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Abstract
Model-based recursive partitioning (MOB) and its extension, metaMOB, are tools for identifying subgroups with
differential treatment effects. When pooling data from various trials the metaMOB approach uses random effects
to model the heterogeneity of treatment effects. In situations where interventions offer only small overall benefits
and require extensive, costly trials with a large participant enrollment, leveraging individual-participant data (IPD)
from multiple trials can help identify individuals who are most likely to benefit from the intervention. We explore
the application of MOB and metaMOB in the context of non-specific low back pain treatment, using synthetic data
based on a subset of the individual participant data meta-analysis by Patel et al.1 Our study underscores the need
to explore heterogeneity in intercepts and treatment effects to identify subgroups with differential treatment effects
in IPD meta-analyses.

Highlights
What is already known?

• The identification of subgroups of individuals benefitting in particular from an experimental intervention is
of interest in many fields. However, a single trial is often too small for this purpose implying the use of
individual participant data (IPD) from multiple trials.

• Ignoring the between-trial heterogeneity in subgroup identification may lead to spurious subgroup findings.
metaMOB was developed to overcome this problem.

• metaMOB extended model-based recursive partitioning to IPD meta-analysis.

What is new?

• We present an application of metaMOB identifying subgroups in IPD from four randomized controlled trials
in chronic low back pain.

• Results previously known from simulations only were now demonstrated on real-world data.

Potential impact for RSM readers

• Readers will understand how to approach the identification of subgroups using data from multiple trials with
the metaMOB method; the code for reproducing the illustrated example is available in the Supplementary
Material.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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1. Introduction

For interventions with small to moderate treatment benefits, investigators often aim to identify
particular patient subgroups that could potentially derive a greater treatment advantage.2 If in addition
to the smaller overall treatment benefit the trial sizes are small due to time and cost reasons, pooling
data from several trials for the analyses is attractive. Different methods have been proposed for this
purpose; see, for example, Wang et al.,3,4 Mistry et al.,5 and Huber et al.6

For non-specific low back pain (NSLBP), a repository of individual participant data from 19
completed NSLBP trials testing similar nonpharmacological interventions was set up to investigate
which patients are more likely to benefit from treatment in terms of the back-related disability.1

For subgroup identification, Seibold et al.7 investigated the use of model-based recursive partitioning
(MOB), a versatile tree-based method combining parametric models with recursive partitioning.8 MOB
showed an overall good performance in neutral comparison studies9–12 assessing the performance of
subgroup identification approaches in precision medicine. With several trials rather than a single trial,
trial effects would need to be accounted for by stratification or study-specific intercepts; these could be
included in MOB. However, MOB in its original form cannot account for between-study heterogeneity
in regression coefficients. For the identification of subgroups based on individual participant data from
multiple studies metaMOB, a generalized linear mixed model tree approach,13 was investigated by
Huber et al.6 The metaMOB approach relies on one-stage IPD meta-analysis models with different
options to model the baseline heterogeneity as investigated by Legha et al.14 Analyzing IPD in meta-
analysis, including the use of tree-based methods like metaMOB accounting for two distinct types of
heterogeneity, baseline, and treatment effects, is essential in the context of IPD meta-analysis.6

In this article, we illustrate the use of different MOB approaches that use different approaches for
accounting for the different types of heterogeneity on synthetic low back pain data based on the data
set collected by Patel et al.1

2. Low back pain data

Patel et al.1 collected data from 19 completed NSLBP trials to identify participant characteristics
predicting clinical response to treatments for low back pain. Following a data-sharing agreements, we
obtained data from 8 out of the 19 eligible NSLBP trials. As identifying subgroups with differential
treatment effects requires data from two-arm trials, with consistent measurement of outcome variables
and subgroup-defining factors across all trials, the number of trials available for the subgroup
identification is further reduced. We focused on two-arm trials that included the Roland Morris
Disability Questionnaire (RMDQ) measured at baseline, denoted as RMDQ_0, and at least one follow-
up visit. Therefore, from the eight eligible NSLBP trials, we selected four trials for our analysis
including 1780 individuals. To enable data publishing and reproducibility, we created a synthetic data
set of these four trials using the R-package synthpop with the option method="parametric". The
synthesis of the data results in randomization ratios that are comparable to those in the underlying
real trials, as well as similar distributions for the continuous covariates. However, these ratios and
distributions are not perfectly matched. In particular, the randomization ratios may yield values that
appear unusual. Nevertheless, this discrepancy does not impact the main objectives of illustrating
different subgroup identification approaches. The synthetic data and the R code used for the analyses
in the subsequent sections can be found in the Supplementary Material.

