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Jets in crossflow are a recurring flow configuration in many engineering applications
and have been the subject of many computational and experimental investigations. While
these studies have identified the jet-to-crossflow velocity ratio R as a critical parameter
for the global stability and mixing behaviour which ultimately leads to breakdown into
turbulence, a far less studied, but equally determining, factor is the presence of chemical
reactions. Understanding and quantifying the nature of intrinsic instabilities in reacting
and non-reacting flows and their dependence on the governing flow parameters are
paramount to devising optimal designs or effective control strategies. In this study, we
concentrate on the effect of reactions on the flow behaviour and extract optimal forcing
and response functions for a range of driving frequencies, juxtaposing the reactive and
non-reactive configurations. Simulations are performed using a compressible framework
with a free-stream Mach number of 0.2, and a constant jet-to-crossflow ratio of three.
The flow configuration is kept identical for the reactive and non-reactive cases in order to
isolate the effect of combustion on the resulting optimal forcing and response solutions.
The frequency response is extracted using an adjoint-based optimization formalism. The
presence of reactions markedly impacts the dominant frequencies of the flow. The inert
case shows forcing and response modes, whose support aligns with the shear layer — as
would be expected from a globally unstable jet. However, the analogous forcing functions
for the reactive case concentrate around the flame, in accordance with combustion
instabilities.
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1. Introduction

A jet in crossflow describes a common flow configuration, where a (reactive or
non-reactive) jet exits perpendicularly from an orifice into a transverse boundary layer,
producing a complex three-dimensional flow that exhibits a wide range of instabilities
and sustained flow characteristics. This flow configuration is considered prototypical as it
features in many engineering applications such as in fuel injection systems, in dilution
holes in gas turbines, in film cooling devices for turbomachinery, in control actuators
for boundary layer separation and — perhaps most prominently — in smoke stacks. Not
surprisingly then, jets in crossflow have been the subject of numerous experimental and
numerical studies (Meyer, Pedersen & Ozcan 2007; Karagozian 2010; Mahesh 2013;
Karagozian 2014), and a detailed review of the principal flow structures is given in Kelso,
Lim & Perry (1996). As the exiting jet gradually bends in the crossflow, a counter-rotating
vortex pair forms which further entrains the crossflow. Moreover, the shear layer along the
upstream edge of the jet supports oscillations that amplify, roll up, advect along the curved
jet axis and eventually lead to breakdown of the flow into turbulent fluid motion.

As a key parameter, the jet-to-crossflow velocity ratio R has been identified: for low
values of R, the flow in the near field is strongly accelerated, affecting the trajectory of the
jet, its entrainment and eventual mixing behaviour; for high values of R, the emergence of
coherent structures is responsible for the bulk of the crossflow entrainment, yielding a far
less efficient mixing behaviour in the near field. Besides these qualitative differences, the
jet-to-crossflow ratio also affects the nature of the dominant instability. For high values
of R, a convectively unstable behaviour is observed (Karagozian 2014), which changes to
an absolutely unstable behaviour as R is lowered. This bifurcation is also reflected in the
vorticity evolution in the shear layer, resulting in distinct flow patterns in either parameter
regime.

Due to the three-dimensionality of the flow, a global stability analysis is the most
appropriate approach for studying the instability characteristics of a jet in crossflow and
for extracting the unstable modes Huerre (2007). Applying this method to a jet with
R = 3, Bagheri et al. (2009) found high-frequency unstable global eigenmodes associated
with shear-layer instabilities on the counter-rotating vortex pair and low-frequency modes
associated with shedding vortices in the wake of the jet, suggesting an overall globally
unstable jet. Ilak e al. (2012) also analysed the jet for increasing R and showed that the
flow changes from a simple periodic vortex shedding to a more complex quasi-periodic
behaviour, before rapidly breaking down into turbulence. At lower values of R, global
linear stability analysis predicts well the dominant frequency and the initial growth rate
of the nonlinear flow. At higher values of R, however, multiple unstable eigenmodes arise,
resulting in a more complicated flow behaviour. The same study also identified the spatial
origin of the first instability in the shear layer immediately downstream of the jet. This
was confirmed more recently by a global linear stability analysis (Regan & Mahesh 2017),
matching the observations reported in Megerian et al. (2007), where the upstream shear
layer undergoes a transition from absolute to convective instability in the interval from
R=2toR =4.

Linear stability analyses are restricted to the perturbation dynamics about a laminar
state, which often exclude parameter regimes of interest in industrial settings. Other
data decomposition techniques, such as proper orthogonal decomposition (Rowley
2005) or dynamic mode decomposition (Schmid 2010; Tu et al. 2014), are suitable
alternatives, allowing a modal breakdown of such flows into coherent structures and their
temporal dynamics. Using nonlinear direct numerical simulations together with a modal
decomposition (proper orthogonal decomposition), Schlatter, Bagheri & Henningson
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(2011) analysed the stability of a configuration similar to that of Bagheri et al. (2009),
demonstrating the presence of self-sustained periodic oscillations, even in the absence of
external forcing. Iyer & Mahesh (2016) also confirmed these results using a dynamic mode
decomposition approach.

While the jet-to-crossflow velocity ratio is undoubtedly an important factor in
determining the nature of instabilities in such flow configurations, the impact of reactions,
and in particular the resulting heat release, is also non-negligible. Heat release in the
reaction zone has been shown to impact the development and evolution of shear-layer
vortices (Lyra et al. 2015; Pinchak, Shaw & Gutmark 2019; Nair et al. 2019b). In particular,
Chen et al. (1991) have demonstrated that the flame structure in a mixture fraction space
plays an important role in the generation or destruction of such vortical structures. In
addition, the presence of reactions has been shown to have an impact even on steady-state
flow structures (Nair et al. 2019a). A similar analysis, using data-driven techniques, has
also shown dramatic differences in the shape of the extracted modes (Sayadi et al. 2015),
highlighting the large impact of combustion on the dynamics of the jet and motivating the
present study.

