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1. Introduction
This paper concludes the investigation of axially symmetric stress distribu-

tions in elastic solids containing penny-shaped cracks, commenced in previous
papers (1), (2), by considering the stress distribution in a circular beam con-
taining a crack opened by internal pressure or by uniform tension. The
method of analysis, developed in the previous papers, is to first seek a repre-
sentation of the displacement at a point of the beam as a sum of two terms,
one of which is a representation of the displacement due to the crack in an
otherwise unbounded infinite solid whilst the second is a general representation
of the displacement in an undamaged beam, and then to show that this
representation satisfies the conditions on the crack and the curved surface
of the beam provided an unknown function occurring in it is the solution of
a certain Fredholm integral equation. This equation holds whatever the ratio
of the radius of the crack to that of the beam, but is most readily solved by
iteration when this ratio is small, this solution being a perturbation on that
for a crack in an infinite solid.

The required representation of the displacement is given in § 2 and the
governing Fredholm equation of the problem obtained in § 3. In § 4 we
suppose the crack opened by a constant internal pressure and give expressions
for the normal displacement over the surface of the crack and for the increase
in the potential energy of the beam when the radius of the crack is small
compared with that of the beam. Finally, in § 5 we consider the crack in a
beam under uniform tension and determine the critical value of the tension
at which the crack becomes unstable by means of the Griffith criterion, the
ratio of the radii of the crack and the beam again being small.

2. The Representation of the Displacement
We use cylindrical polar coordinates (m, 6, z) with the centre and axis of

the crack as origin and z-axis, so that the crack, radius a, is given by

z = 0
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and the curved surface of the beam, radius c (c>a), by w = c (—oo<z<oo),
and adopt Love's notation (3, p. 79) for the stress components at a point of
the beam. Thus, for example, the components of the stress vector across

an element whose normal is in the z-direction are mz and zz, the component
in the 0-direction being zero since the stress distribution is torsion-free. At
all interior points of the beam the stresses and the components u and w of the
displacement D in the m- and z-directions satisfy the body stress equations
and the stress-strain relations for an isotropic material, the displacement
components being 0(| z \ ~l) at a large distance | z | from the origin. Further,
the displacement and stress components are continuously differentiable at all
interior points of the beam and are continuous for approach to points on
either face of the crack, except that on its edge (z = 0, xn — a) the stresses can
be expected to tend to infinity as (a2-ua2)~i. We suppose the crack is opened
by an axisymmetric normal pressure, so that

mz = 0, zz=-p(w), on z = 0 (O^w^a) (2.1)

p(m) being a given continuous function of w, whilst the curved surface of the
beam is stress-free, giving

win = mz = 0 on GJ = c (—oo<z<oo) (2.2)

We construct the displacement D at any point of the beam as

1) = /)! + ^ , (2.3)

where Dt is a representation of the displacement at a point in an infinite solid
containing a crack opened under normal pressure and D2 is a general repre-
sentation of the displacement at a point in the undamaged beam
w = c (— oo<z<oo), the z-component of D2 being antisymmetric about
z = 0 because of (2.1). The representation Dt has already been found as
(1, equation (2.3))

/>! =(3-4f/)0fc-zgrad 0 + gradi/r, (2.4)

where k is the unit vector in the z-direction, r\ is Poisson's ratio, and <f>{m, z)
and il/(ru, z) are harmonic functions, given by

d±= -(1-2,)*,
oz

g(t)dt

2iJ-a(t

i/r(tz7, z) = - u ^ ; ^(0 log [(w2 + (z + J7)2)* + ̂  + i ' ] ^ - • • -(2.5)
2J J - o

Here ^(f) is a real continuous odd function as yet undetermined, the square
roots have non-negative real parts (1, equations (2.9) and (2.10)), and the
logarithm its principal value.

https://doi.org/10.1017/S0013091500014504 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014504


AXIALLY SYMMETRIC STRESS DISTRIBUTIONS 71

We now require a general representation of the displacement at a point
in an undamaged beam. Previous workers on elastostatic problems for circular
beams (4), (5), have usually represented the displacement in terms of a biharmonic
stress function (3, pp. 274-6), but it seems preferable to use a representation
deduced by Barton (6) from the Papkovich-Neuber solution of the equations
of elasticity. We have as a representation for D2