Table 1 presents demographics and the RMDQ stratified by trial. The RMDQ score ranges from 0
to 24 with higher values indicating a poorer outcome associated with back pain. The table illustrates
that the trials are of different sizes. The largest trial, trial with ID 1, includes more than 1000 patients,
while trial 3 involves only 53 patients. RMDQ was measured at different follow-up visits. Our analyses
are based on the data summarized in Table 1. The synthetic data include four studies in which RMDQ
is measured at baseline (RMDQ_0) and at least at one follow-up visit. As outcome, we considered the
last observation of RMDQ of each patient.
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Table 1. Summary of the synthesized analysis set.

Variable N Trial 1 (N = 1,087) Trial 2 (N = 232) Trial 3 (N = 53) Trial 4 (N = 176)

Categorical variables (n, %)

Male 1,548 473 (44%) 131 (56%) 37 (70%) 61 (35%)
Intervention 1,548 805 (74%) 110 (47%) 22 (42%) 82 (47%)

Continuous variables (Median [25%, 75%])

RMDQ_0 1,537 8.0 [5.0, 12.0] 13.0 [10.0, 17.0] 14.0 [9.0, 16.0] 5.0 [4.0, 8.0]
RMDQ at last follow-up 1,523 4.0 [1.0, 8.0] 1.0 [0.0, 3.0] 5.0 [3.0, 8.0] 2.0 [0.0, 5.0]
Age (years) 1,548 44 [35, 52] 41 [32, 50] 44 [34, 53] 40 [34, 49]
Note: Categorical variables are presented as n (%), while continuous variables are reported as median [25%, 75% quantile]. Each trial is depicted in a separate column.
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Table 2. Treatment effect estimated by an unadjusted linear model, a linear model including the trial
indicator as fixed effect and a linear mixed model with treatment as random and trial indicator as fixed
effect.

Model name Characteristic Coefficient 95% CI p-Value

Linear model adjusted for trial Intervention −1.1 −1.6, −0.64 < 0.001
Baseline RMDQ 0.40 0.35, 0.46 < 0.001
Trial indicator 2 −5.8 −6.5, −5.1 < 0.001
Trial indicator 3 −2.2 −3.6, −0.87 0.001
Trial indicator 4 −1.3 −2.1, −0.56 < 0.001

Linear mixed model Intervention −1.1 −3.0, 0.82 0.12
Baseline RMDQ 0.40 0.35, 0.46 < 0.001
Trial indicator 2 −6.4 −13, −0.22 0.048
Trial indicator 3 −2.4 −7.3, 2.4 0.15
Trial indicator 4 −1.5 −9.3, 6.3 0.3
Variance for intervention 0.137

Table 1 illustrates that the baseline characteristics, sex, age, and RMDQ at baseline slightly differ
between trials. We investigate the treatment effect in the pooled data. Using trial as fixed effect in the
linear model as shown in the row “Linear Model Adjusted for Trial,” shows a significant reduction
of the RMDQ in the intervention compared to the control arm (see Table 2) indicating a benefit of
the intervention over the control treatment. The RMDQ scores at last follow-up differ across trials as
indicated by the coefficients of the trial indicators. To account for heterogeneity in the treatment effect
using random effects, we applied a linear mixed model to the entire pooled population, incorporating
the treatment indicator as random effects and the trial indicator as fixed effect. The variance of the
random treatment effect was estimated to be larger than zero, see Table 2. By accounting for between-
trial variability in the treatment effect, this model introduces greater uncertainty in the pooled estimate
of the treatment, resulting in a wider confidence interval compared to the model presented in the first
row of Table 2.