The presence of different stability characteristics has a significant effect on the
manner by which optimal external excitation can be used to control jet penetration and
spread (Karagozian 2014). Experimental studies of a forced jet with R = 6, using a
single-frequency actuator, have shown a strong receptivity of the jet inlet to high-frequency
forcing, which is expected due to the convectively unstable nature of the jet in
this parameter regime. For lower-frequency forcings, the jet was responsive further
downstream where counter-rotating vortices are active (Narayanan, Barooah & Cohen
2003). With this variety of response behaviour and the realization that reactions can have
a substantial influence on the instability mechanisms, a detailed analysis spanning various
forcing frequencies and jet-to-crossflow ratios R in both the reactive and non-reactive
regimes is necessary to fully describe and map out the frequency response characteristics
of a jet in crossflow. For the purpose of this study, our focus is directed towards a case
with R = 3, resulting in a globally unstable jet, and the response of both reactive and
non-reactive jets is extracted as the forcing frequency is varied. The optimal forcing and
response solutions are determined using an adjoint-based methodology and compared for
both regimes.

An adjoint-based analysis is particularly suited for our undertaking as it casts the
search for a response to external forcing into an optimization problem that determines
the maximum energy gain a linearized system can experience as it maps an input forcing
to an output reaction. Originally arising in design optimization for fluid systems (e.g.
Pironneau 1974; Jameson 1988; Jameson, Martinelli & Pierce 1998; Reuther et al. 1999),
adjoint methods have established themselves as key tools in the stability, receptivity
and sensitivity analysis of fluid systems, for example, for aero- and thermo-acoustic
applications (e.g. Juniper 2010; Lemke, Reiss & Sesterhenn 2013). These application areas
provide a suitable application for adjoint-based methods, as they are dominated by a mostly
linear dynamics. Extensions to nonlinear systems have allowed the analysis of high-lift
airfoils, mixing enhancement and minimal seeds for transition to turbulence (Schmidt
et al. 2013; Foures, Caulfield & Schmid 2014; Rabin, Caulfield & Kerswell 2014; Eggl
& Schmid 2020), among many other applications. Recently, the same techniques have also
been applied to reactive flows, either by aiding the adaptive mesh refinement in steady-state
Reynolds-averaged Navier—Stokes calculations (Duraisamy & Alonso 2012), or in detailed
simulations of one- and two-dimensional laminar configurations with decoupled reactive
equations (Braman, Oliver & Raman 2015). The parametric sensitivity in solid-particle
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combustion has been addressed in Hassan er al. (2020) and standard premixed flames
based on simplified combustion models (Blanchard et al. 2015; Sashittal et al. 2016;
Capecelatro, Bodony & Freund 2017; Skene & Schmid 2019). In all these applications, the
adjoint methodology exploits the high dimensionality of the input space to provide general
gradient measures that can be used to improve performance, extract highly observable
structures or quantify robustness or sensitivity with respect to parameter changes. We
employ the same technology to determine the response behaviour of a jet in crossflow
and study the commonalities and differences between non-reacting and reacting cases.

The paper is structured as follows. Section 2 presents the equations governing the flow
and reactive chemistry, together with the appropriate boundary conditions. The adjoint
equations are presented in § 3, along with the linearized form of the governing equations
and forcing function. Section 4 then contains concise information on the numerical method
used to discretize and solve the resulting nonlinear/linear governing equations as well
as the adjoint problem. The results of our analysis are described in §5, followed by a
summary and conclusions in § 6.

2. Governing equations

The flow is governed by the compressible reactive Navier—Stokes equations. In the reactive
case, the Lewis number Le of all species is taken as unity and, for simplicity, the heat
capacity is assumed to be constant. The scalar diffusion is modelled by Fick’s law,
resulting in the following system of equations:

% - 0 (ou;) =0 (2.1a)
- - uj) =0, da
or ax LY
apu; 0 dojj
L —(pujuj + psjj) = —2, 2.1b
ar + 3x]' (Iouluj +p lj) 3)Cj ( )
o i pu=ar— 2+ D o) 2.10)
-— + — ujl = or — — + — (ukojr), dc
or " oxy P TOT T G T g RO
Y  d(pu;Y) 9 apY,
pYe (Pujk)=_.+_l/0k 2.1d)
at 0x; 0x; | Sc 0x;
where
br=— Y xAh (2.2)
k

and p, u;, p, E, 0j; and g; are the non-dimensional density, velocity components, pressure,
total energy, viscous stress tensor and heat flux, respectively. The parameter v stands
for the kinematic viscosity and Sc represents the Schmidt number, which is set to 0.7

in this study. Parameter Y; denotes the mass fraction of each species, and wy stands for
the production rate of species k, where Ahg is the respective heat of formation at some
reference temperature 7y. In our case, only the fuel mass fraction is explicitly computed,
k =1, and Y} = Yy, assuming lean reaction. The above set of equations is closed using the

equation of state:

R
= —pT, 2.3
P=wP (2.3)
where R is the universal gas constant and W is the mean molecular weight of the mixture,
describing the properties of a perfect gas.
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2.1. Chemistry

A simple one-step chemistry model is used for evaluating reactive source terms. The fuel
mass reaction rate is given by the Arrhenius law of the form

) 1,
wy = ApYyexp (—?> , 2.4)
where A is the Arrhenius pre-exponential factor and 7, is the activation temperature.
Assuming constant specific heat ratio, and unity Lewis number, the combustion source
terms, the fuel mass depletion rate wy and the reaction heat release rate wr, all in the
non-dimensional form, are given as

Z
wy = Da pYyexp (—76) , (2.5a)
or = Q wy. (2.5b)

The combustion parameters used in the source terms are described by the following
non-dimensional numbers: the Damkohler number Da, the Zeldovich number Ze and
the heat release parameter Q. For this study, we have chosen Da = 10, Ze =5 and
Q = 10. These parameters are similar to those for the case presented in Blanchard et al.
(2015) for an M-flame, which produces verifiable results using a matching experimental
configuration. In the case of the jet, on the other hand, these parameters yield reactions
far weaker than those of existing experiments and numerical simulations (Mahesh 2013;
Karagozian 2014). Most available configurations of a reactive jet in crossflow are based on
a turbulent inlet and jet flow. In contrast, we aim to compare the jets in the laminar regime,
where instability results of the cold case can be validated against existing theoretical
analysis, and thus consider a laminar inlet and jet, motivating the parameters chosen above.
The resulting state vector considered in this study is given as

q=1Ip pu puw pus E p¥l', (2.6)

where p is the density, u; is the velocity component in the ith coordinate direction, E is the
total energy and Yy is the mass fraction of the fuel.

