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Abstract

The problem of withdrawal through a point sink of water from a fluid of finite depth with a
free surface is considered. Assuming the flow to be axisymmetric, it is found that there is
a maximum Froude number at which such flows can exist. This maximum corresponds to
the formation of a secondary stagnation ring on the free surface. This result extends earlier
work on this problem. Comparison is made with a small Froude number solution and past
experimental results.

1. Introduction

The withdrawal of water from a single fluid with a free surface or two layers of different
density is important in a number of applications. These include rapid withdrawal from
fuel tanks in aircraft or spacecraft and water holding tanks in fire fighting vehicles. The
process of withdrawal of water from storage reservoirs, solar ponds and cooling ponds
is vital in maintaining water quality and efficient operation [10]. An understanding of
the withdrawal process is important to enable us to model these situations and improve
management strategies.

Experiments [7,8,11-13,18] show that when withdrawal occurs through a circular
orifice at the bottom of a fluid consisting of two layers of different density (which
may be air and water), buoyancy forces ensure that only fluid from the lower layer is
drawn through the hole at low values of the flow rate. As the depth of the lower layer
decreases the effective flow rate increases, and at some critical value the interface is
pulled down so that the upper layer also flows out. This critical transition from one to
two layers occurs in a matter of seconds.

It is of interest to examine this flow in a simplified framework to determine the
mechanisms which lead to this critical transition. If the effective flow rate is below the
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critical value, the flow can be modeled as a single-layer flow with gravity g replaced
by the effective gravity g' = (Ap/p)g, where Ap is the difference in density between
the two layers and p is some reference density. In this simplified model the fluid is
assumed to be inviscid and incompressible and the flow to be steady and irrotational.

The flow can be shown to be characterised by the Froude number, F=(m2/g'H5)1/2,
where m is the total flux from the point sink and H is a length scale. The Froude
number can be thought of as the effective flow rate, so an increase in F means an
increase in flux out through the point sink. We will denote by Fc the critical Froude
number at which the interface (between two fluids of different density) or free surface
is drawn down into the sink.

If the fluid is of infinite depth, Forbes and Hocking [4] and Vanden-Broeck and
Keller [17] have shown that for small values of the Froude number there is a stagnation
point directly above the point sink on the interface. As the flow rate increases the flow
breaks down when a stagnation ring forms on the free surface a short distance from
the central stagnation point. Vanden-Broeck and Keller [17] examined the nature of
this stagnation ring.

In the case of a finite depth fluid, Forbes et al. [6] used a distributed singularity
method to obtain solutions for a Froude number up to a value of F = 1.5, but were
unable to obtain solutions at higher values. No stagnation ring was observed to form
on the free surface and no reason was found to explain the breakdown of the solutions.
In this paper a modification of the numerical scheme used by Forbes and Hocking [4]
is used to extend solutions to higher values of F, and it is found that the stagnation
ring forms in this case also, as in the case of axisymmetric flow from a fluid of infinite
depth.

There exists an analogous problem of withdrawal through a line sink, and there is
a much greater amount of literature on this problem, see for example [3,9,14-16]. In
this two dimensional problem, solutions both with a stagnation point on the surface
and others with a downward cusp above the sink have been obtained. In the two
dimensional case, Hocking [9] showed that these cusp solutions appear to be the event
which precedes the critical transition to two layer flow. No cusped solutions have ever
been found in the problem of axisymmetric flow into a point sink.

In Section 2, the model is formulated, and in Section 3 the first term of a small
Froude number expansion is obtained. Section 4 describes the numerical scheme that
is used to solve this system, and Section 5 discusses the results in the context of other
work on this problem.

2. Problem formulation

The steady, axisymmetric, irrotational motion of an inviscid, incompressible fluid
of finite depth in three dimensions is to be examined. The fluid lies beneath a free
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surface and is being drawn out through a point sink situated on the bottom of the fluid
at a depth H. Figure 1 shows the configuration of the flow domain.

Free surface

H

Point sink

FIGURE 1. Figure defining the problem under consideration.

