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Abstract

In this paper, we consider a class of optimal control problems with discrete time delayed
arguments and bounded control region. A computational algorithm for solving this class
of time lag optimal control problems is developed by means of the conditional gradient
technique. The convergence property of the algorithm is also investigated.

1. Introduction

Time-lag optimal control problems with bounded control region have been
extensively studied in [1], [2], [4}-[9], [11], [13]-]16], [18]. Except for [13], [16] and
[18], these papers deal only with questions relating to necessary conditions for
optimality and existence of optimal controls. The main concern of [13], [16] and
[18] is in computational algorithms. Some important convergence results of the
algorithm are also established in [18]. More precisely, it is shown that the
sequence of controls generated by the algorithm is a minimizing sequence which
converges to the optimal control, both in the weak* topology of L, and in the
almost everywhere topology. However, these results are valid only for the case in
which the dynamical system and the cost functional are, respectively, linear and
convex.

Since the past is history and hence is beyond control, the control variables at
negative times are taken as given functions in [4], [9], {17], and in the present
paper.

In [12] a computational algorithm based on the strong variational technique is
obtained for a class of nonlinear optimal control problems involving only
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(21 Conditional gradient method 519

non-delayed systems. Furthermore, it is shown that any L _-accumulation point of
the sequence of controls constructed by the algorithm, if it exists, satisfies a
necessary condition for optimality. This convergence result is certainly weaker
than that of [18]. However, it is so far the best one can do for general nonlinear
optimal control problems, even in the case of non-delayed systems. Note that this
type of convergence concept was introduced to optimal control problems for the
first time in [12]. Since then, it has become a common type of convergence result
in the area of optimal control algorithms. Qur main convergence result to be
reported in Theorem 4.2 is also of the same type. Note also that in the strong
variational technique, a control is required to be perturbed over a subset of the
time interval [0, 7'] in a specific way so that an improved control is obtained.

The computational algorithm reported in [13] is also based on the strong
variational technique. However, the convergence results in the sense of [12] (and
hence of Theorem 4.2) is not available, because of the time lag effect. This is an
open problem.

In the conditional gradient method, an improved control is obtained by
perturbing the given control over the whole of the time interval [0, T']. This
method is applicable to both the delayed and non-delayed systems.

In any optimal control problem, the cost functional is required to be minimized
over a particular function space. Furthermore, the control region is not neces-
sarily a convex polyhedron. Normally, the projected gradient method requires
projection of the gradient directions onto the boundary of the function space after
some iterations. Practically, this is highly undesirable. Thus, the projected gradi-
ent method is not a suitable method.

In this paper, the class of time-lag optimal control problems considered is
similar to that of [13]. From the above discussions, we see that the conditional
gradient method is an appropriate one for such a problem. Thus, we shall use it to
devise a computational algorithm. The convergence of the algorithm in the sense
of [12] is established in Theorem 4.2.

2. Statement of the problem, basic definitions and assumptions

Consider the following delay-differential equation on the fixed time interval
©,T]

x(1) = é:of/(t——hj,x(t—hj),u(t—hj)), (1a)

J
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where x =[x,,...,x,]" € R", u=[u,,...,u,]” € R"” denote, respectively, the
state and control vectors, f/ =[f{,...,f/1" € R" (j =0,...,s), and the super-
script T denotes the transpose. The h, are the time-delays, ordered so that

0:h0<hl< ...... <h <T, s < o0.

The initial function for the differential equation (1a) is

x(1)=9(t), 1€[-h,0); x(0)=x, (1b)
where ¢ = [¢,,...,9,]” is a given, piecewise continuous function on [-k,, 0) with
values in R", and x,, is a given vector in R".

Let y: {-h,,0) > R" be a given piecewise continuous function and let U be a
compact and convex subset of R". A measurable function u from [-4_, T) into R”
is said to be an admissible control if u(¢) = y(¢) on [-A,,0) and u(¢) € U on
[0, T']. Let QU denote the class of all such admissible controls.

Let L? denote the Banach space L_([-h,, T'], RY) of all essentially bounded
measurable functions from [-h, T] into RY. Its norm is defined as

Il = sssup (3 (w0 )

tE[-h,, T]

For each u € L7, let x(u) be the corresponding vector-valued function which
is absolutely continuous on (0, 7] and satisfies the differential equation (la)
almost everywhere on (0, 7'} and the initial condition (1b) everywhere on [-4,, 0].
This function x(u) is called the solution of the system (1) corresponding to
u€ L.

