Lemma 6.3], where the key point is the
finite dimensional property of the linear manifold Xn = ∨{f (λ0), f ′(λ0), . . . , f (n)(λ0)}
which is complemented in X so that we can associate with Xn a bounded projection pn

invariant under T such that Xn = pnX .

THEOREM 3.4. Every weakly projection-relative decomposable operator has the single
valued extension property.

Proof. Let T be weakly projection-relative decomposable and f : D → X be
analytic and satisfy the equation (λ − T)f (λ) = 0 on an open set D ⊂ �. We may assume
that D ∩ σ (T) 
= ∅ and D is a domain. By Proposition 3.2, there is a nonzero spectral
maximal projection p of T such that σ (Tp) ⊂ D. If f 
= 0 on D then, by Lemma 3.3,
D ⊂ σ (Tp), which gives a contradiction, D being open and not void.
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THEOREM 3.5. Given T ∈ B(X), let f : � → � be analytic and injective on an open
neighbourhood D of σ (T). Then T is weakly projection-relative (respectively c-projection
relative) decomposable if and only if f (T) is.

Proof. Let f (T) be weakly projection-relative decomposable and {Gi}1≤i≤n be an
open covering of σ ( f (T)). Since σ (T) ⊂ D the sets G′

i = Gi ∩ D, 1 ≤ i ≤ n, also form
an open covering of σ (T). In addition { f (G′

i)}1≤i≤n is an open covering of σ ( f (T)) and
we can find spectral maximal projections pi of f (T) such that

σ ( f (T)pi ) ⊂ f (G′
i) (i = 1, 2, . . . , n), (1)

X =
n∑

i=1

piX . (2)

But pi (1 ≤ i ≤ n) are also spectral maximal projections of T by Theorem 2.5 and
the inclusion f (σ (Tpi )) ⊂ f (G′

i) leads to

σ (Tpi ) ⊂ G′
i ⊂ Gi (1 ≤ i ≤ n).

Thus T is weakly projection-relative decomposable. Now, if pi commutes with f (T),
then pi commutes with T too. Conversely, the proof is similar.

4. Projection-relative decomposable spectrum.

DEFINITION 4.1. T ∈ B(X) is said to have projection-relative (respectively c-
projection relative) decomposable spectrum if for every open covering {Gi}1≤i≤n of σ (T),
there is an asymptotic projection-relative decomposition induced by a system {pi}1≤i≤n

of spectral maximal projections of T (respectively commuting with T) such that

1. σ (Tpi ) ⊂ Gi (1 ≤ i ≤ n),
2. X = ∑n

i=1 piX ,
3. σ (T) = ⋃n

i=1 σ (Tpi ).

THEOREM 4.2. Let T be a weakly projection-relative (respectively c-projection-
relative) decomposable operator. The following statements are equivalent.

(i) T has projection-relative (respectively c-projection-relative) decomposable
spectrum.

(ii) If F ⊂ σ (T) is closed and G ⊃ F is open, then there exists a spectral maximal
projection p of T (respectively commuting with T) such that F ⊂ σ (Tp) ⊂ G.

(iii) Every system {pi}1≤i≤n of spectral maximal projections (respectively commuting
with T) satisfies σ (T) = ⋃n

i=1 σ (Tpi ) whenever X = ∑n
i=1 piX.

Proof. Obviously (iii) implies (i). We shall prove that (i) ⇒ (ii). For this, let F ⊂ σ (T)
be closed and G ⊃ F be open. Then {G, Fc} is an open covering of σ (T) and so there
are spectral maximal projections p, q of T satisfying conditions σ (Tp) ⊂ G, σ (Tq) ⊂
Fc, σ (T) = σ (Tp) ∪ σ (Tq). Consequently F ⊂ σ (Tp) ⊂ G. It remains to prove that
(ii) ⇒ (iii). Let {pi}1≤i≤n be an arbitrary system of spectral maximal projections of
T performing the decomposition X = ∑n

i=1piX . If F = ⋃n
i=1 σ (Tpi ) 
= σ (T) then there
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exists a spectral maximal projection q of T such that F ⊂ σ (Tq) 
= σ (T). Now we have

σ (T) = σ


T

/
n∑

i=1

piX


 ⊂

n⋃
i=1

σ (Tpi ) ⊂ σ (Tq).

It follows that X = qX and σ (T) = σ (Tq) which is preposterous.

5. Projection-relative quasi decomposable operators.

DEFINITION 5.1. A weakly projection-relative (respectively c-projection relative)
decomposable operator is said to be projection-relative (respectively c-projection
relative) quasi decomposable if XT (F) is closed whenever F ⊂ � is closed.

THEOREM 5.2. Every projection-relative (respectively c-projection-relative) quasi
decomposable operator has projection-relative (respectively c-projection-relative) decom-
posable spectrum.

Proof. Let {Gi}1≤i≤n be a finite open covering of σ (T) and let {pi}1≤i≤n be a
system of spectral maximal projections of T such that σ (Tpi ) ⊂ Gi for 1 ≤ i ≤ n and
X = ∑n

i=1 piX . If F = ⋃n
i=1 σ (Tpi ) is proper in σ (T), then XT (F) is proper in X , but

each piX is contained in XT (F), which is preposterous.

THEOREM 5.3. If T is a weakly c-projection-relative decomposable operator, then T
is in fact a c-projection-relative quasi decomposable operator.

Proof. Let F be a closed set in �, and G any open set containing F . Since {Fc, G}
is an open covering of σ (T), there exist p1 and p2 spectral maximal projections of T
such that σ (Tp1 ) ⊂ Fc, σ (Tp2 ) ⊂ G, X = p1X + p2X , with p1, p2 commuting with T . If
x ∈ XT (F), there exist x1,n ∈ p1X , x2,n ∈ p2X such that x = limn→∞(x1,n + x2,n). Now
p1T = Tp1 and so

σT (p1x) ⊂ σT (x) ∩ σ (Tp1 )

⊂ F ∩ Fc = ∅.

