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1. Definitions and notation
Let Zan be a given infinite series and {Xn} a non-negative, strictly increasing,

monotonic sequence, tending to infinity with n. We write, for w>X0,

and, for r>0, we write

^ O ) = I (w-An)
ran

)X0

= I"" (w-xYdAx(x).
v AQ

A\(w) is known as the Riesz sum of " type " Xn and " order " r, and

is called the Riesz mean of type kn and order r.
The series Y.an is said to be summable by Riesz means of type Xn and order

r, or summable (R, ln, r), r ̂  0, to sum s (finite), if R^(w)-»s as w-xx> (see
Riesz (5)).

The series Icn is said to be absolutely summable (R, Xn, r), or summable
| R, Xn, r |, r>0, if Rrx(w) is of bounded variation in (h, oo), where h is some
finite positive number (see Obrechkoff (3), (4)).

By definition, summability | R, Xn, 0 | is equivalent to absolute convergence.
Throughout this paper <5>0 and we use the following notation:

= i{f(x+t)+f(x-t)}. (1.1)

R(w,t)= X n?'1 exp (jf) sin nt. (1.2)

P(w, 0 = \ us — R(w, u)du. (1.3)
Jo du

Q(w,0= f"«d|-i?(w,M)dU. (1.4)

E.M.S.—E
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2. Introduction
In 1951, Mohanty (2) proved the following:

00

Theorem A. If <f>(t) e BV(Q, n), then the series £ An(x)l\og (n 4-1) is

summable \ R, exp («"), 1 | (0<a<l ) .

Here "/(*) e BV{a, &) " means that/(x) is of bounded variation in (a, b).
Theorem B. If t~d<f>(t)eBV(O, n), then at t = x the Fourier series off{t) is

summable | R, exp {w (log w)~p}, 1 |, where <5>0 andp = 1 + 5"1.
The purpose of this paper is to further investigate absolute Riesz summability

factors of Fourier series, by taking a hypothesis like that of Theorem B and the
absolute Riesz summability process of the kind used in Theorem A.

We establish the following result.

Theorem. Let<x>O,0>O, l > a + & andd = P/(l-a). Ift-s<l>(t)eBV(O,n),
00

then J] An(x)np is summable \ R, exp (na), 1 |.
n = 1

3. We require the following order-estimates for large w, uniformly in

£ np-1 exp (n01) = 0{w (log wf1"'l). (3.1)

R(w, t) = 0{r1w (log w)w-1)/a}. (3.2)

P(w, t) = 0{t*w (log vifi'-1). (3.3)

Q(w, 0 = oit'-'w (log w)w"1)/a}. (3.4)
For the proof of (3.1) we have

R(w, i) = 0{ Y, n""1 exp («")}.
exp (n") & w

The case 0 = 0 has been established in Mohanty (1), and the general case
can be proved in a similar way.

For (3.2) let exp (nf) ^ w<exp {(w+ l)a}. We have
p— 1 m

R(w9 0 — £ wP~1 e x P (wa) s^n w / + E w ~̂X e x P ("*) s*n nt

n = 1 n — p

= C7+F, say,

where/? is an integer such that /i""1 exp (H") is monotonic increasing for n~2z p,
for example, p = [{(1 -J?)/a}1/r<I] +1 . Then we have

U = 0(1),
and

m

n = p
g (exp (m'O/mJ" ") max sin nt

n — m
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by Abel's Lemma,

= 0{w (log W)v-»"lt}.

Hence, finally, we have

R(w, 0 = 0{w (log wy-W/t}.

To prove (3.3) we have by the second mean value theorem

P(w, t) = t* \ — R(w, u)du
Jndu

= ts[R(w,t)-R(w,ri)~]

= 0{ts £ n» exp («*)/«}
cxp (na) 5 w

= Olf^y (log w)^"1},
by (3.1).

Finally for (3.4) we have, integrating by parts,

s * f* a-i

J. "
= 0{ti~iwQogw)ifi~1)'"} + 0{w(logw)if~1')fa u3

Jt
by (3.2)

= 0{w (log w ) " - " " ^ - 1 } ,

uniformly in 0 < f ^ n.