We may now state our optimal control problem, denoted by (P), as follows:
subject to the system (1), find a control ¥ € L that minimizes the cost functional
J defined by

) = gl (@)(T)) + [ gofoi(t — by x (W)t = ) u(t = k) di (2)

over U, where g and ff (j = 0, 1,...,s), are real-valued functions.
Let (-, - and | -| denote, respectively, the usual inner product and norm in any
finite dimensional Euclidean space. For any function G: R"* - R"2, let

9y, ay,
_a_§= : -
ay - . .
aGl . s e aGn2
L ayn, ayﬂl ]
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and

We assume throughout this paper that the following conditions are satisfied.
(Ai) f: R"XR"XR"->R"(j=0,...,5); and f§: "X R"X R" > R' (j=
0,...,s).
(Ail) f/ (i=0,...,n; j=0,...,s5), are piecewise continuous on [-k , T] for
each (x,u) € R" X R".
(Aiii) There exist constants K, and K, such that, for all j = 0,...,s,
|F{(1, x', u')| < Ky

and
IFB’(I, x*,u*) — Ff(1, x', u')|< Ky(Jx* = x'| +]u? — 4'|)

for all t € [-h,, T}, x', x* € R", and ', u*> € R", where F{ stands for any of the
derivative matrices

af’
Fl = =
x
_axk 1=0,...,n,k=1,....n

and

=3
I

a1
\. auk =0, ..,n,k=l,...,r.

(Aiv) g: R" - R
(Av) There exist constants K; and K, such that, forallj = 1,...,n,

dg(x")

<
dx, K

and

< K |x? — x!

lag(xz) _ ag(x")
ax, 6xj

for all x',x? € R".
(Avi) ¢: [-h,,0) - R" and y: [-h,,0) - R” are piecewise continuous functions.
Using exactly the same argument as that given for Theorem 2.3 of [13], we can
show that, corresponding to each u € L, the system (1) has a unique solution

x(u).
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REMARK 2.1. The cost functional J, defined by (2), is also well defined in L.

Foreachu € L., let the function

W(u) =[do(u), vilw),.. ()]s [k, T+ ] > R
be the solution of the adjoint system:

s AN

. 2 a7i{e, x(u)(r), u(s
G =-3 3 UL ()
k=0 ;=0 i

(i=1,...,n), t€][0,T], (3a)
‘PO(’) = _1, t e [Oa T], (3b)
with the conditions

g(x(u)(T))

Y(T) = - . (i=1,...,n), (3¢)
y(1)=0, (e€(T,T+ny (i=0,...,n), (3d)

and
y(u)(1) =0, 1€[-h,,0). (3¢)

Using the abbreviation ¥(¢) for Y(r + hy), Y(¢t + hy),...,¥(t + h,), we define
the Hamiltonian function

H:[-h;, T] X R* X R” X R"*P6+DH 5 R
to be
n 5
H(t,x,0,%(1)) = 3 3 filt,x, o)y (¢ +h))e(t +h), (4)
k=0 j=0

where e(7) is the step function defined by

_ |1 ifr>0,
"’(")"{0 ifr<0.

3. The gradient of cost functionals

We begin with

DEFINITION 3.1. Let u° € L], and J a functional defined on L. Then, J is said
to be Fréchet differentiable at u® if there is a continuous linear functional Jo:
L", > R such that

00 =60 =)
Nu—ull, 0 llu ~ u”ll,
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Basically, the goals of this section are to devise an explicit formula for the
Fréchet derivative of the cost functional (2) (Theorem 3.1) and to show that this
derivative is uniformly continuous in u € L (Theorem 3.2). We have relegated
all proofs of the lemmas in this section to the appendix.

For any u € L], x(u) is the corresponding solution of the system (1). Let x be
considered as a mapping from L into L], where the norm in the space L is
again denoted by || - |I..

LemMA 3.1. The mapping x from L into L., is uniformly continuous. That is to
say, for any u', u* € L', ||x(u?) — x(u")||,, = O whenever ||u* — u'||,, - 0.