D2 = (3 — 4rj)xtn — rograd r + grad x, (2.6)

where xa is the unit vector in the ro-direction, and /(ro, z) and T(C7, Z) COS 0
are harmonic functions, that is, x(m, z) is a solution of the equation

(2.7)
m Cm Oz" m~

We represent x a n d T as

A(X)(I0(Xm) cos Xz-l)dX,
J o

7, Z) = f"
Jo

(2.8)

x(m, z) = I B(X)I1(Xm) cos XzdX,

where I0{Xm) and I^m) are modified Bessel functions of the first kind (7,
p. 77). The integrand in the representation for x contains (I0(Xm) cos Xz— 1)
rather than I0(Am) cos Xz to ensure that the integrand does not diverge at the
lower limit, it being found later that A(l) is 0(X~2) for small X.

The representation (2.3) for D is found to satisfy the required continuity
conditions and to tend to zero at a large distance | z | from the origin. Further,
at any point of the beam the stresses corresponding to (2.3) are

1-lf^p^pL, (2.9,
m dm az oz

(2.10)z + ( l 2 ^ ) C 7 + ,
2\i dmdz dz dmdz dmdz

mm , d(/) d24> d2ij/ . ~ T , . dx o2x
= 2n z \ ^ + 2M h 2(1 M ) C 7 H

3m

^ = 2,^^+^+2^+2(1-,)^ - ^ + ̂ ,..(2.11)

where \i is the shear modulus.

3. The Integral Equation for g(t)

We now show that the representation (2.3) for D satisfies the boundary
conditions (2.1) and (2.2) provided g(t) is the solution of a certain Fredholm
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integral equation of the second kind. From (2.8) and (2.10) we have that

wz = 0 for z = 0 (0^n7<oo),

so that the first of conditions (2.1) is satisfied. Further, from (2.8) and (2.9)
the second of these conditions is satisfied provided

d-$- - f" A \XA(k)I0(Xxn)-B(X)(2riI0(Xw) + XujIl(Xw))| dk = - ^
oz Jo L J 2/*

forz = 0 (Ogro^c).

The first term on the left-hand side of this equation is the limit of d<l>/dz as the
point (m, 6, z) approaches a point on the crack and is found as

Lt r f ( 0 r o
2-.o 8z m dm J o (or — r ) *

Thus, on multiplying the above equation by w and integrating with respect to
w from 0 to w, we obtain

0 ! -™ r
-t2y j 0

f / ? ! ™ r \A(X)I1(Xw)()(r,Il(Xw) + XwI2(w))\ dX

from which we find g(t) in terms of A(X) and 5(A) by an application of the
known solution of Abel's integral equation (8). We use the integral repre-
sentations (7, p. 373, equation (1) with v = — \, \i = ^ and f)

2

cosh A?—

to obtain

2 Cm f 1
g(t) I Ay4(A) sinh Xt + J3(A)((1 ~2r\) sinh kt-Xt cosh A?) rfA = P(t)

n Jo L J ), ...(3.2)

where

(3.3)

We now obtain two further equations relating the three functions g{t),
A(X) and B(X) from the condition that the curved surface of the beam is

https://doi.org/10.1017/S0013091500014504 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014504


AXIALLY SYMMETRIC STRESS DISTRIBUTIONS 73

stress-free. From (2.10) mz is zero on w = c {— oo<z<oo) provided

A sin XzdX

(—oo<z<oo).

f" A^(A)/1(Ac)-B(A)(Ac/0(Ac)-2(l-^)/1(Ac))

2i J _ . (
An application of the Fourier sine theorem gives

)-XB(X)(XcI0(Xc)- 2(1 -»

= — f
in Jo

...(3.4)
in Jo

where
3cz(

! + (z-«)2)* (<

We evaluate this integral, making use of the real and imaginary parts of the
integrals (7, p. 410, equation (2) with v = \, pi = 1 and 2)

- I °° XKt(Xc) cos XudX = ° (3.5)
n Jo (c +u )*

3c2

A X,(Ac) cos AwdA = — T-r, (3.6)
o (c2+«2)*

where c>\Imu\ and K^Xc) and K2(Xc) are modified Bessel functions of the
third kind (7, p. 78), to find

S(X, s) = 2iA QK^Xc) — XcK2(Xc)) sinh Xs + K^X^Xs cosh Xs ,

provided c>s, a condition which is satisfied since oaSis1 . Hence equation
(3.4) becomes

