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Abstract
Stone locales together with continuous maps form a coreflective subcategory of spectral locales and perfect
maps. A proof in the internal language of an elementary topos was previously given by the second-named
author. This proof can be easily translated to univalent type theory using resizing axioms. In this work, we
show how to achieve such a translation without resizing axioms, by working with large, locally small, and
small-complete frames with small bases. This requires predicative reformulations of several fundamental
concepts of locale theory in predicative HoTT/UF, which we investigate systematically.
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1. Introduction
The category Stone of Stone locales together with continuous maps forms a coreflective subcat-
egory of the category Spec of spectral locales and perfect maps. A proof in the internal language
of an elementary topos was previously constructed by Escardó (1999, 2001), defining the patch
frame as the frame of Scott continuous nuclei on a given frame.

In the present work, we show that the same construction can be carried out in predicative and
constructive univalent foundations. In the presence of resizing axioms, which were originally con-
sidered as rules by Voevodsky (2011), it is straightforward to translate this proof to univalent type
theory. At the time of writing, however, there is no known computational interpretation of the
resizing axioms. Therefore, the question of whether resizing can be avoided in the construction
of the patch locale is of interest. In such a predicative situation, the usual approach to locale the-
ory is to work with presentations of locales, known as formal topologies (Sambin 1987; Coquand
et al. 2003; Coquand and Tosun 2021). We show in our work, however, that it is possible to work
with locales directly. This requires a number of modifications to the proofs and constructions of
Escardó (1999, 2001):

(1) The major modification is that we work with large, locally small, and small-complete frames
with small bases. The reason for this is that, in the absence of propositional resizing, there
are no nontrivial examples of frames (de Jong and Escardó 2021). See Section 3 for further
discussion.

(2) The patch frame is defined as the frame of Scott continuous nuclei by Escardó (1999, 2001).
In order to prove that this is indeed a frame, one starts with the frame of all nuclei and then
exhibits the Scott continuous nuclei as a subframe. This procedure, however, does not seem
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2 I. Arrieta et al.

to be possible in the context of our work, as it is not clear whether all nuclei can be shown
to form a frame predicatively; so we construct the frame of Scott continuous nuclei directly,
which requires predicative reformulations of all proofs about it inherited from the frame of
all nuclei.

(3) In an impredicative setting, any frame has all Heyting implications, which are needed to con-
struct open nuclei. Again, this does not seem to be the case in our predicative setting. We
show, however, that it is possible to construct Heyting implications in large, locally small,
and small-complete frames with small bases, by an application of the posetal instance of the
Adjoint Functor Theorem.

(4) Similar to (3), we use the posetal Adjoint Functor Theorem to define the right adjoint of a
frame homomorphism, which we then use to define the notion of a perfect map, namely, a
map whose defining frame homomorphism’s right adjoint is Scott continuous. This notion is
used by Escardó in his impredicative proof (1999; 2001).

For the purposes of our work, a spectral locale is a locale in which any open can be expressed
as the join of a family of compact opens. A continuous map of spectral locales is spectral if its
defining frame homomorphism preserves compact opens. A Stone locale is one that is compact
and in which any open is expressible as the join of a family of clopens. Every Stone locale is
spectral since the clopens coincide with the compact opens in Stone locales. The patch frame
construction is the right adjoint to the inclusion Stone ↪→ Spec. The main contribution of our
work is the construction of this right adjoint in the predicative context of univalent type the-
ory. We have also formalized (Tosun 2023) the development of this paper in the Agda proof
assistant (Norell 2009) as part of the TypeTopology library (Escardó and contributors 2018).
Our presentation here, however, is self-contained and can be followed independently of the
formalization.

The organization of this paper is as follows. In Section 2, we present the type-theoretical
context in which we work. In Section 3, we introduce our notion of locale discussed above. In
Section 4, we present our definitions of spectral and Stone locales, which provide a suitable basis
for a predicative development. In Section 5, we present the posetal instance of the Adjoint Functor
Theorem for the simplified context of locales, which is central to our development. In Section 6,
we define the meet-semilattice of perfect nuclei as preparation for the complete lattice of perfect
nuclei, which we then construct in Section 7. Finally in Section 8, we prove the desired universal
property, namely, that the patch locale exhibits the category Stone as a coreflective subcategory of
Spec, where we restrict ourselves to locales with small bases.

Finally, we note that a preliminary version of the work that we present here previously appeared
in (Tosun and Escardó 2023). Our work here extends loc. cit. in several directions. The pre-
sentation that we provide through Theorem 36 and Theorem 54 here involves new results.
Furthermore, we provide a complete proof of the universal property of Patch through a new
approach, as given in Theorem 84 and Theorem 86.

2. Foundations
In this section, we introduce the type-theoretical setting in which we work and then present
the type-theoretical formulations of some of the preliminary notions that form the basis of our
work. Our type-theoretical conventions follow those of de Jong and Escardó (2021; 2023) and The
Univalent Foundations Program (2013).

We work in Martin-Löf Type Theory with binary sums (− )+ (− ), dependent products
�, dependent sums �, the identity type (− )= (− ), and inductive types including the empty
type 0, the unit type 1, and the type List(A) of lists, or words, over any type A. We denote by π1
and π2 the first and the second projections of a � type. We use the abbreviation 2 for the sum
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Mathematical Structures in Computer Science 3

type 1 + 1, and refer to this as the type of Booleans. We adhere to the convention of the HoTT
Book (2013) of using (− )≡ (− ) for judgmental equality and (− )= (− ) for the identity type.

We work explicitly with universes, for which we adopt the convention of using the variables
U, V,W, . . . The ground universe is denotedU0 and the successor of a given universeU is denoted
U+. The least upper bound of two universes is given by the operator (− ) � (− ) which is assumed
to be associative, commutative, and idempotent. We do not assume that the universes are, or are
not, cumulative. Furthermore, (− )+ is assumed to distribute over (− ) � (− ). Universes are
computed for the given type formers as follows:

• Given types X :U and Y : V, the type X+ Y inhabits universe U � V.
• Given a type X :U and an X-indexed family Y : X→ V, both

∑
x:X Y(x) and

∏
x:X Y(x)

inhabit the universe U � V.
• Given a type X :U and inhabitants x, y : X, the identity type x= y inhabits universe U.
• The type N of natural numbers inhabits U0.
• The empty type 0 and the unit type 1 have copies in every universe U, which we occasionally
make explicit using the notations 0U and 1U.

• Given a type A :U, the type List(A) inhabits U.

We assume the univalence axiom and therefore function extensionality and propositional
extensionality. We maintain a careful distinction between structure and property, and reserve log-
ical connectives for propositional types, that is, types A satisfying isProp (A) :≡�(x,y :A)x= y. We
denote by �U the type of propositional types in universe U, that is, �U :≡�(A :U)isProp (A).
A type A is called a set if its identity type is always a proposition, that is, x= y is a propositional
type, for every pair of inhabitants x, y :A.

We assume the existence of propositional truncation, given by a type former ‖−‖ :U→U and
a unit operation |−| :A→‖A‖. It is given by the recursion principle:

�(P : V)isProp (P)→ (X→ P)→ ( ‖X‖→ P).
The existential quantification operator is defined using propositional truncation as

∃(x :A) B(x) :≡
∥∥�(x :A)B(x)

∥∥ .
When presenting proofs informally, we adopt the following conventions for avoiding ambigu-

ity between propositional and non-propositional types.

• For the anonymous inhabitation ‖A‖ of a type A, we say that A is inhabited.
• For truncated � types, we use the terminologies there is and there exists.
• We say specified inhabitant of type A to contrast it with the anonymous inhabitation ‖A‖.
Similarly, we say there is a specified or chosen element to emphasize that we are using �

instead of ∃.
• When we use the phrase has a, we take it to mean a specified inhabitant. In contrast, we say has
somewhen talking about an unspecified inhabitant. If we want to completely avoid ambiguity,
we prefer to use the more explicit terminology of has specified or has unspecified.

If a given type A is a proposition, it is clear that it is logically equivalent to its own
propositional truncation. The converse, however, is not always true: there are types that are
logically equivalent to their own propositional truncations, despite not being propositions
themselves. Types that satisfy this more general condition of being logically equivalent to
their own truncations are said to have split support and have previously been investigated by
Kraus et al. (2017).
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4 I. Arrieta et al.

Definition 1 (V-small type). A type A :U is called V-small if it has a copy in universe V. That is to
say, �(B : V)A� B.

Lemma 2. The following are equivalent.

(1) For every type A :U and universe V, the property of being V-small is a proposition.
(2) Univalence holds.

We also have the notion of local smallness that refers to the equality type always being small
with respect to some universe.

Definition 3 (Local V-smallness). A type X :U is called locally V-small if the identity type x= y is
V-small for every x, y : X.