THEOREM 3.1. The cost functional J: L, - R', defined by (2) is Fréchet differen-
tiable everywhere on L7,. Furthermore, the derivative of J at u® € L’_ is given by

Jo(u) = —f_:I<5%H(t, ()2, u%(t), ¥(u0)(2)), u(t)>dt

[ 3 MO,

—hs i=1
forallue L.

PROOF. Let y(u) be the solution of the adjoint system (3) corresponding to the
controlu € L] and let

¥ (@0)(1) =[9i(u)(0),.. 4 (10) ()]
Then, from (2), (3b) and (1a), we get

J(w) = J(u®) = g(x(u)(T)) = g(x(u°)(T))
= 3 [T 3 [ () (), u(@)(w®)(t + 1)
J=0"-h, k=0

(e, 5 (u0)(0), u()) ()2 + h))]
+ ()0 = 3(1)(0), § (@0)(0)) d. ©)
From (4), (3d), (3e), and (Ali), (6) can be written as
Ju) = J(u®) = g(x(u)(T)) = &(x(«*)(T))
= [ [ 50, (), ¥(0)(0)

—H(t, x(u°)(2), u®(2), ‘I’(uo)(t))] dt
+ [ (@) = ) @YD) d ()
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In view of (3¢) and (1b), it follows from integration by parts that
[ (@) = #(@0)(0), $O)(0))
= (- s(x T, 2T = x()(T))

~ [ (x(@)0) = x@O0), $(w)(0)) ar.

(8)

By the Mean Value Theorem, we get

g(x(u)(T)) — g(x(u°)(T)) ©)
= (2 8T, x()(T) = (u)(T)).

where x, is an intermediate value determined by the Mean Value Theorem.
Furthermore, since x(u)(-) is absolutely continuous on [0, T'] for each u € AU, it

follows from Lemma 3.1 that
(10)

lim  x/(T) - x(u°)(T).

Hu=u®llx—0

From (9), (Av), (A4) (of the Appendix), and (10), we deduce that
lim ] sx() - g(x(w0)(T)
- <%g(x(u0)(T)), x(u)(T) — x(u°)(T)>']/||u —ul, (1)

=0.
Thus, it can be verified from (7), (8) and (11) that

lim J(u) = J(u®)

hu—ule~0  llu— u%||,
= tm [—f_::{ff(t, x(u)(2), u(t), ¥(u)(2))
— H(t, 1(u0)(0), 4%(0), ¥(u0)(0))}/ e ~ %,
~ [T (x()(0) = x(u)(0), § (W)~ ) .
(12)

By the Mean Value Theorem, we get

H(t, x(u)(t), u(t), \I’(uo)(t)) — H(t, x(uo)(t), uo(t), ‘I'(uo)(t))
= (2 (e, 200, w0, ¥ YD), 2O = 56O)

+ <aiuH(t’ x (1), u (1), ¥(u®)(1)), u(t) - u°(t)>,
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where (x,, u,) is an intermediate value determined by the Mean Value Theorem.
Furthermore, since x(u)(-) is absolutely continuous on [0, T’} for each u € U,
it follows from Lemma 3.1 that

lim  (x (1), u(2)) = (x(u®)(2), u(1)) (14)

llu— 5], >0
almost everywhere on [0, T'].
From (13), (Aiii) and (A4), we have
|H(#, x(u)(2), u(t), ¥(u°)(2)) — H(t, x(u°)(1), u°(2), ¥(u°)(1)) |

llu = 4%y

<T(s),

where

I(+) = K,(C, + 1)20 éollpk(uo)(t +h,)e(r+h,)|.

Clearly,
relrl(-h,T])= { g: g is a real-valued measurable function on [-4,, T']

so that /T lg()|dr < oo} .
~h,

Thus, from (12), the Lebesgue Dominated Convergence Theorem, (13), (3a), (4),
(1b), Cauchy’s inequality and (A4), it can be verified that

. 0 T/ d 0
||u—£l‘§|1|:°—’0 ( J(u) — J(u )+j:h,<EH(t’ x(u®)(z),

u(1), ¥(u®)(1)), u(t) = u°(t)> dfl)

/= 1%,
S[)T,,u—ligﬁjo—o{ <%H(,, x(u®)(2), u®(z), ¥(u°)(1))
_%H(,, x (1), u,(2), ¥(u°)(2)),

x(u)(1) - x(uo)(t)> = o) a
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T . d 0 0 0
o7 im0, 400, ¥w0)0)