XA{X)l1(Xc)-B{X){XcI0(Xc)-2(\-ti)Ii{Xc)) =-K^Xc) \ g{s)Xs cosh Xsds
n Jo

-(3Ki(Xc)-XcK2(Xcy) | g(s)sinhXsds (0^A<oo). ...(3.7)
Jo71

Finally, from (2.11) wxn is zero on w = c (—oo<z<oo) provided

- 2f/)Ac/0(Ac) - 4(1 - rfil^Xc)

-(Ac)2/t(Ac)) 1 cos AzdA

2' J -
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We now apply the Fourier cosine theorem and make use of the integrals (3.5)
and (3.6) to obtain

XA(X)(XcI0(Xc) - I^Xc)) + B(2)((3 - 2ri)XcI0(Xc) - 4(1 - rj)!^) - {Xcfh{Xc))

= -(K1(Xc)-XcK2(Xc)) \ g(s)te cosh Xsds
* Jo

\
Jo

g(s)sinhXsds (OgA<oo) (3.8)

We solve the simultaneous equations (3.7) and (3.8) for A{X) and B(X) to
find

XA(X)G(Xc) = -(2-2r]-H(Xc)) f g(s)te cosh Xsds
* Jo

+ ±(4-4rj + (Ac)2 - (3 - 2r])H{Xc)) g(s) sinh Xsds, ... (3.9)
?* Jo

B(X)G(Xc) = - - [ ' ' g(s)Xs cosh Xsds + - (H(Xc) - 1 ) f" g(s) sinh Xsds, ... (3.10)
tjo t Jo

where
G(Xc) = (Ac) 2 / ^c ) - (2 -2^ + (Ac)2)/2(Ac), (3.11)

H(Xc) = (Xc) I0(Xc)K0(Xc) + (2 — 2ri + (Xc))I1(Xc)K1(Xc) (3.12)

For small values of XA{X) and B(X) are O(X~2) and O{X~1) respectively. The
integrands of % and T given by (2.8) are however finite at X = 0, so that the
integrals for these functions do not diverge at the lower limits.

On substituting the expressions (3.9) and (3.10) into (3.2) we obtain a
Fredholm integral equation of the second kind determing g(t), this being

g(t)+ - K(t, s)g(s)ds = P(t) (O^t^a), (3.13)71 Jo
where

K(t, s) = — [G(Xc)]~ M (2H(Xc) — 3 + 2rj — (Xc)2) sinh Xt sinh Xs1 (2H(X

L
— k2ts coshAf cosh Xs + (H(Xc)—l)(Xt cosh Xt sinh Xs + Xs cosh Xs sinh Af) dA.

(3.14)

Once g(i) is found, A{X) and £(A) follow from (3.9) and (3.10) and the
stresses and displacement at any point can then be calculated. The exact
solution of (3.13) is not however known, and it is necessary to resort to numerical
and approximate methods to solve it. In particular, when c tends to infinity,
K(t, s) tends to zero and (3.13) reduces to the corresponding equation for an
infinite solid containing a crack opened under normal pressure obtained
previously (1, equation (2.12)). Thus, when the ratio a/c is sufficiently small,
an iterative solution of (3.13), perturbing on the solution for a crack in an
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infinite solid, can be obtained as a convergent power series, the first few terms
of which provide a good approximation to g[t).

To derive this solution we first expand K(t, s) in powers of c"1. We find
that

t, s) = - [
7tcJ0

K{t, s) = - [G-1(o[(2#(0-3 + 2i7-£2) sinh (&) sinh (**
J | \cj \c

cj \c

1

!(2« + l)! Jo

= I c-2 '"3 £ Dr_n,nt
2"+1s2'-2n + \ (3.15)

r = O n = 0
where

Dmn = Dnm = 2 ( w + M + 2 )£ m n - [2(m+l)(«+l) + l - ^ ] F m n

.(3.16)

with
_ 2

" " ~ nm~^(2m + l)
and

irmn = ^ m = - — • r Z2(m + n+1) dt, (3.18)
n (2m +1) \{2n +1)! J 0 G(£)

For a given value of r\ the coefficients Emn and Fmn need to be evaluated numeric-
ally for various m and n depending on the order of the terms in (3.15) neglected
in obtaining an approximate solution of (3.13). We can however express
Emn and Fmn in terms of some related coefficients 2ma2n and 2my2n, which arise
in a paper by Ling (5, equation (21)) on a spherical cavity in a circular beam
under tension and then make use of Ling's numerical results for these co-
efficients to calculate Emn and F^n and hence Dmn. In this way we find for
instance that, when r\ = 0-3,