We have mentioned the propositional resizing axiom in Section 1. Having formally defined the
notion of V-smallness, we can now give the precise definition of this axiom.

Definition 4. The propositional (U, V)-resizing axiom says that any proposition P :�U is V-small.
The global propositional resizing axiom says that, for any two universes U and V, the propositional
(U, V)-resizing axiom holds.

By impredicative mathematics in the context of univalent foundations, we mean the use of the
above axiom. Our work here is concerned with the development of locale theory without the use
of the above axiom.

We will use the following axiom of set replacement:

Definition 5 (Axiom: set replacement (cf. (Rijke, 2022, Axiom 18.1.18))). Let f : X→ Y be a func-
tion from a type X :U into a set Y : V. The set replacement axiom says that if X is U′-small and the
type Y is locally W-small then the type image(f ) is (U′ �W)-small, where

image(f ) :≡�(y : Y)∃(x : X)f (x)= y.

Remark 6. Notice that we obtain the following as a special case of the set replacement axiom: given
a locally U-small set X′ :U+, the image of any function f : X→ X′ is U-small whenever the type X
is U-small.

An inhabitant of the set replacement principle can be constructed as a higher inductive type
and is thus a theorem in a foundational setting where all higher inductive types are available (such
as cubical type theory (Cohen et al. 2018)). We call this an axiom here since we would like to care-
fully keep track of which higher inductive types are used in our work. Moreover, de Jong (2023,
Theorem 2.11.24) showed that the set replacement axiom is logically equivalent to the existence
of small set quotients, which means that this principle does not require the use of an additional
HIT if small set quotients are already available.

We now proceed to define, in the presented type-theoretical setting, some preliminary notions
that are fundamental to our development of locale theory.

Definition 7 (Family). A U-family on a type A is a pair (I, α) where I :U and α : I→A. We
denote the type of U-families on type A by FamU (A), that is, FamU (A) :≡�(I :U)I→A.

Convention 8. We often use the shorthand (x)i:I for families. In other words, instead of writing (I, x)
for a family, we write (xi)i:I where xi denotes the application x(i). Given a family (I, α), a subfamily
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Mathematical Structures in Computer Science 5

of it is a family of the form (J, α ◦ β) where (J, β) is a family on the index type I. When talking
about a subfamily of some family (xi)i:I , we use the notation (xij)j:J to denote the subfamily given by
a family (ij)j:J �

We will also be talking about families (I, α) where the function α is an embedding. We refer to
such families as embedding families.

Definition 9 (Embedding). A function f : X→ Y is called an embedding if, for every y : Y , the type
�(x : X)f (x)= y is a proposition.

Definition 10. A U-family (I, α) on a type A is said to be an embedding family if the function
α : I→A is an embedding. We denote the type of embedding families by Fam↪→

U (A).

3. Locales
A locale is a notion of space characterized solely by its lattice of opens. The lattice-theoretic notion
abstracting the behavior of a lattice of open subsets is a frame: a lattice with finite meets and
arbitrary joins in which the binary meets distribute over arbitrary joins.

Our type-theoretic definition of a frame is parameterized by three universes: (1) for the carrier
set, (2) for the order, and (3) for the join-completeness, that is, the index types of families on which
the join operation is defined. We adopt the convention of using the universe variables U, V, and
W for these, respectively.

Definition 11 (Frame). A (U, V,W)-frame L consists of

• a type |L| :U,
• a partial order (− )≤ (− ) : |L|→ |L|→�V,
• a top element 1 : |L|,
• an operation (− )∧ (− ) : |L|→ |L|→ |L| giving the greatest lower bound U ∧V of any two
U,V : |L|,

• an operation
∨

(− ) : FamW (|L|)→|L| giving the least upper bound∨ (I, α) of any W-family
(I, α),

such that binary meets distribute over arbitrary joins, that is, U ∧∨i:I xi =
∨

i:I U ∧ xi for every
x : |L| and W-family (xi)i:I in |L|.

As we have done in the definition above, we adopt the shorthand notation
∨

i:I xi for the join
of a family (xi)i:I . We also adopt the usual abuse of notation and write L instead of |L|.

The reader might have noticed that we have not imposed a sethood condition on the
underlying type of a frame in the above definition. The reason for this is that it follows auto-
matically from the antisymmetry condition for partial orders that the underlying type of a frame
is a set.

Lemma 12. Let L be a (U+, V,U)-frame and let x, y : L.We have that x≤ y is U-small if and only
if the carrier of L is a locally U-small type.

Proof. Let x, y : L. It is a standard fact of lattice theory that x≤ y↔ x∧ y= x. (⇒) If the frame is
locally small in the sense that x≤ y is U-small for every x, y : L, then the identity type x= y must
also be U-small since x= y is equivalent to the conjunction (x≤ y)∧ (y≤ x). (⇐) Conversely,
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6 I. Arrieta et al.

if the carrier of L is a locally small type, then x≤ y must be U-small since it is equivalent to the
identity type x∧ y= x which is U-small by the local smallness of the carrier. �

We also note that, in the work of de Jong and Escardó (2021; 2021; 2023), the term V-dcpo is
used for a directed-complete partially ordered set whose directed joins are over V-families. This
terminology leaves the carrier and the order universes implicit, as the completeness universe is the
only one relevant to the discussion in most cases.

We gave a highly general definition of the notion of frame in Definition 11: all three universes
involved in the definition are permitted to live in separate universes. This generality, however, is
never needed in our work since it is known that complete and small lattices cannot be constructed
predicatively. This was first shown by Curi (2010a; 2010b), who proved that the existence of com-
plete, small lattices is not provable in Aczel and Rathjen’s Constructive1 ZF set theory (2010),
which is a predicative system.

In our setting, an analogous result was proved by de Jong and Escardó (2021), who showed
that the existence of a nontrivial complete and small lattice is equivalent to a form of proposi-
tional resizing that is known to be independent of type theory—see (de Jong and Escardó 2021,
Theorem 35) for details. Their result is more direct and is in the style of reverse constructive
mathematics (Ishihara 2006): they show directly that the existence of a nontrivial complete and
small lattice implies a form of propositional resizing. This formally shows that, when we adopt
a predicative approach to locale theory, we are forced to work with large and small-complete
lattices.

In light of this, we restrict attention to (U+,U,U) frames, which we refer to as large, locally
small, and small-complete frames.

Convention 13. From now on, we fix a base universeU and refer to types that have isomorphic copies
in U as small types. In contrast, we refer to types in U+ as large types. Accordingly, we hereafter take
frame/locale to mean one that is large, locally small, and small complete with respect to the base
universe U. �

Definition 14 (Frame homomorphism). Let K and L be two frames. A function h : |K|→ |L| is
called a frame homomorphism if it preserves the top element, binary meets, and joins of small
families. We denote by Frm the category of frames and their homomorphisms (over our base
universe U).

We adopt the notational conventions of Mac Lane and Moerdijk (1994). A locale is a frame
considered in the opposite category, denoted Loc :≡ Frmop. To highlight this, we adopt the stan-
dard conventions of (1) using the letters X, Y , Z, . . . (or sometimes A, B, C, . . .) for locales and
(2) denoting the frame corresponding to a locale X by O(X). For variables that range over the
frame of opens of a locale X, we use the letters U,V ,W, . . . We use the letters f and g for contin-
uous maps X→ Y of locales. A continuous map f : X→ Y is given by a frame homomorphism
f ∗ :O(Y)→O(X).

In point-set topology, a basis for a space X is a collection B of subsets of X such that every
open U ∈O(X) can be decomposed into a union of subsets contained in B. These subsets are
called the basic opens. In the context of point-free topology, the notion of a basis is captured by
the lattice-theoretic notion of a generating lattice. In (Johnstone 2002, p. 548), for example, a basis
for a locale O(X) is defined as a subset B⊆O(X) such that every element of O(X) is expressible as
a join of members of B. We now give the formal definition of this notion in our type-theoretical
setting.

Definition 15 (Directed family). Let (xi)i:I be a family on some type A that is equipped with a
preorder (− )≤ (− ). This family is called directed if
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(1) I is inhabited, and
(2) for every i, j : I, there exists some k : I such that xk is an upper bound of {xi, xj}.

Definition 16 (Basis of a frame). Let X be a locale. A basis for X is an embedding family (Bi)i:I such
that for every U :O(X), there is a specified directed small family (ij)j:J on the index type I, satisfying
U =∨j:J Bij .We often drop the embedding requirement, in which case we speak of intensional bases.
When we want to emphasize the distinction, we speak of extensional bases when we require the
embedding condition.

Notice that the embedding requirement says that the family in consideration does not have
repetitions. However, it will often be convenient to work with families that might have repetitions.
Such repetitions can be removed (constructively) if necessary, by factoring the family through its
image. In the case of a spectral locale, for example, there can be different intensional bases but the
extensional basis is unique.