_ %H(l, x (1), u (1), ¥(u°)(1)),
u(t) — u0(’)>

/Nu— u°lloo} di

<c3for lim

0
flu—u ”m_'o

%H(,, x(u®) (1), u%(1), ¥(u®)(1))

- %H(z, x(0), u (1), ‘If(uo)(t))ldt

AT am | x(0)0), w000, ¥(w)(1)

h ||u—u°||°°—-0

—%H(t,xe(t),ue(t),‘I'(uo)(t))‘dt. (15)

Using (4), (Aiii) and (14), we obtain

i x(u)(0), (0, () (1)
= (e, % 00), 1), ¥()()| = 0 (16)

for almost all ¢t € [0, T']; and

%H(r, x(u®)(1), u%(t), ¥(u°)(1))

lim
=0l —0

~ g Ht 200, w(0), ¥(0)(0)| = 0 (17)

for almost all t € [-h,, T'].

By virtue of (15), (16) and (17), we conclude that the cost functional is Fréchet
differentiable everywhere on L and its derivative is given by (5). This completes
the proof.

For any u € L, Y(u) is the solution of the system (3). Let ¥ be considered as
a mapping from L. into L ([-h,, T + h,], R"*'), where the norm in the space
L (-h,, T+ h,], R"*") is again denoted by || - ||,

LEMMA 3.2. The mapping ¢ from L into L ([~h,, T + h ], R**") satisfies the
following properties:

(i) There exists a positive constant K, independent of u € L], such that
()l < K.

(i) ¥ is uniformly continuous.
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With the help of Lemma 3.1 and Lemma 3.2, we can now derive a continuity
theorem concerning the derivative of the cost functional J.

THEOREM 3.2. The derivative J, of the cost functional J(u), which maps L’ into
(Lg,)* (the dual space of the Banach space L) is uniformly continuous on L.

PrOOF. For any «° € L, it follows from Theorem 3.1 that
Jo(u) = —fT <-aa—uH(t, x(u®)(r), u(t), ¥(u°)(1)), u(t)> dt
_hJ

foranyu € L.
Thus, for any u', u? € L,

() = S (] Sl | 5 (e, 200, w0, (1))
—H(1, x(u?)(1), u*(1), ‘P(uz)(t))’dt.

In view of (4) and Cauchy’s inequality, we obtain
a2 = Tl = sup [ J2(u) = Ja ()] /]

ueLl,

<508

s

afe(e, x(u')(1), u'(1)) af;:«’(t,X(uz)(t),uz(t))\
du du

Xl‘l’k(“z)(’ + hj)l

+ kéol'l’k(“l)(’ + hj) - ‘Pk(uz)(’ + h/)'

o e x 0. )

|

Thus, by using Lemma 3.2(i), (Aiii) and (A4), we get
S = dg < (s + DEK(C + 1) [ u2(2) = ()]t
~h,

+ % [:K,l¢(u')(t +h) = (u?)(t + h,)|dr.

Therefore, it follows from Lemma 3.2(ii) that
W2 = Jall = 0 whenever [lu> — u'llo — 0.
This completes the proof.
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4. A conditional gradient algorithm

We are now in a position to devise a conditional gradient algorithm to solve the
problem ( P).

The algorithm is as follows:

STEP 1. Let a, 8 € (0, 1) be given constants. Choose an initial control 1% € QL.
Seti=20.

STEP 2. Solve for x(u') in the range [0, T'].
StEP 3. Solve for Y(u') in the range [0, T').

SteP 4. Find a control &' € 9 such that

(& H(e, x()0), (o), %)), (1))

i (18)
> (L B0 xw)0), w0), %)), 7))

for all u € L (0, T'), U) and for almost all ¢ € [0, T].

StEP 5. Calculate ju, by using the formula

50w) = = [T{ & Bt 50, (0, 2@ D) ) e (1)

foralue L, ([0, T),U).

If J,.(u' — u') = 0, set u'™/ = u’ for all positive integers j and stop; otherwise
go to Step 6.