2.2. Boundary conditions

The velocity profile inside the jet inlet is prescribed using an inhomogeneous boundary
condition, through the wall-normal velocity at the wall of the plate, similar to Bagheri
et al. (2009). Direct numerical simulations of the transverse jet demonstrate that,
for jet-to-free-stream velocity ratios of R > 3, the flow characteristics are faithfully
reproduced. Owing to the compressible setting, we need to impose the temperature profile
inside the jet inlet as well. Similar to the velocity profile, a bi-quadratic profile with a
maximum of Tj,, = Perzel /4, above the wall temperature, is imposed, resulting in

T(r) = Ty + Ta(1 = ) exp (=(r/0.7)*) @7

where r denotes the distance from the jet centre, normalized by half the jet diameter,
T,, is the wall temperature, Pr = 0.7 is the Prandtl number and V., and Tj., represent
jet velocity and temperature, respectively. The temperature profile is rendered smooth
by a super-Gaussian function, such that the derivatives remain continuous across the jet.
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In the reactive case, the concentration of fuel is set to one inside the jet and to zero in the
crossflow.

Periodic boundary conditions are used in the spanwise and streamwise coordinate
directions. To account for the spatially growing boundary layer in a streamwise-periodic
domain, we reshape and rescale the profile at the end of the computational domain into the
similarity solution of a laminar compressible boundary layer at the inflow. This reshaping
procedure is performed inside a sponge region, following Spalart & Watmuff (1993).
Within all sponge zones, which are placed at the top, inlet and outlet of the computational
domain, the similarity solution of the compressible laminar boundary layer is prescribed.

3. Adjoint-based framework

Our analysis utilizes a computational optimization framework to extract the dominant
structures responsible for the bulk of the energy transport in the jet in crossflow.
This framework relies on a variational formulation using adjoint equations or Lagrange
multipliers.

The derivation of adjoint equations can be carried out in two fundamental ways.
In the continuous approach, the first variation of an augmented cost functional yields
governing equations for the adjoint variables with appropriate boundary conditions and
initial conditions. These equations together with the original governing equations are
then properly discretized and implemented. For governing equations of even moderate
complexity, this process is rather cuambersome and error-prone. Alternatively, the spatially
discretized equations can be furnished to automatic differentiation software to produce
an associated adjoint code. This process, although straightforward to execute, can lead
to overly inflated, and ultimately impractical, code. As a compromise, we employ the
approach outlined in Fosas de Pando, Sipp & Schmid (2012). The discrete adjoint operators
are obtained by taking the conjugate transpose of the discretized direct operator in a
modular way, thus yielding an adjoint code of complexity comparable to that of the
original code. This approach has been used to analyse acoustic feedback phenomena (Fosas
de Pando et al. 2012) and the stability properties of an axisymmetric M-flame (Blanchard
et al. 2015).

We consider the response of a jet in crossflow to harmonic forcing and seek to identify a
particular forcing shape that maximizes a specified energy gain over a given time horizon.
Adopting a general formulation, the forward/direct equation constitutes the evolution of
the state variable ¢ in time defined by

j—‘f = Aq + Bg(f) sinRnwt) = R(q,f,w), ¢q(0)=0, (.1a.b)

where A = dF/dq|g with F representing the discrete nonlinear equations that govern the
evolution of the state variables and g denoting the base flow. The matrix B is a masking
matrix, used to select the area in the domain where the forcing function f is active. It
should be noted that B does not specify the form of the forcing solution; the matrix is
merely used to ensure that the forcing function is suppressed in irrelevant regions of the
flow, such as the sponge regions. It is also chosen to enforce an identical spatial forcing
distribution in both the reactive and non-reactive case and thus allow a fair comparison.
In this study, the non-conservative variables are forced; therefore, the forcing vector f
can be defined as [f,, fu, fv, fws fremp, fr]. For simplicity, the energy is not directly forced,
resulting in fr;,, = 0. However, since the equations are solved for conservative state
variables, the forcing term has to be transformed accordingly from non-conservative to
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conservative form. This is accomplished by the function g(f). The linearized system is
forced at a frequency w.
The cost functional 7 can then be formulated as

Ty
J(q) = ¢qTy).[) +/O Vg0, f)dr, (3.2)

where ¢ is the contribution from the terminal state to the cost functional at final time T, f
represents the shape of the forcing function and 1 accounts for an integral contribution to
the cost functional. Using this cost functional, the augmented Lagrangian £ can be stated
as

Ty d
L(q.f, n,é;w)zj(q)—/o n- (d—'f—R(q,f,w)) dr—=&(f-f— 1. (3.3)

To proceed, we introduce a scalar product (and an associated norm) in the form (u, v) =
v Qu. The matrix @ represents a symmetric positive-definite mass matrix that accounts
for the volume integral over the discretized domain. To simplify our analysis, we choose
$@(Ty). ) = (@(Tp). q(Tp)/(f. f) and Y (q(0), f) = 0.