Even though we do not require a basis to be given by a small family, we always work with small
bases in our work.

Remark 17. In the above definition, we required the covering families to be directed. This require-
ment is not essential since one can always construct an alternative basis in which the basic covering
families are directified as follows:

(1) Given a base (Bi)i:I , we take its closure under finite joins, that is, the map B↑ : List(I)→O(X)
defined by B↑(i0, . . . , in−1) :≡ Bi0 ∨ · · · ∨ Bin−1 .

(2) Consider an open U :O(X) and denote by (Bij)j:J the basic covering family that the basis (Bi)i:I
gives for U. The basic covering family given by the new basis B↑ is defined to be the family
α : List(J)→O(X), defined by α(j0, . . . , jn−1) :≡ Bij0 ∨ · · · ∨ Bijn−1 .

We thus obtain a basis (B↑s )s:List(I) in which the covering families are directed.

Although the directedness requirement is not essential, as explained in the above remark, we
prefer to include it in our definition of basis for technical convenience. Finally, we also note that
the directification of a small basis gives a small basis.

Lemma 18. For every small, intensional basis (Bi)i:I on a locale X, the image of B : I→O(X) is
small (assuming set replacement).

Proof. By appealing to the set replacement axiom (Definition 5) as explained in Remark 6, it just
remains to show that the carrier ofO(X) is a locally small type, which is always the case in a locally
small locale thanks to Lemma 12. �

4. Spectral and Stone Locales
The standard impredicative definition of a spectral locale is as one in which the compact
opens form a basis closed under finite meets (see II.3.2 from (Johnstone 1982)). To talk about
compactness, we define the way-below relation.

Definition 19 (Way-below relation).We say that an open U of a locale X is way below an open V ,
written U�V , if for every directed family (Wi)i:I with V ≤∨i:I Wi there is some i : I with U ≤Wi.
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8 I. Arrieta et al.

Lemma 20. Given any two opens U,V :O(X), the type U�V is a proposition.

The statement U�V is thought of as expressing that open U is compact relative to open V .
An open is said to be compact if it is compact relative to itself:

Definition 21 (Compact open of a locale). An open U :O(X) is called compact if U�U.

Example 22. The bottom open 0X of every locale X is compact. Let (Ui)i:I be a directed family of
opens of X with 0≤∨i:I Ui. The fact that the family (Ui)i:I is directed entails that it is inhabited by
some Ui.We know that 0≤Ui as 0 is the bottom element.

4.1 Spectral locales

Definition 23 (Compact locale). A locale X is called compact if the top open 1X is compact.

We denote by K(X) the type of compact opens of a locale X. In other words, we define
K(X) :≡ �(U :O(X)) U is compact.

Since the locales we consider are large, we have that the type K(X) lives in universe U+. A spec-
tral locale, also sometimes called coherent in the literature (Johnstone 1982, II.3.2), is defined in
impredicative locale theory as one in which the compact opens (1) are closed under finite meets
and (2) form a basis. In our formulation of this notion, we capture the same idea but impose the
additional requirement that the type K(X) be small.

Definition 24 (Spectral locale). A locale X is called spectral if it satisfies the following conditions.

(SP1) It is a compact locale (i.e., the empty meet 1X is compact).
(SP2) Compact opens are closed under binary meets.
(SP3) For any U :O(X), there exists some small directed family (Ki)i:I , with each Ki compact, such

that U =∨i:I Ki.
(SP4) The type K(X) is small.

Notice that in the impredicative notion of spectral locale, everything is small. One way of
understanding the above definition is that we only make the carrier large, but everything else,
including the basis, remains small. This is important for a variety of reasons. Without the small-
ness condition, it does not seem possible to (1) define Heyting implication, and hence open nuclei,
(2) show that frame homomorphisms have right adjoints, and so define the notion of perfect frame
homomorphism. Additionally, a natural Stone-type duality to consider is that between small dis-
tributive lattices and spectral locales, for which it becomes absolutely necessary that we work with
small bases as in the above definition. Notice that the same kind of phenomenon occurs when
we work with locally presentable categories, which are large, locally small categories with a small
set of objects that suitably generate all objects by taking filtered colimits (Adámek and Rosicky
(1994); Johnstone (2002)).

Lemma 25. For any locale X, the statement that X is spectral is a proposition.
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Proof. Immediate from Lemma 20 and the fact that the � type over a family of propositions is a
proposition. �

The natural notion of morphism between spectral locales is that of a spectral map.

Definition 26 (Spectral map). A continuous map f : X→ Y of spectral locales X and Y is called
spectral if it reflects compact opens, that is, the open f ∗(V) :O(X) is compact whenever the open
V :O(Y) is compact.

We denote by Spec the category of spectral locales with spectral maps as the morphisms. We
recall the following useful fact (see e.g. Escardó (1999)).

Lemma 27. Let X be a spectral locale and let U,V :O(X) be two opens.
U ≤V if and only if �(K :O(X)) K is compact→K ≤U→K ≤V .

In the context of the definition of spectrality that we gave in Definition 24, where we have
conditions ensuring that the compact opens form a small basis, it is natural to ask whether the
basis in consideration is unique. This is indeed the case, but it is subtler than one might expect
and is proved in Theorem 36 below. We first need some preparation.

Given that the conditions in Definition 24 capture the idea of the compact opens behaving like
a small basis closed under finite meets, one might wonder if the same notion can be formulated by
starting with a small basis closed under finite meets and requiring it to consist of compact opens.

Definition 28 (Intensional spectral basis). An intensional spectral basis for a locale X is a small
intensional basis (Bi)i:I for X satisfying the following three conditions.

(1) For every i : I, the open Bi is compact.
(2) There is some index t : I such that Bt = 1X .
(3) For any two i, j : I, there exists some k : I such that Bk = Bi ∧ Bj.
We say that the basis is extensional if the map B : I→O(X) is an embedding. When we say spectral
basis without any qualification, we mean an extensional spectral basis.

In Remark 17, we mentioned that a basis can always be directified by closing it under finite
joins. The same applies to spectral bases as well since the join of a finite family of compact opens
is compact.

Lemma 29. Given any locale X with an intensional basis (Bi)i:I , every compact open of X falls in
the basis, that is, for every compact open K, there exists an index i : I such that Bi =K.

Proof. Let K :O(X) be a compact open. As (Bi)i:I is an intensional basis, there must be a specified
directed family (ij)j:J on I such that K =∨j:J Bij . By the compactness of K, there must be some
k : J such that K ≤ Bik . Clearly, Bik ≤K is also the case, since K is an upper bound of the family
(Bij)j:J , which means we have that K = Bik . �

Corollary 30. Given any locale X with an intensional basis (Bi)i:I consisting of compact opens, we
have an equivalence of types image(B)� K(X).
Lemma 31. If a locale X has an unspecified, intensional, spectral, and small basis, then X is spectral.
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10 I. Arrieta et al.

Proof. First, notice that the conclusion is a proposition since being spectral is a proposition (by
Lemma 25). This means that we may appeal to the induction principle of propositional truncation
and assume we have a specified intensional spectral basis (Bi)i:I . We know that image(B)� K(X)
by Corollary 30, which is to say that the type K(X) is small, by the smallness of image(B) (given by
Lemma 18) meaning (SP4) is satisfied.

The top element falls in the basis and is thus compact so (SP1) holds. Given two compact
opens K1 and K2, they must be basic meaning there exist k1, k2 such that K1 = Bk1 and K2 = Bk2 .
Because the basis is closed under binary meets there must be some k3 with Bk3 =K1 ∧K2 which
means condition (SP2) also holds.

For (SP3), consider an open U :O(X). We know that there is a specified a small family (ij)j:J
of indices such that U =∨j:J Bij . The subfamily (Bij)j:J is then clearly a small directed family with
each Bij compact which is what we needed. �

Lemma 32. If a locale X is spectral, then it has a specified, extensional, and spectral small basis.

Proof. Let X be a spectral locale. We claim that the inclusion K(X) ↪→O(X), which is formally
given by the first projection, is an extensional and spectral small basis. The fact that it is small is
given by (SP4). By (SP1) and (SP2), we know that this basis contains 1X and is closed under binary
meets. It remains to show that it forms a basis. To define a covering family for an open U :O(X),
we let the index type be the subtype of compact opens belowU, which is again small by (SP4), and
the family is again given by the first projection. It is clear that U is an upper bound of this family
so it remains to show that it is its least upper bound. Consider some V that is an upper bound of
this family. By Lemma 27, it suffices to show K ≤U implies K ≤V , for every compact open K.
Any such compact open K ≤U is below U by construction, which implies K ≤V since it is an
upper bound. �

Definition 33 (Extensionalization of an intensional basis). For an intensional basis (Bi)i:I on a
locale X, its extensionalization is defined by taking the index set to be image(B), and the family to be
the corestriction of B to its image, which is given by the first projection, and hence is an embedding.