3. Subgroup identification

We illustrate the identification of subgroups in NSLBP with differential treatment effects using MOB
approaches. MOB and its extensions, as metaMOB or palmtree,15 are based on generalized linear
models. To describe the different variations of MOB and the underlying models, we assume that the
outcome RMDQ is denoted by y. Furthermore, the treatment indicator is denoted by t, the covariates
age, sex, and RMDQ at baseline are denoted by 𝑥𝑎𝑔𝑒, 𝑥𝑠𝑒𝑥 , and 𝑥𝑅𝑀𝐷𝑄_0. The baseline covariates
𝑥𝑎𝑔𝑒, 𝑥𝑠𝑒𝑥 , and 𝑥𝑅𝑀𝐷𝑄_0 are considered as potential splitting variables and are therefore not involved
in the underlying regression model. The analysis includes four trials 𝑘 = 1, . . . , 4. The corresponding
trial indicator is denoted by 𝑥𝑡𝑟𝑖𝑎𝑙 .

For MOB, the outcome of each subgroup j and trial k is modeled by

𝑦 𝑗𝑘 = 𝛾 𝑗 + 𝛽 𝑗 𝑡. (1)

MOB does not account for the data being pooled from different trials; therefore, the right-hand side
of the equation does not depend on k. Adjusting for the different trials by fixed effects using MOB is
referred to as MOB-SI. SI refers to a stratified intercept as for each trial a separate intercept is estimated.
The linear model for RMDQ fitted in each subgroup j based on the method MOB-SI is

𝑦 𝑗𝑘 = 𝛾 𝑗𝑘 + 𝛽 𝑗 𝑡, (2)
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with 𝛾 𝑗𝑘 describing the subgroup and trial-specific fixed intercept. Both MOB and MOB-SI can be
fitted using the lmtree function of the partykit package. Addressing heterogeneity in the baseline
with random intercepts can be achieved by applying MOB-RI. MOB-RI is based on GLMM-trees.
Therefore, for analyzing the NSLBP data with RMDQ as outcome, a linear mixed model is fitted to
each subgroup j and trial k:

𝑦 𝑗𝑘 = 𝛾 𝑗 + 𝛽 𝑗 𝑡𝑘 + 𝑏0𝑘 with 𝑏0𝑘 ∼ N(0, 𝜏2
0 ). (3)

The random intercept 𝑏0𝑘 is considered to be the same for each subgroup. Accounting additionally
for heterogeneity in the treatment effect is feasible using the following extended metaMOB approaches
for IPD meta-analyses, namely metaMOB-RI and metaMOB-SI.

metaMOB-RI:

𝑦 𝑗𝑘 = 𝛾 𝑗 + 𝛽 𝑗 𝑡𝑘 + 𝑏0𝑘 + 𝑏1𝑘 𝑡𝑘 with 𝑏0𝑘 ∼ N(0, 𝜏2
0 ) and 𝑏1𝑘 ∼ N(0, 𝜏2

1 ), (4)

and metaMOB-SI:

𝑦 𝑗𝑘 = 𝛾 𝑗𝑘 + 𝛽 𝑗 𝑡𝑘 + 𝑏1𝑘 𝑡𝑘 with 𝑏1𝑘 ∼ N(0, 𝜏2
1 ). (5)

The approaches involving random effects, MOB-RI, metaMOB-SI, and metaMOB-RI are fitted using
the lmertree function of the glmertree package.

An alternative to both the MOB-RI and MOB-SI approaches, which address heterogeneity in
baseline by using subgroup and trial-specific intercepts (MOB-SI) or random intercepts for the trial
indicator (MOB-RI), is the Generalized Linear Model Trees with global additive effects, referred to
as palmtree.15 In contrast to MOB-RI which assumes the random intercepts to be constant across
subgroups, palmtree includes the treatment indicator in the model similar to MOB-SI, but assumes
these intercepts to be the same across the identified subgroups:

𝑦 𝑗𝑘 = 𝛾𝑘 + 𝛽 𝑗 𝑡. (6)

The regression models used for the metaMOB approach (Equations (4) and (5)) are in alignment
with the models typically used in random-effects meta-analysis, here the normal–normal hierarchical
model.