Mathematically, we can accommodate different norms for the forcing and the response.
Moreover, only the measure for f must be a real norm; the measure for the response
can be a semi-norm and thus contain only a subset of the state vector components. The
choice of norm will produce quantitative differences, but, within reasonable bounds,
norms that account for all relevant state vector variables will yield qualitatively similar
outcomes and coherent structures. For compressible flows, a common option is the Chu
norm (Chu 1965; Hanifi, Schmid & Henningson 1996) which can be derived under the
assumption of vanishing compression work. In our case, this choice does not present a
viable option, since we expect important pressure contributions stemming from reactive
effects. For this reason, we adopt a straightforward Euclidean L;-norm that accounts
for all state vector components equally, for both the forcing and the response. For the
non-reactive case, this entails the inclusion of the passive scalar — a step that also allows
a fair comparison between reactive and non-reactive cases. It is, however, important to
stress that the inclusion of the passive scalar for the non-reactive case does not lead to
unphysical effects, since the passive scalar, by its nature, cannot instigate instabilities or
be otherwise responsible for amplification effects. In summary, we base our analysis on
a Euclidean norm that takes into account all dynamic state vector components, including
density, momentum and energy terms together with passive scalars (for the non-reacting
case) or mass fractions for each species (for the reactive case).

With the scalar product and norm established, we set the first variation of the augmented
Lagrangian £ with respect to the state variables g to zero, which leads to the adjoint
equations and a terminal condition, defined by

—d—"—(%)T (Ty) = 2Qq(Ty) (3.4a.,b)
i~ g n,  n(Ty) =2Qq(Ty)/{f.f). Aa,

It can be deduced from (3.4a,b) that the equation governing the evolution of the adjoint
variable is initialized by the terminal solution of the direct system q(7y). The optimality
condition is given by rendering zero the first variation of £ with respect to the forcing
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function, yielding an expression for the optimal forcing f* of the form

T T
f= %/0 ! (B&ga—;f)> 7 sin(2nwt) dt (3.5)

with & as a normalizing constant for f. Solving the adjoint equations together with the
constraints in one step is computationally expensive. For this reason, an iterative approach
is adopted, whereby a conjugate-gradient algorithm with line search is employed, and f
is updated repeatedly using the gradient computed from (3.5). In addition, since the goal
of this study is to determine the frequency response of the system for a range of forcing
frequencies, the gradient of the cost functional with respect to the forcing frequency w is
used, which can be easily obtained by differentiating the Lagrangian £ with respect to w.
This results in

oL

Jw

T.
= / ! wBg(f) cos(2mwt) dt. (3.6)
0

This gradient can be used to represent the frequency response curve more accurately via
cubic Hermite interpolation in the frequency.

It is important to stress that a gain optimization over a specified time horizon T is
distinct from a resolvent analysis of the flow. The latter analysis considers the asymptotic
limit of 7y — oo and presents the steady-state harmonic response to a time-periodic
forcing at a given frequency, after possible transient effects have subsided. In our case, we
study the frequency response of the flow over a finite time interval [0, T¢] that is attuned to
a characteristic time scale of the flow. Coherent structures that are optimal in gain over this
temporal window are assumed to prevail in the flow and be responsible for the presence of
observable flow patterns. Especially in the presence of combustion, a more narrow time
window, over which harmonic perturbations from an ambient disturbance environment are
amplified, is preferable.

4. Numerical details

Direct numerical simulations of non-reactive and reactive jets in crossflow are performed
using a modified version of the solver developed by Nagarajan, Lele & Ferziger (2003) and
Sayadi, Hamman & Moin (2013). Fourth-order finite differences are used to discretize the
three spatial coordinate directions. The numerical scheme is formulated on a structured
curvilinear grid, and the variables are staggered in space. Operator splitting is employed
to advance the state variables in time: an explicit third-order low-storage Runge—Kutta
method is used for integrating the flow variables, followed by a fifth-order backward
differentiation method (Brown, Byrne & Hindmarsh 1989) for advancing the reaction
variables.

The computational domain is similar to the configuration in Bagheri et al. (2009). The
free-stream Mach number is set to Ma = 0.2. The jet-to-freestream velocity ratio is R =
3, resulting in a Mach number of 0.6 at the jet inlet. The reference Reynolds number,
based on the distance from the leading edge, is Re;r = 10%, and the reference distance
Xref 1s taken as the distance of the inlet station from the leading edge, so that x/x,.s =
Re,/ 10*. The inlet of the computational domain is at x;,,; = 0.7, and the jet centreline is
placed in the mid-spanwise plane z = 0.15 and at a streamwise distance of 0.92 from the
leading edge. The diameter of the jet is Dj,; = 0.0495. Further details of the computational
domain are given in table 1. Note that the grid in the reactive case is twice as resolved in
the streamwise and wall-normal directions. The higher resolution is required to properly
capture the dynamics of the flame.
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Ly L, L, Ny Ny N Xigter  Xjer Dijer Reyef

Non-reactive case 1.2 04 0.3 480 256 200 0.7 0.92 0.0495 10*
Reactive case 1.2 04 03 960 512 200 0.7 092 0.0495 10*

Table 1. Details of the computational domain.

() : (©) o 09971
0.7478
0.4986
0.2493

Figure 1. (a,b) Isosurfaces of the Q-criterion as an indicator of vortical structures in the instantaneous flow
field. The grey contours depict the streamwise velocity component. (¢) The instantaneous scalar field, presented
by using volume rendering of the fuel mass density. High values of mass density are coloured in red, lower
values in yellow. (@) Non-reactive jet in crossflow. (b) Reactive jet in crossflow. (¢) Reacting scalar field.

5. Results

In this section, results of the reactive and non-reactive jet in crossflow are presented and
compared. First, the flow fields from the nonlinear simulations are analysed, and the
coherent structures of the two jets are compared. Using data decomposition techniques,
the dominant frequencies of each case are extracted, which define the range over which
a subsequent linear analysis is performed. Differences in the steady base flow are
investigated as well. Finally, an optimal frequency response for the identified nonlinear
key frequencies is computed and compared for the reactive and non-reactive cases.