Lemma 34. If (Bi)i:I is an intensional spectral basis, then so is its extensionalization.

Lemma 35. From an unspecified intensional spectral basis on a locale X, we can obtain a specified
extensional spectral basis.

Proof. Let X be a locale with an unspecified intensional spectral basis. By Lemma 31, we know
that X is a spectral locale and therefore that it has a specified extensional basis by Lemma 32. �

Recall that a type X is said to have split support if ‖X‖→ X (Kraus et al. 2017). With this
terminology, the above lemma says that the type of intensional spectral bases on a locale X has
split support.

Theorem 36. The following are logically equivalent for any locale X.

(1) X is spectral.
(2) X has an unspecified intensional small spectral basis.
(3) X has an unspecified extensional small spectral basis.
(4) The inclusion K(X) ↪→ X is an extensional spectral basis, where to an open U we assign the

directed family of compact opens below it as in the construction of Lemma. 32
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(5) X has a specified intensional small spectral basis.
(6) X has a specified extensional small spectral basis.

Notice that the first four conditions are propositions, but the last two are not in general.

Proof. We have already established one direction of the logical equivalence (2) ↔ (5), since
(6) → (5) and Lemma 35 gives (2) → (6). The converse is simply the unit of propositional
truncation. Every extensional basis is intensional, and so (6) → (5) is clear. The implication
(1) → (6) is Lemma 32. By Corollary 30, we know that image(B)� K(X) for any intensional
spectral basis (Bi)i:I . This implies that any extensional spectral basis is equivalent to the basis
K(X) ↪→ X. Conversely, the inclusion K(X) ↪→ X is always a small extensional basis, so that we get
(6)↔ (4). We also clearly have (6)→ (3)→ (2), which concludes our proof. �

4.1.1 Examples of spectral locales
The terminal locale (denoted 1U) is the locale defined by the initial frame �U.

Example 37 (The initial frame). For every universe U, the (large) type �U forms a poset under
the order defined by implication. This poset is locally small since each proposition P⇒Q is small.
Note that the antisymmetry of this order is exactly propositional extensionality. Furthermore, this
poset forms a frame: the top element is the true proposition �U, the meet operation is given by the
conjunction of two propositions, and the join of a family of propositions (Pi)i:I is defined as∨

i:I
Pi :≡ ∃i:IPi,

which is a small proposition for every small family of propositions.
The fact that these define meet and join operations is easy to see. For the distributivity law, it

follows directly from the recursion principle of propositional truncation that
P ∧ ∃i:IQi ↔ ∃i:IP ∧Qi,

for every P :�U and every small family of propositions (Qi)i:I .

Before proving the universal property of the initial frame, we first establish the following
lemma:

Lemma 38. Let β : 2U→�U be the function defined as β(0) :≡⊥, β(1) :≡�. Every P :�U is
equal to

(1) the join
∨

p:P �U, and

(2) the directed join
∨{

β(b) | b : 2U, β(b)≤ P
}
.

Therefore, β : 2U→�U forms an intensional basis for the terminal locale.

Proof. (1) is easy to see since P=� if and only if P holds. For (2), we show that P=∨{
β(b) | b : 2, b≤ P

}
by antisymmetry. If P holds, then P=� and hence �≤ P. For the other

direction, observe that P is an upper bound of the family since ⊥ is trivially below P and �≤ P
implies that P holds.
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12 I. Arrieta et al.

The family
{
β(b) | b : 2, β(b)≤ P

}
is directed since it is always inhabited by ⊥= β(0), and for

every pair of Booleans b1, b2 : 2 with β(b1)≤ P and β(b2)≤ P, we have that
β(b1 ∨ b2)= β(b1)∨ β(b2),

and also β(b1 ∨ b2)≤ P, meaning the join β(b1)∨ β(b2) falls in the family. �

Proposition 39. The frame �U is the initial object in the category FrmU.

Proof. Let L be a frame. By Lemma 38, P :�U can be expressed as the small join
∨

p:P �. This
implies that every frame homomorphism h :�U→ L is necessarily unique as it must satisfy the
equality:

h(P)= h

⎛
⎝∨

p:P
�
⎞
⎠=∨

p:P
h(�)=

∨
p:P

1L.

We accordingly define the unique map �U→ L as above. It is easy to see that this defines a frame
homomorphism. �

Lemma 40. The terminal locale 1U is compact.

Proof. It follows directly from the definition of the join that, for every family (Pi)i:I of
U-propositions, we have that �≤∨i:I Pi if and only if some Pi holds, that is, �≤ Pi for some
i : I. �

Lemma 41. The terminal locale 1U is spectral.

Proof. Using Theorem 36, it suffices to show that the basis constructed in Lemma 38 satisfies the
conditions from Definition 28.

(1) We need to show that both β(0) and β(1) are compact. We have already established in
Lemma 40 that β(1)=� is compact. The bottom open β(0)=⊥ is compact in any frame
as shown in Example 22.

(2) The top proposition�U is obviously contained in the basis since we have β(1)=�U.
(3) Let b1, b2 : 2 be a pair of Booleans. It is easy to see that the meet β(b1)∧ β(b2) falls in the

basis, since we have β(b1 ∧ b2)= β(b1)∧ β(b2). �

4.2 Stone locales
Clopenness is central to the notion of Stone locale, similar to the fundamental role played by the
notion of a compact open in the definition of a spectral locale. To define the clopens, we first
define the well-inside relation.

Definition 42 (The well-inside relation).We say that an open U of a locale X is well inside an open
V , written U �V , if there is an open W with U ∧W = 0X and V ∨W = 1X .

Definition 43 (Clopen). An open U is called a clopen if it is well inside itself, which amounts to
saying that it has a Boolean complement. We denote by C(X) the subtype of O(X) consisting of
clopens.
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Before we proceed to the definition of a Stone locale, we record the following fact about the
well-inside relation:

Lemma 44. Given opens U,V ,W :O(X) of a locale X,

(1) if U �V and V ≤W then U �W; and
(2) if U ≤V and V �W then U �W.

Definition 45 (Stone locale). A locale X is called Stone if it satisfies the following conditions:

(ST1) It is compact.
(ST2) For any U :O(X), there exists a small directed family (Ci)i:I , with each Ci clopen, such that

U =∨i:I Ci.
(ST3) The type C(X) is small.

Lemma 46. For any locale X, being Stone is a proposition.

Proof. Being compact is a proposition (Lemma 20) and being small is a proposition by Lemma 2
(assuming univalence). The condition (ST2) is a proposition since the �-type over a family of
propositions is a proposition. �

We denote by Stone the category of Stone locales with continuous maps as the morphisms.
Every continuous map reflects clopens automatically, so we do not need a special notion of
continuous map in Stone like we do in the category Spec.

The following two lemmas are needed to prove that the compact opens and the clopens coin-
cide in Stone locales, which we will need later. The proofs are standard (Johnstone, 1982, Lemma
VII.3.5). We provide the proof of Lemma 48 for the sake of self-containment, since it uses our
reformulation of the notion of a Stone locale.

Lemma 47. In any compact locale, U �V implies U�V for any two opens U,V .

Lemma 48. In any Stone locale, U�V implies U �V for any two opens U,V .

Proof. Let U,V :O(X) with U�V . We know that V =∨i:I Ci for a family (Ci)i:I consisting of
clopens. Since V ≤∨i:I Ci, it must be the case that there is some k : I with U ≤ Ck as we know
U�V . We then have U ≤ Ck �V which implies U �V by Lemma 44. �

Corollary 49. For every Stone locale X, we have a type equivalence K(X)� C(X).
Corollary 50. Every Stone locale X is spectral.

A consequence of Corollary 49 is that we immediately get a characterization of Stone locales
analogous to the notion of intensional spectral basis from Definition 28.

Definition 51 (Basis of clopens).An intensional basis of clopens for a locale X is a small intensional
basis (Bi)i:I for X that consists of clopens.We say that the basis is extensional if the map B : I→O(X)
is an embedding. When we say basis of clopens without any qualification, we mean an extensional
basis of clopens.
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14 I. Arrieta et al.

Notice that, because clopens are closed under finite joins, the directification of a basis of clopens
is again a basis of clopens. For the next lemma, recall the notion of extensionalization given in
Definition 33.

Lemma 52. For every intensional basis (Bi)i:I , if (Bi)i:I consists of clopens, then so does its
extensionalization.

Lemma 53. If a locale X is compact and has an unspecified, intensional, and small basis of clopens,
then it is Stone.