In cylindrical polar (r, 9, z) coordinates this becomes a two dimensional problem
in (r, z) if we assume the flow to be axisymmetric, and there exists a velocity potential
<t> such that

V2<D(r, z) = <*>rr + — + <*>zz = 0,
r

(2.1)

where the origin of the coordinate system is situated on the free surface directly above
the sink, which is on the bottom at (r, z) = (0, — H). As the sink is approached, this
velocity potential must have the correct behaviour, which is

m
4TT Vr2 + (z +

as (r, z) - • (0, -H)

where m is the total flux from the region.
There can be no flow through the solid bottom boundary, so that

(2.2)

(2.3)

must be satisfied. In addition a dynamic condition which ensures that pressure is
constant along the free surface must be applied. If we non-dimensionalise with
respect to the velocity m/H2 and the length H, this condition can be written as

k = 0, z = -H.

On the free surface (or interface), a kinematic condition

<I>z = <D^r> on z =

1
= 0, on z = (2.4)
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FIGURE 2. Surfaces used in derivation of the integral equation (2.6).

where F = jm2/gH5 is the Froude number. The form of the other equations is
unchanged if the dimensional variables are replaced by their nondimensional equiva-
lents. Henceforth we will drop the hat for convenience and work in nondimensional
variables..

In order to formulate a mathematical problem to solve for this flow, we modify the
derivation used in Forbes and Hocking [4], and use Green's second identity to derive
an integral equation for the unknown harmonic function <&(r,z). An image-free
surface must be placed on the other side of the line z = — 1, so that by symmetry the
combination satisfies the condition of no flow normal to the bottom of the region (2.2).

Let point Q be a fixed point on the free surface with coordinates (r, 9, £(r)) in
cylindrical polar coordinates. Let P(a, /5, /x) be another point which is free to move
over the same surface. Following the derivation in [4], we note that <J> is an harmonic
function over the full region except at the sink itself, and then define another function,

( 2 5 )[r2 + a2- 2ra cos(/3 - 6) + (z - /z)2]'/2 ' ( 2 ' 5 )

which is also analytic except when P and Q are the same point.
Invoking Green's identity over the surfaces indicated in Figure 2, including the free

surface and its image, a hemisphere omitting the point Q, a sphere omitting the sink
and a cylindrical surface as r -> oo, we obtain an integral equation of the form

( w

- If ^ v r
" IJSI

( 2 6 a )

where ST is the free surface and SB is its image. We know that symmetry provides
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a direct relationship between the variables on these two surfaces and we later exploit
this fact to allow us to integrate only over the upper surface.

It is very important to notice that (2.6a) can also be written in the forms

\KPQ/
1 "\2\l/2 ' ' L - v - / -V »£./J n | „ | flop

9 ' ' ' •" (2.6b)

- / / ,

and

0 =

PQ

The reason for this is that

J

(z + I)2)
a / 1 \

SP. (2.6c)

= 0 and / /
JJ Sa

so that these two terms can be added or removed as we choose. That this is true can
be shown by noting that the "flux" through any horizontal plane due to the "sink"
term \/RPQ is equal to —27r. It turns out that this is very important in obtaining a
numerical solution to this problem. In the form (2.6a) the point P = Q is singular,
and so integrating through it causes a significant loss of accuracy. On the other hand,
the form (2.6c) turns out to be numerically unstable as F increases, as discussed in
Forbes et al. [6]. The form (2.6b), however, turns out to be both accurate and stable
numerically, enabling us to compute solutions until a critical F is reached.

Starting with (2.6b) and again following Forbes and Hocking [4], and also noting
that on the image surface 4>(a, —2 + £(a)) = $(<*, ?(<*))> w e arrive at the integral
equation

- f
Jo

«. *• c, d) da

<t>(P)JXr(e,b,f,d)da, (2.7)

in which the kernel function was shown by Forbes and Hocking [4] to be of the form

<2.8,
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where K and E are the complete elliptic integrals of the first and second kind as defined
in Abramowitz and Stegun [1], and the functions a t o / are defined as

d = 2ra, (2.9)

e = aUP) - (2 + f (P) + £(0) , / = a2 + r2 + (2 + ?(P) + !(Q))2.