This implies that

p1x = 0 = lim
n→∞(p1x1,n + p1x2,n)

= lim
n→∞(x1,n + p1x2,n)

and so

x = lim
n→∞(x1,n + x2,n) − lim

n→∞(x1,n + p1x2,n)

= lim
n→∞(x2,n − p1x2,n).

Since spectral maximal projections are hyperinvariant we have p1x2,n ∈ p2X and
x ∈ p2X . Finally, we obtain

XT (F) ⊂ p2X

⊂ XT (σ (Tp2 ))

⊂ XT (G),
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G being any open set containing F . We have

XT (F) ⊂ p2X

⊂
⋂
F⊂G

XT (G) = XT

(⋂
F⊂G

G

)
= XT (F).

Thus XT (F) = p2X is closed.

6. Projection-relative decomposable operators.

DEFINITION 6.1. T ∈ B(X) is called projection-relative (respectively c-projection-
relative) decomposable, if for every open covering {Gi}1≤i≤n of σ (T), there exists a
system {pi}1≤i≤n of spectral maximal projections of T (respectively commuting with T)
yielding the following spectral decomposition.

1. σ (Tpi ) ⊂ Gi for 1 ≤ i ≤ n.
2. X = ∑n

i=1 piX .

REMARK 6.2. Clearly such an operator is projection-relative quasidecomposable
and has projection-relative decomposable spectrum.

EXAMPLE 6.3. If X is a Hilbert space, the concepts of projection-relative
decomposable operators and decomposable operators are the same.

EXAMPLE 6.4. Let T be a compact operator on X (or more generally an operator
with totally disconnected spectrum). Then T is c-projection-relative decomposable.
To see this, let {Gi}1≤i≤n be a finite open covering of σ (T), we can choose open-and-
closed subsets δi of σ (T) such that δi ⊂ Gi for 1 ≤ i ≤ n and leading to a system
{AT (δi)}1≤i≤n of spectral maximal projections commuting with T and which yields
σ (TAT (δi)) = δi ⊂ Gi for 1 ≤ i ≤ n and X = ∑n

i=1 AT (δi)X .

EXAMPLE 6.5. Quasispectral operators of class � on X (in Albrecht’s sense [1])
with spectral measure E(.) of class � are projection-relative decomposable operators.
In order to prove this, let us take a finite open covering {Gi}1≤i≤n of σ (T). Then there
exists a finite open covering {ωi}1≤i≤n of σ (T) with ωi ⊂ Gi for every 1 ≤ i ≤ n. Put
s1 = ω1 and si = ωi − ⋃

j<i ωj for 1 ≤ i ≤ n. We obtain a finite disjoint covering {si}1≤i≤n

of σ (T) by Borel sets. The bounded projections E(s̄i) form a system of spectral maximal
projections of T such that

σ
(
TE(s̄i)

) ⊂ s̄i ⊂ ω̄i ⊂ Gi (1 ≤ i ≤ n) and

X = E(σ (T))X =
n∑

i=1

E(si)X =
n∑

i=1

E(s̄i)X.

EXAMPLE 6.6. Prespectral operators of class � on X and hence spectral operators
are c-projection-relative decomposable operators. This results from the commutativity
property of T and E. See [4].

THEOREM 6.7. Let T ∈ B(X) and f : D → X be an analytic injective function on an
open neighborhood D of σ (T). Then f (T) is projection-relative (c-projection-relative)
decomposable if and only if T is.
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Proof. This is similar to that of Theorem 3.5.

PROPOSITION 6.8. Let T be projection-relative decomposable and p be a spectral
maximal projection of T. Then we have σ (Tp) = σ (T) − σ (Tp).

Proof. Suppose that there is λ ∈ σ (Tp) − σ (T) − σ (Tp). Then we can find an open
covering {G1 ∪ G2} of σ (T) such that

λ /∈ G1 ⊃ σ (T − σ (Tp)),

G2 ∩ σ (T) − σ (Tp) = ∅.

Let {p1, p2} be the spectral maximal projections of T corresponding to this covering
of σ (T). From the inclusion σ (Tp2 ) ⊂ G2 ∩ σ (T) ⊂ σ (Tp) we have p2X ⊂ pX . Now let
ẋ ∈ X/pX such that (λ − Tp)ẋ = 0. If x ∈ ẋ and x1 ∈ p1X , x2 ∈ p2X satisfy x = x1 + x2,
one obtains (λ − T)x1 = (λ − T)x − (λ − T)x2 ∈ pX ∩ p1X , a subspace of X invariant
under (λ − Tp1 )−1 (which exists because σ (Tp1 ) ⊂ G1 and λ /∈ G1). It follows that
x1 = (λ − Tp1 )−1(λ − T)x1 ∈ p1X ∩ pX and ẋ = ẋ1 + ẋ2 = 0. Hence λ − Tp is one to
one. Now if we take ẏ ∈ X |pX and y = y1 + y2 ∈ ẏ, y1 ∈ p1X , y2 ∈ p2X we can find
x1 ∈ p1X such that (λ − Tp1 )x1 = y1 (remember that λ /∈ G1). Consequently one obtains
ẏ = ẏ1 = ˙(λ − Tp1 )x1 = ˙(λ − T)x1 = (λ − Tp)ẋ1 which means that (λ − Tp) maps X/pX
onto X/pX so that λ /∈ σ (Tp) which is preposterous. The opposite inclusion follows
from the hyperinvariant property of p.
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