Proof. Since being Stone is a proposition (by Lemma 46), we can work with a specified basis (Bi)i:I
with each Bi clopen. Condition (ST2) is immediate since any covering family given by the basis
is a subfamily of C(X). It remains to show that C(X) is a small type (ST3). Let C : C(X). Since X is
compact, Cmust be a compact open by Lemma 47, and hence must fall in the basis by Lemma 29.
The other direction is direct by construction meaning C(X)� image(B), which concludes that
C(X) is small by Remark 6. �

Theorem 54. The following are logically equivalent for any locale X.

(1) X is Stone.
(2) X is compact and has an unspecified intensional small basis of clopens.
(3) X is compact and has an unspecified extensional small basis of clopens.
(4) X is compact and the inclusion C(X) ↪→ X is an extensional basis of clopens, where to an open

U we assign the family of all clopens below it.
(5) X is compact has a specified intensional small basis of clopens.
(6) X is compact has a specified extensional small basis of clopens.

Notice that the first four conditions are propositions, but the last two are not in general.

Proof. We know by Corollary 50 and Corollary 49 that every Stone locale X is spectral and has
K(X)� C(X). Therefore, by Theorem 36, we know that C(X) is an extensional basis of clopens,
which gives the implication (1)→ (4). The implications (4)→ (6)→ (5)→ (2) are direct, and
the implication (2)→ (1) is Lemma 53. We also clearly have (6)→ (3)→ (2), which concludes
our proof. �

5. Predicative Form of the Posetal Adjoint Functor Theorem
We start with the definition of the notion of an adjunction in the simplified context of lattices.

Definition 55. Let (X,≤X ) and (Y ,≤Y ) be two preordered sets. An adjunction between X and Y
consists of a pair of monotone maps f : X→ Y and g : Y→ X satisfying

f � g :≡ f (x)≤ y↔ x≤ g(y) for every x : X, y : Y .
In locale theory, it is standard convention to denote by f∗ :O(X)→O(Y) the right adjoint

of a frame homomorphism f ∗ : O(Y) → O(X) corresponding to a continuous map of locales
f : X→ Y . The right adjoint here is known to always exist thanks to a simple application of the
Adjoint Functor Theorem which amounts to the definition:

f∗(U) :≡
∨
{V :O(Y) | f ∗(V)≤U}.
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In the predicative setting of type theory, however, it is not clear how the right adjoint of a frame
homomorphism would be defined as the family {V :O(Y) | f ∗(V)≤U}might be large in general.
This gives rise to the problem that it is not a priori clear that its join in O(Y) exists. To resolve this
problem, we use the assumption of a small basis. The use of a small basis for the posetal Adjoint
Functor Theorem in a predicative setting was independently observed by Tom de Jong (personal
communication).

Theorem 56 (Posetal Adjoint Functor Theorem). Let X and Y be two locales and let h :O(Y)→
O(X) be a monotone map of frames. Assume that Y has some small basis. The map h has a right
adjoint if and only if it preserves joins of small families.

Proof. Let h :O(Y)→O(X) be a monotone map of frames and assume that Y has some small
basis.

The forward direction is easy: suppose h has a right adjoint g :O(X)→O(Y) and let (Ui)i:I be
a family in O(Y). By the uniqueness of joins, it is sufficient to show that h(

∨
i Ui) is the join of

the family (h(Ui))i:I . It is clearly an upper bound by the fact that h is monotone. Given any other
upper bound V of (h(Ui))i:I , we have that h(

∨
i Ui)≤V since h(

∨
i Ui)≤V↔ (∨

i Ui
)≤ g(V)

meaning it is sufficient to show Ui ≤ g(V) for each Ui. Since Ui ≤ g(V) if and only if h(Ui)≤V ,
we are done as the latter can be seen to hold directly from the fact that V is an upper bound of the
family in consideration.

For the converse, suppose h(
∨

i Ui)=∨i:I h(Ui) for every small family of opens (Ui)i:I . Since
right adjoints are unique, we may appeal to the induction principle of propositional truncation
and assume we have a specified basis (Bi)i:I . We define the right adjoint of h as

g(U) :≡
∨{

Bi | i : I, h(Bi)≤U
}
.

We need to show that g is the right adjoint of h, hat is,
h(V)≤U↔V ≤ g(U)

for any two V :O(Y), U :O(X).
For the (→) direction, assume h(V)≤U. It must be the case that V =∨j:J Bij for some speci-

fied basic covering (ij)j:J . This means that we just have to show Bij ≤ g(U) for every j : J, which is
the case since h(Bij)≤ h(V)≤U.

For the (←) direction, assume V ≤ g(U). This means that we have
h(V) ≤ h(g(U))

= h
(∨{

Bi | i : I, h(Bi)≤U
})

=
∨{

h(Bi) | i : I, h(Bi)≤U
}

≤ U
so that h(V)≤U, as required. �

Our primary use case for the Adjoint Functor Theorem is the construction of Heyting
implications.

Definition 57 (Heyting implication). Let X be a locale with some small basis. Given any open
U :O(X), the map (− )∧U :O(X)→O(X) preserves joins by the frame distributivity law. This
means, by Theorem 56, that it must have a right adjoint U⇒ (− ) :O(X)→O(X). The operation
(− )⇒ (− ) is known as Heyting implication.
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16 I. Arrieta et al.

Definition 58. By Theorem 56, for any continuous map f : X→ Y of locales where Y has an
unspecified small basis, the frame homomorphism f ∗ :O(Y)→O(X) has a right adjoint, denoted
by

f∗ :O(X)→O(Y).

Definition 59 (Perfect frame homomorphism). Let X and Y be two locales and assume that Y has
an unspecified small basis. A continuous map f : X→ Y is said to be perfect if f∗ is Scott continuous,
that is, it preserves small directed suprema.

Let us also record the following fact about perfect maps, which we will need later.

Lemma 60. Let f : X→ Y be a perfect map where Y is a locale with some small basis. The frame
homomorphism f ∗ respects the way-below relation, that is, U�V implies f ∗(U)� f ∗(V), for any
two U,V :O(Y).

A proof of this fact can be found in (Escardó 1999), and it works in our predicative setting.

Corollary 61. Perfect maps are spectral as they preserve the compact opens.

In fact, the converse is also true in the case of spectral locales. The proof given in (Escardó 1999)
works, once we know that the required adjoints are available, as established above. We include it
in order to illustrate this point.

Lemma 62. Let X and Y be spectral locales. A continuous map f : X→ Y is perfect if and only if it
is spectral.

Proof. The forward direction is given by Corollary 61. For the backward direction, assume
f : X→ Y to be a spectral map. We have to show that the right adjoint f∗ :O(X)→O(Y) of
its defining frame homomorphism is Scott continuous. Letting (Ui)i:I be a directed family in
O(X), we show f∗(

∨
i:I Ui)=∨i:I f∗(Ui). The

∨
i:I f∗(Ui)≤ f∗(

∨
i:I Ui) direction is easy. For the

f∗(
∨

i:I Ui)≤∨i:I f∗(Ui) direction, we appeal to Lemma 27. Let K be a compact open with
K ≤ f∗(

∨
i:I Ui). By the adjunction f ∗ � f∗, it must be the case that f ∗(K)≤∨i:I Ui and since f ∗(K)

is compact, by the spectrality assumption of f ∗, there must exist some l : I such that f ∗(K)≤Ul.
Again by adjointness, K ≤ f∗(Ul) which implies K ≤∨i:I f∗(Ui). �

6. Meet-Semilattice of Scott Continuous Nuclei
In this section, we construct the defining frame of the patch locale. It is an observation due to
Escardó (1999, 2001) that the patch locale of a locale X can be defined by the frame of Scott
continuous nuclei on X. We start by constructing the meet-semilattice of all nuclei on a frame.

Definition 63 (Nucleus). A nucleus on a locale X is an endofunction j :O(X)→O(X) that is
inflationary, idempotent, and preserves binary meets.

In Section 7, we will work with inflationary and binary-meet-preserving functions that are
not necessarily idempotent. Such functions are called prenuclei. We also note that, to show a
prenucleus j to be idempotent, it suffices to show j(j(U))≤ j(U) as the other direction follows
from inflationarity. In fact, the notion of a nucleus could be defined as a prenucleus satisfying the
inequality j(j(U))≤ j(U), but we define it as in Definition 63 for the sake of simplicity and make
implicit use of this fact in our proofs of idempotency.
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Lemma 61. The type of nuclei on a given frame O(X) forms a meet-semilattice under the pointwise
order.

Proof. The top nucleus is defined as the constant map with value 1X and the meet of two nuclei
as j∧ k :≡U �→ j(U)∧ k(U). It is easy to see that j∧ k is the greatest lower bound of j and k so it
remains to show that j∧ k satisfies the nucleus laws.