5.1. Nonlinear simulations

Figures 1(a) and 1(b) juxtapose instantaneous snapshots of vortical structures for the
reactive and non-reactive cases. The visualization presents isosurfaces of the second
invariant of the strain tensor Q (Hunt, Wray & Moin 1988, p. 193). Already the shape of the
vortical structures indicates a noticeable change in the flow field when chemical reactions
are present. The jet developing in the cold case breaks down earlier than in the reactive
case, penetrating farther in the wall-normal direction despite identical jet-to-crossflow
ratios. In addition, past the instability-induced breakup of the jet, the resulting structures
downstream of the cold jet show smaller scales, compared to the reactive jet, suggesting an
instability that acts at smaller wavelengths. Analysing the mass fraction (a passive scalar
field in the reactive case) shows that the flame extinguishes before the breakdown of the jet
occurs, resulting in an oscillating but ‘non-turbulent’ flame, which will play a significant
role in our subsequent analysis.

Dynamic mode decomposition is used to extract coherent structures with a single
temporal frequency from a sequence of data snapshots (Schmid 2010) in both the reactive
and non-reactive cases. Previous studies have shown that the fundamental frequencies,
pertaining to self-sustained oscillations in the flow, are linked to the region near the inlet
of the jet (Schlatter et al. 2011). We thus limit our snapshot samples for both cases to the

922 A15-9


https://doi.org/10.1017/jfm.2021.479

https://doi.org/10.1017/jfm.2021.479 Published online by Cambridge University Press

T. Sayadi and P.J. Schmid

(a) 100 T . .
o 80
<
EX
a ]
E 40 L l
< %
200 ek .
2o
o Rl atee ofls
—-0.2 —0.1 0

Strouhal number

Figure 2. (a) Spectra of the dynamic modes for the non-reacting case selected by the sparsity-promoting
algorithm. The dominant frequencies are highlighted by red and blue markers. Spatial modes at a frequency
St = 0.016 correspond to the blue marker (b) and at St = 0.14 correspond to the red marker (¢). The red and
green isocontours depict positive and negative wall-normal velocities, respectively. The dark surface represents
the flat plate.

(a) 35,
30+
25+
20 ¢

L (©)
. R ANE . @
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02 701 0.2

Strouhal number
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Figure 3. (a) Spectra of the dynamic modes for the reacting case selected by the sparsity-promoting algorithm.
The dominant frequencies are highlighted by red and blue markers: spatial modes () at a frequency St = 0.06
indicated by the blue marker and (c¢) at a frequency St = 0.12 indicated by the red marker. The red and green
isocontours depict positive and negative wall-normal velocities, respectively. The dark surface represents the
flat plate.

region near the inlet. This region comprises the shear layer upstream of the jet inlet and the
separation region behind the inlet, i.e. in the wake of the jet. In order to objectively identify
the most influential modes in the flow, a sparsity-promoting dynamic mode decomposition
algorithm is employed (Jovanovic, Schmid & Nichols 2014). The dominant frequencies
will help select the frequency ranges for our subsequent frequency response analysis.

Figure 2(a) shows the dominant frequencies and their respective amplitudes in the
non-reactive jet. Pronounced peaks at St = 0.14 and St = 0.016 are identified, which
correspond to shear layer vortices and wall vortices, respectively. The wall vortices are
initiated by the separation region just downstream of the jet inlet (Schlatter et al. 2011).
The extracted frequencies agree well with results of previous studies of non-reacting jets
in crossflow at comparable velocity ratios (Bagheri et al. 2009; Ilak et al. 2012), and the
corresponding modal shapes, shown in figure 2(b,c), also compare well with the global
mode analysis of Bagheri et al. (2009).

The lower-frequency structures are more dominant close to the wall, directly behind the
separation bubble, while the faster structures have a dominant signature mostly in the shear
layer of the jet. The prevailing modes in the reactive case, on the other hand, have different
frequencies compared to the cold case. This latter case is driven by shear-layer instabilities,
as both dominant modes correspond to a modulation of the shear layer, one with double
the frequency of the other. The faster mode induces structures of a lower wavelength in the
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shear layer compared to the slower mode, suggesting a harmonic—subharmonic relation
between them.

Comparing the frequency and the shape of the dominant modes extracted in both
regimes suggests that the exothermic combustion process is accompanied by the
strengthening of the subharmonic mode of the shear layer, leading to a pairing of vortical
structures and the initiation of nonlinear behaviour along the upstream side of the jet,
and yielding a transfer of energy from the fundamental to the subharmonic structure.
This phenomenon, as reported also by Getsinger, Hendrickson & Karagozian (2012),
Strykowski & Niccum (1991) and Megerian et al. (2007), is reminiscent of a convectively
unstable jet. In contrast, in a globally unstable regime, a single frequency — evidence of
limit-cycle behaviour — dominates, which is reflected as a single peak in the spectra for the
case of a non-reactive jet. This is not surprising since, as demonstrated by Getsinger et al.
(2012), both the velocity and the density ratios of jet to crossflow affect the instability
of the transverse jet. The exothermic characteristics of the combustion process alter the
temperature inside the jet and consequently reduce the respective density of the flow,
which can explain the shift to a lower Strouhal number in the dominant mode and even
the change in the nature of the instability. Further and detailed instability analyses are,
however, required to conclusively confirm these findings, and will be the subject of future
research.

With pronounced differences in frequency and shape of the dominant structures
depending on the absence or presence of reactive effects, we anticipate equally marked
influences on the frequency response behaviour for either case. In order to quantify these
influences, the governing equations are linearized about the base-flow solutions and the
optimal energy gain is determined for selected driving frequencies, together with the
associated input forcing and output response.