4. For the proof of the theorem we shall require the following lemmas.
For Lemma 1, see Obrechkoff (3), (4).

Lemma 1. If Scrn is summable \R,Xtt,r\, r ^ 0 then it is also summable
\R,Xn,r'\,r'>r.

Lemma 2. The Fourier series of the special function \ t \r (r ^ 0), defined
outside ( —7t, 7t) by periodicity, is absolutely convergent at t = 0.

We use this lemma only for the case 0 ^ r< 1.

Proof. The proof is trivial for r = 0, therefore we prove it for r>0.
00

Let | * | r ~ YJ
 an c o s nt>

n = 1

where a . = — I tr cos
2f" r
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Then, on integrating by parts, we obtain

2r C"
an= t'~x sin ntdt

"* Jo

= -—([" ' + f" \f~l sin ntdt

nn

Since I sin nt I ^ nt, we have

Jx = O (n f" <rdM = 0(n"r) .

Again, since f 1 + r decreases in (« x, 71) in the case 0 < r < l we have, by
the second mean value theorem,

= nl~r \ sisin ntdt (« x</'<7r)

For r ^ 1 we have, by the second mean value theorem,

J17
sin

it

Thus, finally, we have an = O(«~1~r) in the case 0<r<l , and in the case
r k 1

an = OOt-^ + OQt-2) = O(«"2).

This proves the lemma.

Lemma 3. The integral I = I w 2 \ P(w, n)\ dw is convergent.

Proof. We have

/ = exp (n)Bn
exp (n«) S w

where Bn= np us cos ««rfu = 0 (n - 1 "

dw,

by using the arguments of Lemma 2. Since I,Bn is absolutely convergent, the
lemma follows by Lemma 1.
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5. Proof of the theorem
We have

2 f"
An(x) = - <j)(t) cos ntdt

Jo

1 f* 2 f* f'
= -0(7r)jT* us cos nudu d{(j>(t)t~s} \ u* cos nudu,

71 Jo I Jo Jo
integrating by parts.

oo

The series £ /4n(x)// is summable | R, exp (na), 1 | ifn = 1r
Now I ^ 7t + / 2 where

_ <iw<oo.
exp (n«) S w

2 whe

2 T00

7t = - 0(7t)7t~a w~2 I P(w, 7t)| dw;
n Ji
2 fi- fa>
71 Jo Ji

2 _ f"
Since - <f>(n).n ' and | d(<f>(t)t s)\ are finite by hypothesis it is enough,

rc Jo
for the proof of the theorem, to prove that

f00
Jj = w 2 I P(w, n)\ dw<co

Ji
and

foo
J 2 = w~2 \ P(w, t)\ dw = 0(1),

uniformly in 0<t<n.
Using the fact that P(w, t) = P(w, n)-Q(w, t) we have

g w~2\P(w, t)\dw+ w~2\P(w, n)\dw+ w~2 \ Q(w, t)\ dw,

where T = exp { r a / ( 1 - a ) } .
It is therefore sufficient to prove that

uniformly in 0 < t < n.

foo

Kt = w~2\P(w, n)\ dw<oo; (5.1.1)

K2= [\-2\P(w,t)\dw = 0(\); (5.1.2)

^ 3 = f" vv"2 | Q(w, t)\ dw = 0(1), (5.1.3)
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The proof of (5.1.1) has been accomplished in Lemma 3 and the boundedness
of (5.1.3) can be observed immediately by using (3.4). For the proof of (5.1.2)
we have by (3.3)

K2 = O \ts P (log

{
uniformly in 0<f<7r.

This paper is based on Chapter V of the author's Ph.D. Thesis entitled
" Absolute summability " submitted in 1968 to the Department of Post-graduate
Studies and Research in Mathematics, University of Jabalpur.

The author is very thankful to the referee for his valuable suggestion for the
statement of the theorem in a general form which combines the two separate
theorems of the original version.
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