It is convenient to solve this problem using a formulation based on arclength along
the surface, so that s is the distance from a = 0 to Q, and a is the distance along the
surface to P. The standard formula

defines the arclength s in terms of r and £.
Rewriting the integral equation (2.7) in terms of arclength, we obtain

- *•

<f>(a)J(r(E,B,F,D)dcT, (2.11)

where 0 (5) is the potential along the free surface and

A =

C = r2(a) + r2(5) + «(<r) - S(s))\ D = 2r(s)r(p),

E = r(a)f '((7)- 2 2

Eliminating Oz from the Bernoulli equation (2.4) and the kinematic condition (2.3)
and combining leads to a single relation,

MS)1 (2.12)

on the free surface z = ?(/").
The integral equation (2.11) is coupled with the condition (2.12), subject to (2.10),

to give the complete formulation of the problem. This form of the integral equation
has a logarithmic singularity in the complete elliptic integral K in the integrand as
r —> a in the first integral. Forbes and Hocking [4] removed this singularity to create
a non-singular integral equation, but doing so in the finite depth problem produced a
system which was numerically unstable and failed to converge, leading them to use a
different method altogether [6]. We will return to this matter later.
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3. A solution for small Froude number

It is possible to obtain a solution valid for small Froude number by expanding about
a flat free surface, £ = 0. We only compute the first term of this solution, since to
compute higher order terms leads to prohibitively difficult algebra for little gain, since
we will later solve the problem numerically.

Let

<t>(r,z) = <t>0(r,z) + F2<l>l(r,z)+O(F4) and £(r) = F2£,(r)+ O(F4) (3.1)

and substitute into (2.1) to (2.4). To first order the problem is that <t>i should satisfy
Laplace's equation, and that the normal derivative at z = — 1 and z = 0 should be
zero. At this order (2.4) does not appear. The solution for 4>] is thus the flow from a
point sink between two flat plates, and is given in [6]. Substituting this solution into
(3.1) we may obtain £i(r), so that a first approximation to the free surface shape is

*(O = F%{r) + O(F4) = ~F2(d>2
r + <t>]z) + 0(F4)

F2

= -^(H(r)2 + V(r)2) + 0(F4) (3.2)

where H(r) and V(r) come from the derivatives of 4>i evaluated on z = 0, that is,

oo oo

H{r) = rA(r) + J^ rB^ *). V(r) = A(r) + £ (1 - 2k)B(r, k) (3.3)
k=—oo k=—oo

i/0 k&>

where A(r) = (r2 + 1)~3/2 and B(r, k) = (r2 + (1 - 2k)2y3/2. This small Froude
number solution converges to graphical accuracy with only 40 terms in each series.
We will use it to compare with solutions to the following numerical scheme.

4. Numerical method

In this section we give a brief description of the numerical scheme employed to
obtain an accurate solution to the system of equations (2.10)-(2.12).

The free surface was truncated some distance, oT, from the central point above
the sink and discretised into (Af + 1) intervals of length Acr, that is, ox = 0, a2 =
Aa, a3 = 2ACT, . . . , aN+1 = NAa = ay. Values of <f> = <j>k, k = 1,2,... , N, and
%it,k = 1,2,... , N, were assigned to each point. Using these values it is possible to
compute £'(CT) using finite differences, and then r'(cr) can be obtained using (2.10).
Finally, r(o) can be obtained using numerical integration. The elliptic integrals can
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be obtained with an error of less than 10~8 using polynomial representations given in
Abramowitz and Stegun [1].

The unknowns are thus <j>k, k = 0,1, 2 , . . . , N, and &, k = 0, 1,2,..., N, and
there are 2N of these. The error at the midpoint of each interval in the integral
equation can be evaluated, and the error in the Bernoulli condition at the endpoints
of each interval provide IN — 1 equations. The final equation is simply that (f>N is
extrapolated from the previous points. The evaluation of the integral is performed
using a midpoint rule which therefore avoids the singularity as a -> s. There is no
point in using a higher order scheme for the integral because the error is dominated by
the presence of this singularity, so higher order schemes give no greater accuracy. The
error decays linearly for increasing N for this integral. This system of 2N equations
is then solved using a Newton iteration scheme.