5.2. Base-flow solution
The base-flow solution ¢ is taken as the steady-state solution of the nonlinear governing

equations. We employ selective frequency damping (Akervik et al. 2006) to obtain the base
flow by solving the following driven composite system of equations until convergence is
achieved:

dg _

& =f(q.8 —xq—9, (5.1a)
“_4-9 (5.1b)
dr A

In the above expressions, A and x are user-defined filter parameters that control the
filter width and cut-off frequency. Figure 4 shows the base-flow solution calculated using
selective frequency damping for both the reactive and non-reactive cases.

Figures 4(a) and 4(b) compare the magnitude of the velocity vector for the reacting and
non-reacting configurations. These figures suggest that the presence of reactions increases
the thickness of the shear layer, impacting the size of the wake region behind the jet. This
region appears to be wider in the streamwise direction of the reactive case compared with
that in the non-reactive setting. On the other hand, due to the wider shear layer in the hot
jet, the wake shrinks in the wall-normal direction. In figures 4(c) and 4(d), filled contours
of the steady-state fuel mass fraction Y are compared for the non-reactive and reactive
cases. The overlaid contour lines are the respective velocity magnitudes associated with
the two cases. Due to the missing reactive effects in the former case, the fuel mass fraction
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Figure 4. Base-flow solutions for both the reacting and non-reacting cases. Slices are presented at z = 0.15,
the midpoint of the computational domain. (a,b) Contours of velocity magnitude. (c,d) Contours of fuel mass
fraction, solid contour lines representing the velocity magnitude. (e,f) Isosurfaces of the Q-criterion as an
indicator of vortical flow structures. (a) Cold jet, velocity magnitude. (b) Hot jet, velocity magnitude. (c¢) Cold
jet, pYr. (d) Hot jet, pY7. () Cold jet. (f) Hot jet.

acts, in effect, as a passive scalar with the flow providing the carrier fluid. This is evident
in the shape of the base-flow solution, where the distribution of the scalar field closely
follows the background flow. Figure 4(e) shows the vortical structure of the flow itself,
visualized using isosurfaces of the Q-criterion (Hunt ez al. 1988). The flow demonstrates
the characteristic structure of a jet in crossflow, highlighted by a counter-rotating vortex
pair. Considering the reactive jet, on the other hand, the signature of the fuel mass fraction
is markedly different compared with the non-reactive case. Further downstream, however,
as demonstrated by the vortical structures in figure 4(f), a counter-rotating vortex pair
appears again, similar to the non-reactive case. Figure 4(d) also shows that Yy attains
negligible values, before reaching the point where a counter-rotating vortex pair develops
in the reactive case, confirming the previous observation that the flame extinguishes before
the breakdown of the jet.
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Figure 5. Contour lines of the velocity magnitude: blue, non-reacting case; red, reacting case.

In order to compare the jet trajectory and penetration depth in both cases, contour lines
of the velocity magnitude are superimposed in figure 5. This figure shows that the presence
of reactions does not affect the near-field jet penetration. This finding agrees with previous
results of jets with comparable jet-to-free-stream velocity ratios (see Wagner et al. 2015).
However, comparing the contour lines further downstream reveals a thicker shear layer in
the reactive case. In addition, the size and shape of the recirculation zone are affected in the
presence of reactions. It can thus be concluded that the exothermic process in the reactive
case increases the temperature in the domain, which ultimately affects the viscosity level of
the flow, as well as the generation and evolution of shear-layer vortices. This fact was also
confirmed by instantaneous flow structures in the flow, shown in figure 1. The presence
of reactions seems to slightly reduce the penetration depth of the jet in the wall-normal
direction.

In order to quantify the flame position and the region of highest heat release, the contour
lines of the mean temperature field and the absolute value of the density gradient (as
a numerical schlieren measure) are plotted in figure 6 for the reactive case. Contours
of the density gradient reveal a thin region on the crossflow side of the jet with intense
reactions, leading to the highest temperature values slightly downstream of the injection
zone (demonstrated by a red contour line in the figure). In this configuration, the flame
is significantly stronger on the crossflow side, leading to a flame distribution similar to
that of Lyra et al. (2015), where the jet-to-crossflow momentum ratio is similar to the
case considered here. The contours of the temperature and density gradient suggest an
anchored flame on the crossflow side. The heat release is concentrated in the region where
shear-layer vortices appear, impacting the unsteady development and evolution of these
vortices as demonstrated by figure 1 and also reported for other studies (Nair et al. 2019b;
Pinchak et al. 2019).

As demonstrated by Fiiri et al. (2002), the location of the flame with respect to
the jet centreline can have a large impact on the development and frequency of the
Kelvin—-Helmholtz instabilities in the shear layer of the jet. In this case, the location of
maximum temperature coincides with the jet centreline, and as demonstrated by Fiiri et al.
(2002) this could bring about a stabilizing effect on the growth rate of unstable modes
in the linear limit. This behaviour could explain differences in the flow structure during
the initial development stage of the jet, as shown in figure 1. In addition, as demonstrated
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Figure 6. Steady-state solution of the reactive jet in crossflow at z = 0.15. (a) Contours of the fuel mass
fraction oYy and contour lines of the temperature profile: red, 90 % of the maximum temperature. (b) Contours
of the fuel mass fraction pY; and density dilatation ||V o]|.

by Yule et al. (1981), for the case of a round jet, the reactive configuration can contain
combustion/buoyancy-driven instabilities — in contrast to the cold jet, which is dominated
by Kelvin—Helmholtz instabilities. The change in the source of instabilities was shown to
also affect the resulting vortical structures in the jet. The hot jet was shown to have a longer
potential core and undergo a slower transition to turbulence. Hence, the combination of
flame position with respect to the shear layer and different instability mechanisms can be
thought responsible for the change of flow structures in the two configurations.