STEP 6. Choose ¢’ to be first element in the sequence 1, 8, 82%,..., such that
J(u’*f-a"(;7 —ui))—J(u’)<o’aJu.(;4_i —u'). (20)

STEP 7. Set

u‘+l=ui+oi( u —ui). (21)
Go to Step 2.

This algorithm is well-defined. Steps 1, 2, 3 and 5 require no explanation, while
the existence of a u' € 9 as required in Step 4, is to be proved in Lemma 4.1.
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Now, consider Step 6. It follows from Step 4 and Step 5 that Ju.(;)_s J(u'),
or equivalently, J,i(u' — u') < 0. Moreover, since U is convex, u' + o(u’ — u') €
QL for all ¢ € [0, 1]. By the definition of J.(u' — u'), we have

Ju' + oW —u')) = J(u) (7 ),

u

o—0 o

and therefore, since 0 < a < 1, we have
J(u' + o(? - u’)) —J(u') < oaJu.(; - u’)

for o sufficiently small. Thus, o' in Step 6 is well defined. Finally, as above, the
convexity of QL implies that u'*' € 9 and so Step 7 is also well defined.

REMARK 4.1. The rate of convergence of the algorithm depends very much on the
sizes of a and B chosen in Step 1. The algorithm usually works better whenever the
size of a is small and the size of B is large. From our experience, it appears that the
algorithm usually converges reasonably well with « = 0.2 and 8 = 0.8.

LEMMA 4.1. For each u' € AL, there exists a control u’ &€ QU which minimizes the
linear functional J,.(u) over .

PROOF. Let
w(t) = zrgg[(%H(t,x(u‘)(t), u‘(t),‘I'(u')(t)),v>}.

Clearly, w(t) is measurable. For eacht € [0, T},

w(6) € {{ ol x(w)(0), (), ¥ ) (D), 0): 0 € U).

Thus, it follows from the Filippov implicit function lemma ([10], Theorem 3) that
there exists a measurable function m € L ([0, T'], U) such that

() = (= Bt x()(0), w(0), #()(D), m(1)).
Define

— o _ [m(s), re€(0,T],
“(’)‘{y(r), € [-4,,0).

This implies that u' € and satisfies the condition (18). Thus, by (19), «'
minimizes the functional J,.(«) over 9. This completes the proof.
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REMARK 4.2. From the proof of Lemma 4.1, we observe that the control ' € 9
is the one which maximizes, for each t € [0, T'], the linear function

(& b x(w)0), we), ¥()(0).-

over U. In theory, there may exist a nonmeasurable function which will do the
same job. This is, however, a very rare situation in practice. Normally, there exists
oniy a unique piecewise constant function on [0, 7] which maximizes such a
linear function for each ¢ € [0, T']. Furthermore, the calculation of this piecewise
constant function is, in general, trivial.

THEOREM 4.1. Consider the problem (P). If u* € A, is an optimal control, then
J(u—u*)=0 (22)
for allu € Q.

PROOF. The proof follows easily from the convexity of 9L and the definition of
u*.

THEOREM 4.2. Let {u'} be a sequence of admissible controls generated by the
conditional gradient algorithm. If u* is an accumulation point of {u'} in the L
topology, then u* satisfies the necessary condition for optimality (22).

PROOF. Since u* is an acccumulation point of {u'}, there is a subsequence,
again denoted by {u'}, converging to u*.

There are two cases to consider. _

Cask 1. There exists an u' such that J,.(u' — u') = 0. Then, by Step 5 of the
algorithm, u/ = u' for all j = i and so u* = u’. Using (18) and (19), we have

Jpo(u—u*)=J,(u—u") =Ju,(u - ;) + Ju.(; - u') =0

for all u € 9L, and so u* satisfies the necessary condition for optimality (22).
Case 2. Foralli =0,1,2,..., we have

Jul(; - u') < O.
It then follows from (20) and (21) that

Ju.(; - ui)l <|J(u*") = J(u')]

oia
for all i, and so
olad (u —u') -0 asi- oo. (23)
We want to show that
J(u —u) >0 asi- oo, (24)

https://doi.org/10.1017/50334270000004240 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004240