Doo= - 2 4 7 5 1 , D10= -0-3938 (3.19)

4. The Crack Opened under Constant Pressure
When the crack is opened by a constant pressure p, we have

p(w) = p,
so that from (3.3)

and the Fredholm equation (3.13) determining #(f) is

0(0+ - [°K(t, s)g(s)ds= - V— (Og/^fl) (4.1)
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The approximate solution of this equation obtained by iteration is

t _ 2PiOa3 U 3a*\ 4D2
00a

6

3nc3 3nc5 \ 5 / 9n2c6

_ 2a3 fD20t* + Dtlf
2fl2

 + P2 Oa4\ + 4D00D10a
6 / 2 | 9a^\

_ 2fl̂  /P3o<6 Z)21f
4a2 P21?2a4

4a6 {DwD2Ot*
+ 15

n ) (4.2)
525 25

From (2.3), (2.4) and (2.6) we find the z-component w of the displacement as

w = 0 for z = 0 (p>a),

and

for z = 0± (0^E7^a), (4.3)
—ro ) T

the upper and lower signs holding for points on the faces z = 0+ and z = 0_
of the crack respectively. Hence, using (4.2), we find that

2P00a3 4fl10a
3 / 2 7a2\ 4D2

0a
6

8D00D10a6 / 2 16a2A 2a 3 /"l6D3Om6 /8D3O 8D 2 1 \ 4 2T + J \ + { + r a

/2
V
/2D«, + 2 f i D 2 1 W f lO^o + 4 6 ^ 4D|o\
V 35 175 / V 63 525 27TC2/

8a
6

(4.4)

Values of vc+ for varous xn when c = 5a and r\ = 0-3 are given in Table I
and are found to be about 0-5 per cent, greater than the corresponding values
for the normal displacement over a crack in an infinite solid given by (4.4)
when c tends to infinity.
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TABLE I

Values ofw+/Dfor various m when a/c = 0, 0-2, and r\ = 0-3.
%\tD = 2(1 - r\)pa

m/a

00
01
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
10

a/c = 0

10000
0-9950
0-9798
0-9539
0-9165
0-8660
0-8000
0-7141
0-6000
0-4359
0

a/c = 0-2

10042
0-9991
0-9839
0-9579
0-9203
0-8696
0-8033
0-7171
0-6025
0-4377
0

The increase W in the potential energy of deformation due to the crack is
(3, p. 173)

w=np r
Jo

= -4np(l-t

_ 4(l — ri)p2a

. 16Dnn^io

tg{t)dt

2D, 4D
10

9;tn 5n

_8^ (2D00D20 DQQDU 44D2Q

7t2V 21 25 525
where <r = a/c. When <r = 0-2 and t] = 0-3, we have

= 0-9373 p2a3.

25

-(4.5)

5. A Crack in a Beam under Tension
The effect of a crack on a circular beam under a uniform tension in the

z-direction can be deduced immediately from the previous analysis. If the
solution

ZZ = p, TDZ = WTB = 0 ,

is added to the stresses given by (2.9), (2.10), and (2.11) for the crack opened
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under constant pressure p, the resulting stress distribution is that for a crack
in a circular beam under a uniform tension p in the z-direction, the surfaces
of the crack and the beam being stress-free. The presence of the crack lowers
the potential energy of the beam by an amount W given by (4.5). The criterion
given by Griffith (9) that the crack may spread is

where the surface energy U of the crack is given by

| U = 2na2T,

T being the surface tension of the elastic material. Thus for small values of
the ratio a = ale the crack will become unstable and spread if p exceeds the
critical value

• = Pol
2D00 3 16D1 0 , 2 / 1 0 1 ^ _7 , 8 P 0 0 D 1 0 _8

1 + - — < T + — — < 7 + - r - D 2 o + - ^ 1 1 I o + a
n \21 5 / 457t

n \ 9 ' " 35 " / 3 T I 2 V 2 1 " " " 25 " " " 2 1

, 1 nfiT
where p0 =

is the corresponding critical value of p for a crack in an infinite solid under a
uniform tension (9).

When t\ = 0-3, (3.19) shows that Doo is negative and hence pcr is less than
p0. In particular, when a = 0-2,

Pcr = O-9958/v
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