Inflationarity can be seen to be satisfied from the inflationarity of j and k combined with the
fact that j(U)∧ k(U) is the greatest lower bound of j(U) and k(U). To see that meet preservation
holds, let U,V :O(X).

(j∧ k)(U ∧V) = j(U ∧V)∧ k(U ∧V)
= j(U)∧ j(V)∧ k(U)∧ k(V)
= (j(U)∧ k(U))∧ (j(V)∧ k(V))
= (j∧ k)(U)∧ (j∧ k)(V)

For idempotency, let U :O(X). We have
(j∧ k)((j∧ k)(U)) = j(j(U)∧ k(U))∧ k(j(U)∧ k(U))

= j(j(U))∧ j(k(U))∧ k(j(U))∧ k(k(U))
≤ j(j(U))∧ k(k(U))
= j(U)∧ k(U)
= (j∧ k)(U) �

We now show that this meet-semilattice can be refined to the Scott continuous nuclei (i.e., the
perfect nuclei).

Lemma 65. The Scott continuous nuclei on any locale form a meet-semilattice.

Proof. Let X be a locale. The construction is the same as the one from Lemma 61; the top element
is the constant map with value 1X , which is trivially Scott continuous so it remains to show that
the meet of two Scott continuous nuclei is Scott continuous. Consider two Scott continuous nuclei
j and k on O(X), and let (Un)n:N be a directed, small family of opens.

(j∧ k)
(∨
n:N

Un

)
≡ j

(∨
m:N

Um

)
∧ k

(∨
n:N

Un

)

=
(∨
m:N

j(Um)

)
∧
(∨
n:N

k(Un)

)
[Scott continuity of j and k]

=
∨

(m,n):N×N
j(Um)∧ k(Un) [distributivity]

=
∨
n:N

j(Un)∧ k(Un) [ † ]

≡
∨
n:N

(j∧ k)(Un) [meet preservation]

where, for the (†) step, we use antisymmetry. The (≥) direction is immediate. For the (≤)
direction, we need to show that

∨
(m,n):N×N j(Um)∧ k(Un)≤∨n:N j(Un)∧ k(Un), for which it

suffices to show that
∨

n:N j(Un)∧ k(Un) is an upper bound of {j(Um)∧ k(Un)}(m,n):N×N . Let
m, n :N be two indices. As (Un)n:N is directed, there must exist some o such that Uo is an upper
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bound of {Um,Un}. Using the monotonicity of j and k, we get j(Um)∧ k(Un)≤ j(Uo)∧ k(Uo)≤∨
n:N j(Un)∧ k(Un) as desired. �

7. Joins in the Frame of Scott Continuous Nuclei
The nontrivial component of the patch frame construction is the join of a family (ki)i:I of Scott
continuous nuclei, as the pointwise join fails to be idempotent in general, and not inflationary
when the family in consideration is empty. When the family in consideration is directed, however,
the pointwise join is idempotent, and so it is the join in the poset of Scott continuous nuclei.

Lemma 66. Given a directed family (ki)i:I of Scott continuous nuclei, their join is computed
pointwise, that is,

(∨
i:I ki

)
(U)=∨i:I ki(U).

Proof. The argument given in the paragraph preceding (Escardó 1998, Lemma 3.1.8) works in our
setting. �

Regarding arbitrary joins, the situation is more complicated. A construction of the join, due to
Escardó (1998), is based on the idea that, if we start with a family (ki)i:I of nuclei, we can consider
the family with index type List(I) of words over I, defined by

(i0i1 · · · in−1) �→ kin−1 ◦ · · · ◦ ki1 ◦ ki0 .
This family is easily seen to be directed.

To talk about such families of finite compositions over a given family of (pre)nuclei, we adopt
the following notation. Recall that a word over type I is either empty or consists of the insertion
of some i : I onto some other word s. We denote the latter by is. Similarly, we write st for the
concatenation of two words s, t : List(I).

To define the join operation, we will use the iterated composition operator (− )∗ which we
define below.

Definition 67 (Family of finite compositions). Given a small family (ki)i:I of nuclei on a given
locale X, its family of finite compositions is the family defined by

k∗(i0 · · · in−1) :≡ kin−1 ◦ · · · ◦ ki0 .
By an abuse of notation, we omit the superscript “∗” when there is no possibility of confusion.

The order of composition is actually not important. A finite composition ks is, in general, not
a nucleus. It is, however, always a prenucleus which we prove below.

Lemma 68. Given a family (ki)i:I of nuclei on a locale, ks is a prenucleus for every s : List(I).
Proof. If s is the empty list, we are done as it is immediate that the identity function id is a prenu-
cleus. If s is of the form is′, with i : I, we need to show that ks′ ◦ ki is a prenucleus. For meet
preservation, let U,V :O(X).

(ks′ ◦ ki)(U ∧V) = ks′(ki(U ∧V))
= ks′(ki(U)∧ ki(V)) [ki is a nucleus]
= ks′(ki(U))∧ ks′(ki(V)) [inductive hypothesis]
= (ks′ ◦ ki)(U)∧ (ks′ ◦ ki)(V)

For inflationarity, consider some U :O(X). We have that U ≤ ki(U)≤ ks′(ki(U)), by the inflation-
arity properties of ki and ks′ (the latter following from the inductive hypothesis). �
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Lemma 69. Given a nucleus j and a family (ki)i:I of nuclei on a locale, if j is an upper bound then
it is also an upper bound of the family of finite compositions.

Proof. Let j and (ki)i:I be, respectively, a nucleus and a family of nuclei on a locale and assume
that j is an upper bound of the family (ki)i:I . We proceed by list induction. Base case: the empty
composition is the identity function, and it is easy to see that we have id(U)≡U ≤ j(U). Inductive
step: consider a list of the form is, with i : I, and assume inductively that ks ≤ j.

ks(ki(U)) ≤ ks(j(U)) [monotonicity of ks (Lemma 68 and monotonicity of prenuclei)]
≤ j(j(U)) [inductive hypothesis]
≤ j(U) [idempotency of j] �

Lemma 70. Given a family (ki)i:I of Scott continuous nuclei on a locale, the prenucleus ks is Scott
continuous, for every s : List(I)
Proof. Any composition of finitely many Scott continuous functions is Scott continuous. �

Lemma 71. Given a family (ki)i:I of nuclei on a locale, the family of finite compositions is directed.

Proof. The family (ks)s:List(I) is indeed always inhabited by the empty composition, which is
defined to be the identity nucleus. The upper bound of nuclei ks and kt is given by kst , which
is equal to kt ◦ ks. The fact that this is an upper bound of {ks, kt} follows from monotonicity and
inflationarity. �

Lemma 72. Let j and (ki)i:I be, respectively, a nucleus and a family of nuclei on a locale. Consider
the family of finite compositions over the family (j∧ ki)i:I . Each finite composition (j∧ k)∗s is a lower
bound of ks and j, for every s : List(I).

We are now ready to construct the join operation in the meet-semilattice of Scott continuous
nuclei, hence constructing the defining frame of the patch locale of a locale X.

Theorem 73 (Join of Scott continuous nuclei). Let (ki)i:I be a family of Scott continuous nuclei.
The join of K can be calculated as (∨

i:I
ki

)
(U) :≡

∨
s:List(I)

ks(U).

Proof. It must be checked that this is (1) indeed the join, (2) is a Scott continuous nucleus, that
is, it is inflationary, binary-meet-preserving, idempotent, and Scott continuous. The inflationarity
property is direct. For meet preservation, consider some U,V :O(X). We have:(∨

i:I
ki

)
(U ∧V) =

∨
s:List(I)

ks(U ∧V)

=
∨

s:List(I)
ks(U)∧ ks(V) [Lemma 70]

=
∨

s,t:List(I)
ks(U)∧ kt(V) [ † ]
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=
⎛
⎝ ∨

s:List(I)
ks(U)

⎞
⎠∧

⎛
⎝ ∨

t:List(I)
kt(V)

⎞
⎠ [distributivity]

=
(∨

i:I
ki

)
(U)∧

(∨
i:I

ki

)
(V)

where step (†) uses antisymmetry. The (≤ ) direction is direct whereas for the (≥ ) direction,
we show that

∨
s:List(I) ks(U)∧ ks(V) is an upper bound of the family (ks(U)∧ kt(V))s,t:List(I).

Consider arbitrary s, t : List(I). By the directedness of the family of finite compositions, we know
that there exists some u : List(I) such that ku is an upper bound of {ks, kt}. We then have

ks(U)∧ kt(V)≤ ku(U)∧ ku(V)≤
∨

s:List(I)
ks(U)∧ ks(V).