[14] Conditional gradient method 531

for then by taking limits in the inequality
J,,.(_u_‘ —ui)<Ju.(u—u‘), u€ U,
we obtain
0<J,.(u—u*), wue,
the necessary condition for optimality.
Thus, it remains for us to show (24) holds for the sequence {#'} (or at least for
a subsequence). If o' equals 1 for all but a finite number of i, then (24) follows

trivially from (23). Therefore, assume {u'} is a subsequence for which ¢’ < 1, for

all ;.
Then, it follows from the definition of o' that

Ju' + %(; —-u') —J(u’)>%a.lu.(? —u’), (25)
for all i. Using Taylor’s Theorem in Remainder form, the inequality (25) can be

written as
Jﬁ‘(;; - u’) —Ju:(; - u’) > (a - I)JMI(; - u’)
where &' = u' + (0°0/B)u' — u') € U, and 0 < @ < 1. Thus, we obtain

— . 2
Jo(w = )| < 5 W = Jall (26)

where ¢ = sup, cq ||t -
Suppose (24) is not true. Then, there exists an ¢ > 0 and a subsequence, again

denoted by {u'}, such that
J(u —w)<-e<0, foralli (27)
and by (23), it also follows that
o' -0, i— o0.
However, then it is clear that ||@" — u'|| , — 0 as i — oo and so, by Theorem 3.2,
Va — Jull >0 asi— oo.

Finally, using (26) we obtain a contradiction to (27). Thus, (24) holds and the
theorem is proved.

5. An illustrative example

Consider the problem of minimizing

7) = Hx()QP + 4 L[] ar
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subject to the differential equation
x()y=x(t— 1D+ u(t), 0<t<3,

with the initial condition x(¢) = 1 for ¢t € [-1,0], where u is a control function
with values in [-3, 3].
This problem is adapted from example 4.1 of [3], page 189. The optimal control
of this probiem is given by
8{-(t—2?%/2-3s2}, 0=<:
(1) = {5(s - 3), 1
-8, 2

b

1
2,
3

//\//\//\

//\//\

where & is given (approximately) by 8 = .56231. The true optimal cost is ap-
proximately 1.7338.

This problem has been solved by the conditional gradient method using
different sets of parameters a, 8 € (0, 1). The initial control is chosen to be zero
throughout the interval [0, 3] for each set of parameters used. From the numerical
results listed in Table 1, it appears that the conditional gradient algorithm works
reasonably well for this problem with the 5 different sets of parameters used.
However, the rate of convergence for this problem is fastest with the set of
parameters ¢ = 0.2 and 8 = 0.8, and is slowest with the set of parameters a = 0.8
and 8 = 0.8. The value of the optimal cost obtained by using « = 0.2 and 8 = 0.8
after 120 iterations or by using « = 0.1 and 8 = 0.9 after 123 iterations is 1.7342.
It is extremely close to the true optimal cost 1.7338 of this problem. Graphs of the
true optimal controls, 4'?° with « = 0.2 and 8 = 0.8, and u4'? with « = 0.1 and
B = 0.9 are plotted in Figure 1. The combination of the fourth order Runge-Kutta
integration scheme together with the method of steps is used to integrate the
system forward in time and the adjoint system backward in time, both over the
interval [0, 3] which is divided into 300 netpoints.

TABLE 1
(Initial Control = 0.0)
J(u')

a=108 a=035 a=0.5 a=01 a=102

i B=08 B=05 B=038 B =09 B =08

20 1.8050 1.7774 1.7618 1.8515 1.7414

40 1.7681 1.7544 1.7513 1.7802 1.7363

60 1.7606 1.7491 1.7471 1.7435 1.7350

80 1.7542 1.7462 1.7432 1.7388 1.7346

100 1.7506 1.7446 1.7409 1.7362 1.7344
120 1.7492 1.7444 1.7392 1.7343 1.7342
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true optimal control

...... ul20(s) =02 =08
______ w123y a=0.1 g=0.9
-
1 i 1 1 1 1 1 1 1
0.0 0.6 12 1.8 2.4 3.0 ot

Figure 1. The comparison of controls.