3.1. MOB

For the NSLBP data, approaches that account for between-trial heterogeneity are more suitable due to
various differences between the trials included. Therefore, MOB using Equation (1) is not employed
for data analysis. MOB-SI accounts for heterogeneity in the baseline by adjusting for the trial indicator,
see Equation (2). The result of this approach is illustrated in Figure 1. The subgroups are defined by the
RMDQ_0 and Age. MOB-SI partitions the group of participants with RMDQ_0 values larger than 9
into three subgroups by additional splits on RMDQ_0 and Age. MOB-SI estimates the treatment effect
separately in each of the identified subgroups using a linear model with treatment and trial as factors
(see Equation (2)), resulting in p-values for the treatment effect within two subgroups, denoted node 4
and node 6, that are smaller than 0.05. Both of these subgroups estimate a reduction of the RMDQ score
of the intervention compared to the control indicating a treatment benefit. In node 6, which includes
only subjects with baseline RMDQ values greater than 6 and less than or equal to 9, the estimated
benefit of the intervention is the largest, with a predicted reduction of −1.66 points in RMDQ in the
intervention group compared to the control group. The estimated treatment effect is based on Equation
(2) that is also used for the MOB-SI approach.

An alternative to MOB with stratified intercept for the trial is the GLMM-tree algorithm with a
random intercept to account for baseline heterogeneity. This approach is referred to by MOB-RI,6 which
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Figure 1. Tree obtained by MOB-SI.
Note: Five subgroups are identified. The upper boxplots display the outcome values stratified by the treatment indicator, while the lower boxplots show the outcome values stratified by the trial indicator. Note that the

RMDQ, illustrated on the y-axis, ranges from 0 to 24, with higher values indicating a poorer outcome. To the best of our knowledge, the y-axis limits are hard-coded and cannot be manually adjusted.
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Figure 2. Tree obtained by metaMOB-SI.
Note: Four subgroups are defined. All splits are performed on the variable RMDQ_0. The upper boxplots display the outcome values stratified by the treatment indicator, while the lower boxplots show the outcome values

stratified by the trial indicator. Note that the RMDQ, illustrated on the y-axis, ranges from 0 to 24, with higher values indicating a poorer outcome. To the best of our knowledge, the y-axis limits are hard-coded and cannot

be manually adjusted.
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imposes a restriction on the heterogeneity of the baseline by assuming a certain distribution of its
random effects, see Equation (3). Nevertheless, the subgroups identified by MOB-RI are the same as
for MOB-SI. However, the estimated effects of MOB-RI differ slightly from MOB-SI as the model
used for the estimation of the treatment effect is based on Equation (3).

3.2. metaMOB

Heterogeneity in the treatment was not assumed by the models MOB-RI and MOB-SI. The estimated
tree of metaMOB-RI is identical to the ones estimated by MOB-SI and MOB-RI (see Figure 1). The tree
estimated by palmtree is also consistent with those estimated by MOB-SI, MOB-RI, and metaMOB-
RI. When fitting the model that incorporates heterogeneity in both baseline and treatment effects by
employing random effects for both, the estimated variance of the random treatment effect is equal to
zero. Although the identified subgroups are consistent across these approaches, the estimated effects
differ slightly. This is because each MOB approach uses a different model to estimate the effects.