Careful analysis of the equation reveals another numerical problem. The coefficient
of E, the elliptic integral, in the integrand, while well-behaved, has a term of order
As2 in the denominator as a —>• 5. The numerator of this term also has this behaviour,
but numerically this means that the error in the numerator must be at most O(As4)
or there will be an 0(1) error in this term. This was treated using a four-point
interpolation formula and a higher order finite difference scheme for all interpolation
and differentiation. This was found to give an accurate representation of this term.

The iterations were found to converge very well, and solutions were computed
over a range of values of F. The actual free surface shapes, however, were found to
converge rather slowly, and N = 400 and As = 0.025 were required along the free
surface to obtain solutions to graphical accuracy.

5. Results and discussion

Figure 3 shows a comparison of the numerically computed free surface shape with
(a) the small Froude number solution at F = 0.5, (b) the small Froude number solution
and the solution of Forbes et al. [6] at F = 1.25. The fundamental singularities
method, [6], failed to converge for F > 1.5. Similarly, it was found that a method
using evaluation of the error at the endpoints of the discrete intervals (rather than the
midpoints), but using the formulation given in this paper, broke down at about the
same value of F. The agreement of the numerical scheme with the small Froude
number solution is very good at F = 0.5, but the deepest point of the dip is slightly
different to the full nonlinear solution at F = 1.25. Agreement with the solution of
[6] is excellent.

Figure 4 shows the development of a ring of very small waves on the free surface
as F increases. The maximum F was found to be at around 3.24, when the innermost
wave rose up to form a stagnation ring around the central stagnation point, much as
happened in the case of infinite depth. An analysis of the nature of this stagnation line
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FIGURE 3. Comparison of solutions using the small Froude number expansion with numerical solution
in this paper for F = 0.5, and small F solution with the fundamental singularities method of Forbes et
al. [6] and the numerical method of this paper for F = 1.25.

I -0.1

-0.2

ft /

\ /

\ /

: \Ji
w /

1 :
F
F
F

= 2.70 —
= 3.00
= 3.24

•

3 4
Horizontal Distance

FIGURE 4. Axisymmetric free surface shapes for increasing values of F up to that near the limiting value,
F = 2.7, 3.0, 3.24.

https://doi.org/10.1017/S1446181100013882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013882


190 G. C. Hocking, J.-M. Vanden-Broeck and L. K. Forbes [10]

is given in [17].
These results are in qualitative agreement with the behaviour of flow into a point

sink in a fluid of infinite depth. However, it is clear that the numerical schemes to solve
this problem are variable in their success. The "fundamental singularities" method
described in [6], and variations on the scheme used in this paper were unsuccessful
in computing solutions beyond F — 1.5. In fact if the singularity is removed as was
done in Forbes and Hocking [4], the Newton method failed to converge for any value
of F even when the starting guess was extremely good.

In terms of the general result, it is of interest to compare it to various experimental,
analytical and numerical work on this problem. In particular, it is of interest to
examine the critical drawdown Froude number, F = Fc and how this relates to
the value of F at which the steady solution computed here fails, that is, when the
stagnation ring forms. Are the two events related in some way? Craya [3] performed
an analysis which suggested that the critical drawdown Froude number would be
around Fc = 2.54 for the case of a point sink on the bottom of the fluid region, and
Wood [18] suggested a modification for a fluid of infinite depth which gives F « 5.08
(since the flux is doubled). Experiments by Gariel [7], Fc « 2.55, Harleman et al. [8],
Fc ^ 1.61, Lubin and Springer [13], Fc « 2.53, and Lawrence and Imberger [12],
0.3 < Fc < 5.3, all obtained critical values around these expected values. Numerical
experiments [2,19] computing the dip formed in a free surface in a circular tank with a
hole in the bottom obtained a critical value of Fc « 3. Jirka and Katavola [11] obtained
much lower values, but were using layers separated by a very diffuse interface. Forbes
and Hocking [5] obtained solutions for flow including circulation about a withdrawal
"bath" hole, but taking the minimum Froude number at which they obtained solutions
with an air cone through the middle gives a critical value of F = \/2~7r « 4.4, a little
higher than the other values, but for a slightly different situation (a particular outflow
velocity profile was assumed across the outlet hole).