For idempotency, let U :O(X).(∨
i
ki

)((∨
i
ki

)
(U)

)
≡

∨
s:List(I)

ks

⎛
⎝ ∨

t:List(I)
kt(U)

⎞
⎠

=
∨

s:List(I)

∨
t:List(I)

ks(kt(U)) [Lemma 70]

≤
∨

s,t:List(I)
ks(kt(U))

≤
∨

s:List(I)
ks(U) [ † ]

≡
(∨

i
ki

)
(U),

where for the step (†) it suffices to show that
∨

s:List(I) ks(U) is an upper bound of the family
(ks(kt(U)))s,t:List(I). The prenucleus kst is an upper bound of ks and kt (as in Lemma 71). We have
that

kt(ks(U))= kst(U)≤
∨

u:List(I)
ku(U).

For Scott continuity, let (Uj)j:J be a directed family over O(X). We then have:(∨
i:I

ki

)⎛
⎝∨

j:J
Uj

⎞
⎠ ≡

∨
s:List(I)

ks

⎛
⎝∨

j:J
Uj

⎞
⎠

=
∨

s:List(I)

∨
j:J

ks(Uj) [Lemma 70]

=
∨
j:J

∨
s:List(I)

ks(Uj) [joins commute]

≡
∨
j:J

(∨
i:I

ki

)
(Uj)

as required.
The fact that

∨
i ki is an upper bound of (ki)i:I is easy to verify. To see that it is the least upper

bound, consider a Scott continuous nucleus j that is an upper bound of (ki)i:I . Let U :O(X). We
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need to show that (
∨

i ki)(U)≤ j(U). We know by Lemma 69 that j is an upper bound of the
family of finite compositions, since it is an upper bound of (ki)i:I , which is to say ks(U)≤ j(U) for
every s : List(I), that is, j(U) is an upper bound of the family (ks(U))s:List(I). Since

(∨
i ki
)
(U) is the

least upper bound of this family by definition, it follows that it is below j(U). �

We use Lemma 72 to prove the distributivity law.

Lemma 74 (Distributivity). For any Scott continuous nucleus j and any family (ki)i:I of Scott
continuous nuclei, we have the equality:

j∧
(∨

i:I
ki

)
=
∨
i:I

j∧ ki.

It follows that the Scott continuous nuclei form a frame.

Definition 75 (Patch locale of a spectral locale). The patch locale of a spectral locale X, written
Patch(X), is the locale defined by the frame of Scott continuous nuclei on X.

Notice that the truth value of the relation j≤ k between two Scott continuous nuclei lives by
default in universe U+. However, it always has an equivalent copy in the universe U if the locale
in consideration is spectral.

Lemma 76. For any spectral locale X and any two Scott continuous nuclei j, k :O(X)→O(X), we
have that

j≤ k if and only if j(K)≤ k(K) for all K : K(X),
and hence Patch(X) is locally small.

Proof. The usual pointwise ordering obviously implies the basic ordering so we address the
other direction. Let j and k be two Scott continuous nuclei on a spectral locale X and assume
j(K)≤ k(K), for all K : K(X). We need to show that j(U)≤ k(U) for every open U so let
U :O(X). By (SP3), U can be decomposed as U =∨i:I Ki for some directed covering family
(Ki)i:I consisting of compact opens. We then have j(

∨
i:I Ki)=∨i:I j(Ki) by Scott continuity

and ∨
i:I

j(Ki)≤
∨
i:I

k(Ki)

since j(Ki)≤ k(Ki) for every i : I. Finally, because the quantification is over the small type K(X),
the proposition “j(K)≤ k(K) for all K : K(X)” is small. �

8. The Coreflection Property of Patch
We prove in this section that our construction of Patch has the desired universal property: it
exhibits Stone as a coreflective subcategory of Spec. The notions of closed and open nuclei are
crucial for proving this universal property. We first give the definitions of these. Let U be an open
of a locale X.

(1) The closed nucleus induced by U is the map V �→U ∨V .
(2) The open nucleus induced by U is the map V �→U⇒V .
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We denote the closed nucleus induced by open U by c(U) and the open nucleus induced by U
by o(U).

Lemma 77. For every locale Y and spectral locale X, a monotone map h :O(Y)→O(X) is Scott
continuous if it satisfies the condition that, for every U :O(Y) and compact K :O(X)with K ≤ h(U),
there is some compact K ′ ≤U such that K ≤ h(K ′).

Proof. Let h :O(Y)→O(X) be a monotone map satisfying the above condition. Consider a
directed family of opens (Ui)i:I . We need to show that the relation h(

∨
i:I Ui)≤∨i:I h(Ui) holds.

Since X is spectral, let (Kj)j:J be a small family of compact opens such that
∨

j:J Kj = h(
∨

i:I Ui).
For any j : J, we have Kj ≤ h(

∨
i:I Ui), so by assumption there is a compact open K ≤∨i:I Ui such

that Kj ≤ h(K). By compactness of K there is an i : I such that K ≤Ui, and so Kj ≤ h(K)≤ h(Ui)≤∨
i:I h(Ui) and so we can take K ′ :≡Kj. �

Lemma 78. For every open U :O(X) of spectral locale X,

• the closed nucleus c(U) is Scott continuous, and
• the open nucleus o(U) is Scott continuous if the open U is compact.

Proof. The Scott continuity of the closed nucleus is easy to see. For the open nucleus, let D be
a compact open of a locale. By Lemma 77, it is sufficient to show that for any open V and any
compact open C1 with C1 ≤D⇒V , there exists some compact C2 ≤V such that C1 ≤D⇒ C2.
Let V and C1 be two opens with C1 compact and satisfying C1 ≤D⇒V . Pick C2 :≡D∧ C1. We
know that this is compact by (SP2). It remains to check (1) C2 ≤V and (2) C1 ≤D⇒ C2, both of
which are direct. �

Consider the closed nucleus formation operation U �→ c(U). This defines a frame homomor-
phism O(X)→O(Patch(X)), whose corresponding continuous map is denoted

ε : Patch(X)→ X.
In Lemma 80, we will show that this map is perfect. Before Lemma 80, however, we record an
auxiliary result:

Lemma 79. Let X be a spectral locale. The right adjoint ε∗ :O(Patch(X))→O(X) to the closed-
nucleus formation operation c(− ) is given by ε∗(j)= j(0) for every Scott continuous nucleus
j on X.

The proof of Lemma 79 can be found in Escardó (1999). It is omitted here as it is unchanged in
our predicative setting.

Lemma 80. The function c(− ) is a perfect frame homomorphism O(X)→O(Patch(X)).

Proof. We have to show that the right adjoint ε∗ of c(− ) is Scott continuous. Let (ki)i:I be a
directed family of Scott continuous nuclei. Thanks to Lemma 79, it suffices to show(∨

i:I
ki

)
(0)=

∨
i:I

ε∗(ki).

By Lemma 66, we have that
(∨

i:I ki
)
(0)=∨i:I ki(0). �
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We will later show that the perfect map ε : Patch(X)→ X is the counit of the coreflection of
interest.

8.1 Patch is Stone
Before we proceed to showing that the patch locale has the desired universal property, we first
need to show that Patch(X) is Stone for any spectral locale X. For this purpose, we need to
(1) show that it is compact and (2) construct a basis for it consisting of clopens. We start with
compactness.

Lemma 81. For every spectral locale X, the locale Patch(X) is compact.

Proof. Recall that the top element 1 of Patch(X) is defined as 1Patch :≡U �→ 1X . Because
ε∗ is a frame homomorphism, it must be the case that 1Patch = ε∗(1X), meaning it suffices
to show ε∗(1X)� ε∗(1X). By Lemma 60, it suffices to show 1X� 1X which is immediate
by (SP1). �

To construct a basis consisting of clopens, we will use the following fact, which was already
mentioned above:

Lemma 82. The open nucleus o(U) is the Boolean complement of the closed nucleus c(U).

Lemma 83. Let X be a spectral locale. Given any Scott continuous nucleus j :O(Patch(X)), we have
that

j =
∨

K:K(X)
c(j(K))∧ o(K) =

∨
K1,K2:K(X)
K1≤j(K2)

c(K1)∧ o(K2).

Proof. The second equality in the statement is clear, so let us show the first one. We use the fact,
proved in (Johnstone 1982, Lemma II.2.7), that for any nucleus j on any locale,

j=
∨

U:O(X)
c(j(U))∧ o(U).

Suppose now additionally that X is spectral and the nucleus j is Scott continuous. The inequality∨
K:K(X) c(j(K))∧ o(K)≤

∨
U:O(X) c(j(U))∧ o(U)= j is trivial, so let us show the reverse one. Let

K : K(X) and notice that
(
c(j(K))∧ o(K)) (K)= (j(K)∨K)∧ (K⇒K)= j(K). Therefore

j(K)= (c(j(K))∧ o(K)) (K)≤
⎛
⎝ ∨

K′:K(X)
c(j(K ′))∧ o(K ′)

⎞
⎠ (K),

so the required relation follows from Lemma 76. �

Theorem 84. Patch(X) is a Stone locale, for every spectral locale X.