Huber et al.6 recommended to use metaMOB-SI as it is the most flexible approach and showed
the best performance regarding different measures, for example, false discovery rate across different
scenarios. Applying metaMOB-SI to NSLBP identifies four subgroups, only. Therefore, it differs from
the results obtained by MOB-SI, and metaMOB-RI. The tree obtained by metaMOB-SI is illustrated
in Figure 2. The estimated treatment effect in metaMOB-SI underlying linear mixed model is not
significant for any of the identified subgroups. In node 4 (as denoted in the figure) the largest treatment
benefit is observed. This is consistent with the result obtained by the other MOB approaches as the
definition of node 4 of metaMOB-SI, is identical with the definition of node 6 of MOB-SI, see Figures
1 and 2, respectively. The estimated treatment effect for node 4 based on Equation (5) is −1.45 (p-
value: 0.07), indicating a reduction of 1.45 points in the RMDQ score for subjects in the intervention
arm compared to the control arm, suggesting less pain-related disability or better functional status. The
variance of random treatment effect 𝑏1, which is assumed to be constant over the identified subgroups,
is estimated to be 0.59 in the underlying mixed model of metaMOB-SI.

4. Discussion

When identifying subgroups with differential treatment effects based on data from multiple trials, it
is crucial to account for the heterogeneity between these trials.5,6,16 In this manuscript, we illustrated
how different modeling approaches for heterogeneity in the intercepts and the treatment effects using
the MOB approach can lead to different results based on a subset of synthetic NSLBP data. Due to a
limited number of baseline covariates considered to define the subgroups, the results of the different
procedures only slightly differ. The approach recommended by Huber et al.,6 metaMOB-SI, is the
only approach whose results differed from the other approaches accounting for (different types of)
heterogeneity. MetaMOB-SI identified fewer subgroups compared to the other approaches which aligns
with the results obtained by the simulation study in Huber et al.6: Approaches that make assumptions
resembling the true underlying heterogeneity structure often result in less complex trees.

Although the metaMOB-SI approach was recommended it also comes with its limitations regarding
the estimability of the regression coefficients for the dummy coded trial indicator variable, the stratified
intercept. The application of MOB-SI and metaMOB-SI to the NSLBP data encountered the same
problem. In node 9 of MOB-SI and node 7 of metaMOB-SI, only a small number of patients from
trial 4 were included, not allowing for accurately estimated separate intercepts. The inclusion of only
a few observations of a single trial in a node hinders further splitting on these nodes using MOB-SI
and metaMOB-SI because the underlying model and, consequently, the splitting criterion cannot be
calculated. Although, the choice of whether to model the between-study heterogeneity should ideally
be determined a priori, the aforementioned estimation difficulties might require a fallback strategy on
a simpler model, that is, a model with less parameters as for instance metaMOB-RI. Nevertheless,
metaMOB-SI is recommended as first choice.
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The number of trials included in this illustrative analysis is also small. Including a smaller number of
trials in a meta-analysis increases the likelihood of heterogeneity estimates for between-trial treatment
effects being equal to zero.17 Variances estimated of the random treatment effect of zero were observed
for the linear mixed model on the overall population, as well as for the model including the identified
subgroups of metaMOB-RI. For the mixed model defined in Equation (5) and therefore metaMOB-
SI’s underlying model, the random treatment effect variance was not estimated to be equal to zero.
Furthermore, some of the methods might not account appropriately for uncertainty in estimating
the heterogeneity with only a few studies. Bayesian approaches with weakly informative priors for
heterogeneity may offer favorable properties. Extending or modifying metaMOB to incorporate such
techniques could be a promising direction for addressing challenges in subgroup identification for IPD
meta-analyses with few studies.

For investigating treatment-by-covariate interactions, Riley et al.18 recommend, among other
considerations, that interaction estimates should be derived solely from within-study information.
Estimation and testing methods that adhere to this recommendation are available.18,19 To the best of
our knowledge, no procedures currently exist for subgroup identification in meta-analysis settings
using recursive partitioning based solely on within-study information. Incorporating a GLMM that
separates within-study and across-study information directly into the metaMOB algorithm is currently
not feasible. However, it is possible to estimate treatment effects for the subgroups identified by
metaMOB separately from the metaMOB procedure. Specifically, metaMOB can be used solely for
subgroup identification, after which GLMMs, as described in Riley et al.18 and Godolphin et al.,19 can
be applied to estimate treatment-by-subgroup effects. Nonetheless, we cannot rule out the possibility
that the subgroup identification process in metaMOB is influenced by the amalgamation of within-
and across-study information. This issue requires further investigation and may be a topic for future
research.
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