5.3. Response to harmonic forcing

Low-level sinusoidal excitation has been used in jet-in-crossflow configurations to examine
the growth of instabilities downstream, where time-periodic, spatially growing instabilities
along the shear layer hint at a convectively unstable set-up, whereas instabilities that grow
in time from their initiation point may suggest a global or absolutely unstable behaviour
(see Huerre & Monkewitz 1990; Megerian et al. 2007). Forcing in this present study,
however, is used within a different context. Adjoint-based analysis is utilized to extract
optimal frequency and response eigenvectors resulting in maximum energy growth for a
given time horizon 7. In addition, the forcing function is not confined to the nozzle inlet.
As a result, the manner by which the disturbances evolve in time are not analysed here;
instead, for a given frequency, the shape of the optimal forcing function is extracted and
compared, for the presence and absence of exothermic reactions. The aim here is to identify
the impact of the optimal forcing on both the shape and position of the forcing functional
at a given frequency, and to quantify the resulting response.

At this stage, using the base-flow solutions computed in the previous section, optimal
response and forcing functions corresponding to a given frequency, St = 0.1, are extracted
using the adjoint-based algorithm and are compared for the reactive and non-reactive
cases. Considering the frequency spectra extracted from the nonlinear flow in both cases
(figures 2 and 3), this frequency falls between the frequencies of the dominant modes
identified in the figures. Within the linearized framework, no-slip velocities are used as
boundary conditions for the velocity perturbations at the wall, and adiabatic conditions
are employed for the energy. The mass fraction perturbation is set to zero at the wall, and
all perturbation quantities are assumed to be zero in the free stream.

Figure 7 shows the spatial distribution of the optimal forcing and response functions,
in the non-reacting case, for a harmonic forcing at a frequency St = 0.1. The solution is
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Figure 7. Forcing and response fields, non-reacting jet, St = 0.1. (a,b) Contours of the wall-normal velocity
component. (c—f) Contours of fuel mass fraction (passive scalar in this case). The contours are superimposed
on contour lines of the steady-state passive scalar. (a¢) Wall-normal velocity forcing, z = 0.15. (b) Wall-normal
velocity response, z = 0.15. (c) Fuel mass fraction forcing, z = 0.15. (d) Fuel mass fraction response, z = 0.15.
(e) Fuel mass fraction forcing, x = 1. (f) Fuel mass fraction response, x = 1.

visualized by the wall-normal velocity and fuel mass fraction components of the state
vector; forcing and response solutions for other components show similar behaviour.
The contours are plotted for the conservative form of the forcing function, which allows
direct comparison with the response solution in conservative form. The contours of the
optimal response function show perturbation velocities on the lower branch of the jet shear
layer. The mode appears to be symmetric across z = 0.15 (middle of the spanwise axis),
confirmed by the contours of the response fuel mass fraction shown in figure 7(f). The
forcing solution for the selected frequency appears to concentrate inside the shear layer,
slightly lower than the response location, suggesting a globally unstable configuration.
The optimal forcing and response are therefore linked to the shear-layer instability of
the globally unstable jet. Megerian et al. (2007) found experimentally that, for a low jet
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Figure 8. Forcing and response fields, reacting jet, St = 0.1. (a,b) Contours of the wall-normal velocity
component. (c—f) Contours of fuel mass fraction (passive scalar in this case). The contours are superimposed
on contour lines of the steady-state passive scalar. (a) Wall-normal velocity forcing, z = 0.15. (b) Wall-normal
velocity response, z = 0.15. (c¢) Fuel mass fraction forcing, z = 0.15. (d) Fuel mass fraction response, z = 0.15.
(e) Fuel mass fraction forcing, x = 1.0. (f) Fuel mass fraction response, x = 1.0.

inflow ratio R < 3.5, external excitation has only a minor impact on the flow response.
This is in contrast to the significant effect of forcing for larger values of R, suggesting
a transition from a globally unstable flow, where intrinsic self-sustained oscillations are
present, to a convectively unstable flow that exhibits noise-amplifying behaviour (Huerre
2007; Bagheri et al. 2009). As a consequence, the response of the jet to forcing is directly
dependent on the nature of its instability. The jets considered in this analysis are in the
globally unstable regime (R = 3), and the optimal forcing/response functions represent
self-sustained oscillations.

The shape and the location of forcing and response solutions of the fuel mass fraction, in
this non-reacting case, are similar to those of the hydrodynamic variables. This behaviour
is expected since the fuel mass fraction can be considered as a passive scalar in the absence
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of reactions. Owing to the direct effect of reactive terms on the steady-state solutions,
it seems reasonable to expected a significant influence on the spatial distribution of the
forcing and response functions in the presence of chemical reactions.

Figure 8 shows the spatial distribution of the optimal forcing and the corresponding
response functions, in the reactive case, for a harmonic forcing at a frequency St =
0.1. The lack of exact symmetry in some of the figures could be remedied with more
iterations of the direct-adjoint algorithm. However, due to the high computational cost
of this exercise, once the objective functional is adequately converged, the iterations are
terminated. Similar to the non-reactive case, when considering the response solution, the
perturbation velocity appears on the lower branch of the shear layer, shown in figure 8(b).
Variations in the fuel mass fraction are negligible is this region, since most of the fuel
has already been consumed, as shown in figure 8(d). As a result, the perturbation in the
fuel mass fraction appears downstream of the region identified by the steady-state flame
solution. When comparing the shape of the instability in figures 7(b) and 8(b), the response
in the reactive case seems to have a larger wavelength, along the base-flow solution, than
that in the non-reactive case. The forcing function, on the other hand, has an entirely
different signature. When considering the velocity component of the forcing, it is active in
the region including the largest variation in the fuel mass fraction. However, the forcing
amplitude is higher on the edges, with the largest amplitude on the lower branch of the jet
shear layer. While the forcing functions of the velocity components include perturbations
inside the shear layer as well as in the flame region, the perturbations are present only in
the flame region as far as the mass fraction and density (not shown here) are concerned.
Combining the effects of forcing in the velocity (figure 8a) and mass fraction (figure 8c¢)
components on the base-flow solution, we observe a pronounced wrinkling at the tip of
the fuel mass fraction contours, as shown in figure 8(a), which in turn induces a flame
instability. Similar behaviour was also observed and analysed for a thermo-acoustically
forced M-flame by Blanchard et al. (2015). Comparing the results of figures 7 and 8 shows
that, while in the non-reactive case forcing inside the shear layer leads to highest growth in
the energy of the system, suggesting a shear-layer instability, in the reactive case, forcing
functions modulating the flame distribution yield the highest energy gain. In addition, the
reacting cases show some overlap between the spatial locations of the forcing and the
response which would suggest that these cases do not exhibit globally unstable behaviour,
at least not to the same degree as the inert cases.