Appendix

Proof of Lemma 3.1. From (1), we get

x(u)(t) = xq + j(;’ goff('r —h,, x(u)(r—h,), u(r— hj)) dr

for all 7 € [0, T'). Thus, it follows that

x(u?)(e) = x(u')|

< f_:. .go[lf!(f, x(u?)(7), u*(7)) = f/(7, x(u')(7), u?(7))]

+|f(r, x(u')(7), u?(7)) = f(7, x(u')(7)), “I(T)I] dr.
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By (Aii) and (Aiii), we obtain
(u?)(2) = x(u)(0)
<K(s+ ) [ [()(n) = x@)(D] () = u'(n)]] dr
(A1)

() = x (@) < Ki(s + 1) jo '|x(u2><f) = x(u')(r)ldr

+K\(s + (T + h)|u? — u'|lo

M) = 2(@)o)] + Gl = 'l (AD)

where C, = K,(s + 1), G, = K (s + IXT + h,) and N(w)X7) = [{ w(7)d7. On
this basis, it can be shown, by induction that r, that

||x(u2)—x(u')“w<{ cim(Glu? — u'llw )]}

+ [ M (Ix(4?) = x(2")]w)]- (A3)
Finally, noting that for any constant C >0, N{(C)= Ct"/r'< CT"/r! and
taking the limit as r — oo in (A3), we obtain

r—1

=0

1

¢ l
[Ix(2?) = x(u") oo < Collu® — ']l 2 —'— = Gllu? ~ u'llw,  (A4)

[> o}
where C; = C, D, (K:T'/i!). This completes the proof of the lemma.
i=0

Proof of Lemma 3.2. From the equation (3a), we get

ww© =gy + [7 3 3 YR (4 ar

I k=0 j=0
(i=1,...,n),
for all 1 € [0, T]. Thus, by using (Aiii), we deduce from Cauchy’s inequality that
() (O <))+ (s + DE(N(I9(1)])) (AS)

for all + € [0, T'], where
T
N(w)(t) = [ w(r) dr.
I
Therefore, from (AS), (3b), (3¢c) and (Av), it can be verified that
()l < Co + CsNa([9()]l )
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where C, = (1 + nk?)"/? and C; = (s + 1)(n + 1)'/?K,. Now, by using the same
argument as that used to obtain the inequality (A4) from the inequality (A2), we
obtain

2 GGT _

()l < =K. (A6)

i1
=0 [

This completes the proof of part (i) of the lemma.

Using (3a), and (Aiii), we deduce from Cauchy’s inequality that, for any
u',ut e L,

[ () (1) = ¢ (u')(1)|
<[y, (u>)(T) — ¢, (u'(T)]
fT é é {[ afl(r, x(ual(ir),u (7))

{ k=0 ;=0

+

_ Jfl(r, x(u')(r), w'(r))

ax :|¢’k(ul)(7+hj)

i

+[4/k(u2)(7 + hj) - ‘Pk(“l)("' + h_/)]

ox;

i

e ),

<o, (2)(T) — ,(u')(T)|
e[ $ AR 0y x(w)(r). w')
1 =0 X X

ax, d
+ (s + DK [M(le(e?) = ¥(1)]o)]  (=1,...,n),

dr

H

(A7)

forallt €[0,T].

From (Av) and Lemma 3.1, we note that, for a given € > 0, there existsa §, > 0
such that, for any u', u? € L,

a%g(xw)m) — 58] < (A8)

foralli = 1,...,n, whenever |ju* — u'||, <38,.
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In view of (Aiii) and Lemma 3.1, we observe that, for a given ¢ > 0, there exists
a 8, > 0 such that, for any u', u* € L],

T (X)), 0)) = g (1)), ()
foralli = 1,...,n, and for allj = 0,...,s, whenever |Ju? — u'|, <§,.
Using (A7), it follows from (3c), (A8) and (A9) that
H’i(“z)(t) - ‘Pi(“l)(’)l< e+ Ks(s+ 1)Te
+ (s + DK (Mo () = $()])) (A10)

for all i=1,2,...,n, and for all ¢t €[0, T), whenever ||ju?—u'l|, <&=
min(§,, §,). It then follows from (A10) and (3b) that

[w(u?) = $(u")w < Gt + Cy(Nyly(u?) - $(u")].)

where G, = (n + 1)!72(1 + K5(s + DT) and C; = (n + 1)'/*(s + K,.
Now, by using the same argument as that used to obtain the inequality (A4)
from the inequality (A2), we get

<e (A9)

[s¢]

l$(?) = (') < 2 GT'Cle/i!= Cye.
i=0

Therefore,
[W(u?) ~ ¢(u')|e =0 whenever {[u> — u'[|, — 0.
This completes the proof.
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