The values at which the stagnation ring forms in both this case of the sink on the
bottom, and of the sink in infinite depth, [4], Fc ^ 6.4, agree quite well with the
value obtained using the approximate analyses of Craya [3] and Wood [18]. This
quite strongly suggests that the formation of this stagnation ring is the physical event
which triggers the collapse of the single layer flow, or if there is another layer above
of different density, the transition to a flow in which both layers are entering the sink.

It would seem likely that the formation of the secondary stagnation ring is the
prelude to some kind of wave breaking event, and at higher Froude number, an
unsteady flow situation would occur. In other words, either there is an unsteady flow
or, if there is a layer of different density above, there may also be a steady flow in
which fluids from both layers are entering the sink. This would be analogous to the
two dimensional work of Hocking [9], for example. Work is currently under way to
determine if either or both of these flow types is possible.

https://doi.org/10.1017/S1446181100013882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013882


[11] Withdrawal through a point sink 191

References

[1] M. Abramowitz and I. A. Stegun (eds.). Handbook of Mathematical Functions (Dover, New York,
1970).

[2] J. H. Baek and H. Y. Chung, "Numerical analysis on axisymmetric draining from a cylindrical tank
with a free surface", /. Comp. Fluid Dynamics 6 (1998) 413-425.

[3] A. Craya, 'Theoretical research on the flow of nonhomogeneous fluids", La Houille Blanche 4
(1949)44-55.

[4] L. K. Forbes and G. C. Hocking, "Flow caused by a point sink in a fluid having a free surface", J.
Austral. Math. Soc. Sen B 32 (1990) 231-249.

[5] L. K. Forbes and G. C. Hocking, "The bath-plug vortex", J. Fluid Mech. 284 (1995) 43-62.
[6] L. K. Forbes, G. C. Hocking and G. A. Chandler, "A note on withdrawal through a point sink in

fluid of finite depth", J. Austral. Math. Soc. Ser. B 37 (1996) 406-416.
[7] P. Gariel, "Experimental research on the flow of nonhomogeneous fluids", La Houille Blanche 4

(1949) 56-65.
[8] D. R. F. Harleman, R. L. Morgan and R. A. Purple, "Selective withdrawal from a vertically stratified

fluid", in Proc. Int. Assoc. Hyd. Res., 8th Congress, Montreal (1959).
[9] G. C. Hocking, "Supercritical withdrawal from a two-layer fluid through a line sink", J. Fluid

Mech. 297(1995)37^17.
[10] J. Imberger and P. F. Hamblin, "Dynamics of lakes, reservoirs and cooling ponds", Ann. Rev. Fluid

Mech. 14(1982)153-187.
[11] G. H. Jirka and D. S. Katavola, "Supercritical withdrawal from two-layered fluid systems. Part

2—Three dimensional flow into a round intake", J. Hyd. Res. 17 (1979) 53-62.
[12] G. A. Lawrence and J. Imberger, "Selective withdrawal through a point sink in a continuously

stratified fluid with a pycnocline", Technical Report ED-79-002, Dept of Civil Eng., University
of Western Australia, Australia, 1979.

[13] B. T. Lubin and G. S. Springer, "The formation of a dip on the surface of a liquid draining from a
tank", J. Fluid Mech. 29 (1967) 385-390.

[14] C. Sautreaux, "Mouvement d'un Iiquide parfait soumis a la pesanteur. De termination des lignes
de Courant",y. Math. PuresAppl. 7 (1901) 125-159.

[15] E. O. Tuck and J.-M. Vanden-Broeck, "A cusp-like free-surface flow due to a submerged source or
sink", J. Aust. Math Soc. Sen B 25 (1984) 443^50.

[16] J.-M. Vanden-Broeck and J. B. Keller, "Free surface flow due to a sink", J. Fluid Mech. 175 (1987)
109-117.

[17] J.-M. Vanden-Broeck and J. B. Keller, "An axisymmetric free surface with a 120° along a circle",
J. Fluid Mech. 342 (1997) 403^09.

[18] I. R. Wood, "Selective withdrawal from two-layer fluid", J. Hyd. Div. (ASCE) HY12 (1978)
1647-1659.

[19] Q. Zhou and W. P. Graebel, "Axisymmetric draining of a cylindrical tank with a free surface", J.
FluidMech. 221 (1990)511-532.

https://doi.org/10.1017/S1446181100013882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013882