Varying the forcing frequency does not appreciably affect the shape of the response and
forcing functions; however, the optimal energy gain will differ. In the following section,
we investigate the impact of the forcing frequency on the total energy gain of the system.

5.4. Frequency response of a (non-)reactive jet

In this section, the frequency responses of the reactive and non-reactive jets in crossflow,
for a range of frequencies corresponding to 0.05 < St < 0.14, are extracted and analysed.
The range of frequencies has been selected based on the spectra presented in figures 2 and
3, taken from the analysis of the nonlinear flow. Since the lowest frequency of the inert case
(St = 0.016) is related to wall vortices, it has not been included in the analysis. Instead,
the forcing frequency is varied within the interval 0.05 < St < 0.14, which includes both
dominant frequencies identified in the reactive regime, as well as the highest frequency of
the non-reactive case. The time horizon (7f in (3.2)) is set to half the period of the case
with St = 0.1 for all frequencies. A careful analysis showed that changing the time period
does not noticeably affect the shape of the modes, or the trend of the frequency response
plots presented in this section. The gain curves, illustrating the frequency response for
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Figure 9. Frequency response of the two configurations: (a) non-reactive jet; (b) reactive jet. Red circles,
locations where J and dJ/dw are extracted using the adjoint-based algorithm; solid red line, local gradient;
black dashed line, cubic Hermite interpolation.

each regime, are fitted by cubic Hermite interpolation, using the gain values together with
the values of the local frequency gradient extracted using the adjoint-based algorithm
described in § 3.

Figure 9(a) shows a nearly linear increase in the energy gain of the inert system as the
frequency increases. This increase is also confirmed by the extracted gradients using the
expression presented in (3.6). All frequency gradients extracted for 0.08 < St < 0.14 have
approximately the same value. This quasi-linear increase is due to the fixed time horizon
for each frequency. Since the identified mode is related to shear-layer instabilities (shown
in figure 7) for all considered frequencies, augmenting the frequency increases the energy
gain by accounting for a larger portion of the disturbance period.

On the other hand, figure 9(b) shows a distinctly different behaviour in the frequency
response in the presence of reaction. While the energy gain increases monotonically,
similar to the inert case, it reaches a maximum at St = 0.12 after which it starts to decrease.
This is also confirmed by the extracted frequency gradients, which decrease as the forcing
frequency grows, until they finally change sign in the vicinity of St = 0.12. Hence, within
the range of frequencies considered here, an optimal forcing frequency is identified for
the reactive configuration. This optimal frequency is similar to the harmonic frequency
identified while analysing the nonlinear spectra of the jet, shown in figure 3.

Comparing the frequency response for both jets in crossflow shows the substantial
impact that reactions have on the system’s response. Although both jets are globally
unstable, the presence of reactions alters the shape of the optimal forcing and response
modes, as well as the energy gain of the system.

6. Summary and conclusions

Simulations of reactive and non-reactive jets in crossflow, with a jet-to-crossflow velocity
ratio of three (R = 3), have been performed using a compressible direct numerical
simulation framework. The combustion has been modelled by lean reactions, resulting
in an additional transport equation for the fuel mass fraction. Both the crossflow and the
flow at the inlet of the jet have been assumed laminar. Due to the interaction of the jet with
the transverse flow, instabilities develop along the curved jet shear layer causing roll up
and eventual breakdown into turbulence.

Performing a dynamic mode decomposition on the data gathered from the nonlinear
solutions of both configurations and comparing the resulting spectra show a substantial
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impact of reactive effects on the dominant frequencies in the flow. While the extracted
frequencies in the inert case compare well with simulations of Bagheri er al. (2009),
the reactive jet in crossflow shows substantially lower frequencies corresponding to the
shear-layer instability. The flow structures also differ from those of the non-reactive jet
in crossflow, as the reactive jet penetrates the crossflow noticeably less in the vertical
direction.

The steady-state solution of both configurations has been determined using selective
frequency damping Akervik e al. (2007). Optimal forcing and response structures have
then been identified using an adjoint-based optimization methodology coupled to the
solver. This framework is particularly efficient, since the linearized operators are computed
simply by using a local differentiation technique, without explicitly forming the resulting
matrices for both forward and adjoint operators. In the inert case, the forcing and response
functions are concentrated inside the shear layer of the jet, as expected from a globally
unstable flow. However, in the reactive jet, the forcing functions show support inside
the flame, and the forcing fuel mass fraction together with the velocity components
create structures that induce wrinkling near the tip of the flame, suggesting a link to
a flame instability. Therefore, the presence of reactions visibly alters the modal shapes
extracted from this configuration. In addition, studying the jet response to various forcing
frequencies in both regimes shows a different behaviour within the range of considered
frequencies. In contrast to the non-reactive case, an optimal forcing frequency is identified
in the reactive setting.

While these results establish a definitive impact of chemical reactions on the optimal
forcing and response of the jet, there still remain a few open questions. As mentioned
earlier, the considered jet-to-crossflow velocity ratio results in a globally unstable jet.
Higher ratios will, however, result in a convectively unstable flow, altering its receptivity
to forcing and motivating a similar analysis in this parameter regime. In addition, turbulent
jet-in-crossflow configurations commonly operate in higher-Damkohler-number (Da)
regimes. Hence, the effect of Da should be analysed by considering more sophisticated
kinetic models. Investigations in these directions will be the subject of future research
efforts.
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