Proof. Compactness (ST1) was given in Lemma 81. For (ST2), let j :O(Patch(X)). We take the
intensional basis given by the family (c(K1)∧ o(K2))(K1,K2):K(X)×K(X) . For each Scott continuous
nucleus j, we define its basic covering family to be γ : Ij→O(Patch(X)), defined by

Ij :≡ �(K1,K2 : K(X))(K1 ≤ j(K2)), and
γ (K1,K2) :≡ c(K1)∧ o(K2).
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Even though this basic covering family is not a priori directed, we know that it can be direc-
tified as explained in Remark 17. We therefore obtain a specified, small, intensional basis of
clopens by Lemma 83. We denote the directed form of the basis by B↑ which is small by
Remark 17 since K(X) is small by (SP4). Since clopens are compact in compact locales by
Lemma 47, the clopens fall in the basis by Lemma 29. Therefore, we get an equivalence of
types

C(X)� image(B↑),
where B↑ denotes the closure of the above basis under finite joins (as explained in Remark 17).
This concludes (ST3) by Lemma 18. �

8.2 The universal property of Patch
We now show that Patch is the right adjoint to the inclusion Stone ↪→ Spec.

Lemma 85. Given any spectral map f : X→A from a Stone locale into a spectral locale, define a
map f̄ ∗ :O(Patch(A))→O(X) by

f̄ ∗(j) :≡
∨

K:K(A)
f ∗(j(K))∧¬f ∗(K).

Then, the map f̄∗ :O(X)→O(Patch(A)) defined by

f̄∗(V) :≡ f∗ ◦ c(V) ◦ f ∗
is the right adjoint of f̄ ∗.

Proof. First, note that f∗ ◦ c(V) ◦ f ∗ is indeed a Scott continuous nucleus, and both f̄ ∗ and f̄∗ are
clearly monotone. Let us first prove the forward implication. Assume that for j :O(Patch(A)) and
V :O(X), the relation f̄ ∗(j)≤V holds. By Lemma 76, in order to show that j≤ f̄∗(V), it suffices
to show that for any compact open K : K(A), the inequality j(K)≤ f̄∗(V)(K) holds. Hence, let
K : K(A), and note that

f ∗(j(K))∧¬f ∗(K)≤ f̄ ∗(j)≤V .
Notice that f ∗(K) is clopen, by the fact that f ∗ is a spectral map and Lemma 48. It is therefore
complemented in the lattice O(X), and so we have f ∗(j(K))≤V ∨ f ∗(K)= c(V)(f ∗(K)), which by
adjunction yields j(K)≤ f∗(c(V)(f ∗(K)))= f̄∗(K), as required.

Let us now show the reverse implication. Let j :O(Patch(A)) and V :O(X) and assume that
j≤ f̄∗(V). Once again, by the definition of the ordering on O(Patch(A)), for all K : K(A) we have
j(K)≤ f∗(V ∨ f ∗(K)), which by adjunction equivalently yields f ∗(j(K))≤V ∨ f ∗(K). Since f ∗(K)
is clopen, and hence complemented in the lattice O(X) it follows that f ∗(j(K))∧¬f ∗(K)≤V .
Hence, f̄ ∗(j)≤V . �

Theorem 86. For every spectral map f : X→A from a Stone locale into a spectral locale, there
exists a unique continuous map f̄ : X→ Patch(A) satisfying ε ◦ f̄ = f , as illustrated in the following
diagram in Spec:

X

A Patch(A)

f
f̄
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Proof. Assume that a locale map f̄ : X→ Patch(A) satisfies the condition in the theorem. Then,
for any j :O(Patch(A)), one has

f̄ ∗(j) = f̄ ∗
⎛
⎝ ∨

K:K(A)
c(j(K))∧ o(K)

⎞
⎠ [Lemma 83]

=
∨

K:K(A)
f̄ ∗
(
c(j(K))∧ o(K)) [f̄ ∗ preserves small joins]

=
∨

K:K(A)
f̄ ∗
(
c(j(K))

)∧¬f̄ ∗ (c(K)) [f̄ ∗ preserves binary meets and complements]

=
∨

K:K(A)
f ∗
(
j(K)

)∧¬f ∗ (K) [commutativity of the diagram]

and hence f̄ is uniquely determined. If we now define a monotone map f̄ ∗ :O(Patch(A))→O(X)
by

f̄ ∗(j) :≡
∨

K:K(A)
f ∗(j(K))∧¬f ∗(K),

it is easy to show it preserves the top element (namely the top nucleus with constant value 1A)
because 0A is compact. It also preserves binary (pointwise) meets as

f̄ ∗(j1)∧ f̄ ∗(j2)
=

∨
K1,K2:K(A)

f ∗
(
j1(K1)

)∧¬f ∗ (K1)∧ f ∗
(
j2(K2)

)∧¬f ∗ (K2) [distributivity]

=
∨

K1,K2:K(A)
f ∗
(
j1(K1)∧ j2(K2)

)∧¬f ∗ (K1)∧¬f ∗ (K2) [f ∗ preserves binary meets]

≤
∨

K1,K2:K(A)
f ∗
(
j1(K1 ∨K2)∧ j2(K1 ∨K2)

)∧¬f ∗(K1)∧¬f ∗(K2) [monotonicity]

=
∨

K1,K2:K(A)
f ∗
(
(j1 ∧ j2)(K1 ∨K2)

)∧¬f ∗ (K1)∧¬f ∗ (K2)

=
∨

K1,K2:K(A)
f ∗
(
(j1 ∧ j2)(K1 ∨K2)

)∧¬f ∗ (K1 ∨K2) [De Morgan law]

= f̄ ∗(j1 ∧ j2). [K(X) closed under (− )∨ (− )]

Moreover, Lemma 85 and Theorem 56 ensure that f̄ ∗ preserves small joins and so it is a frame
homomorphism.

Let us finally show that f̄ makes the diagram commute. Since compact opens from a small
basis for A, it suffices to show that f̄ ∗(c(K))= f ∗(K) for any K : K(A). Let K : K(A) and note
that

f̄ ∗(c(K)) ≡
∨

K′:K(A)
f ∗
(
K ∨K ′)∧¬f ∗ (K ′)

=
∨

K′:K(A)
f ∗ (K)∧¬f ∗ (K ′) [f ∗ preserves binary joins]

= f ∗(K)∧
∨

K′:K(A)
¬f ∗ (K ′) [distributivity]
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= f ∗(K)∧ 1X [0X is compact]
= f ∗(K),

as required. �

9. Summary and Discussion
Wehave constructed the patch locale of a spectral locale in the predicative and constructive setting
of univalent type theory. Furthermore, we have shown that the patch functor

Patch : Spec→ Stone
is the right adjoint to the inclusion Stone ↪→ Spec, which is to say that Patch exhibits the category
Stone as a coreflective subcategory of Spec. As we have elaborated on in Section 4, answering this
question in a predicative setting involves several new ingredients, compared to Escardó (1999,
2001):

(1) We have reformulated the notions of spectrality and Stone-ness in our predicative type-
theoretic setting and have shown that crucial topological facts about these notions remain
valid under these reformulations.

(2) We have developed several predicative formulations of the notion of spectral (resp. Stone)
locale and have shown that they are equivalent in Theorem 36 (resp. Theorem 54).

(3) In Escardó’s (1999) construction of the patch locale, the proof of the universal property relies
on the existence of the frame of all nuclei. As it is not clear that the poset of all nuclei can
be shown to form a frame predicatively, we developed a new proof of the universal prop-
erty using Lemma 85, which is completely independent of the existence of the frame of all
nuclei.

We have formalized all of our development, most importantly Theorem 84 and Theorem 86.
The formalization has been carried out by the third-named author (Tosun 2023) as part of the
TypeTopology library (Escardó and contributors, 2018).

In previous work (Escardó 1999, 2001), which forms the basis of the present work, the patch
construction was used to

(1) exhibit Stone as a coreflective subcategory of Spec, and
(2) exhibit the category of compact regular locales and continuous maps as a coreflective

subcategory of stably compact locales and perfect maps.

In our work, we have focused on item (1). The question of taking a predicative approach to item
(2) was previously tackled by Coquand and Zhang (2003) using formal topology. We conjecture
that it is possible to instead use the approach we have presented here, namely, working with locales
with small bases and constructing the patch as the frame of Scott continuous nuclei. It should also
be possible to show predicatively that the category of small distributive lattices is dually equivalent
to the category of spectral locales as defined in this paper.
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Note
1 Note that in the context of set theory, the term constructive corresponds to what we call constructive and predicative. The
term intuitionistic is used for what we call constructive, hat is, mathematics without the use of classical principles.
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