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BOUNDED AND RELATIVELY BOUNDED SETS

NIEL SHELL

All subsets of a field that are intersections of almost-orders

of the field are characterised, and all ring topologies on a

field which are not finer than any nontrivial locally bounded

ring are characterised.

Durbaum [7] and Kowalsky [2] give conditions which guarantee the

intersection of almost-orders is again an almost-order. Diirbaum [/] gives

an example of an intersection of almost-orders that is neither an almost-

order nor the set {0} 1} -1} . We characterise the subsets of a field

that are intersections of almost-orders.

Kowalsky [2] characterises those ring topologies that are a

supremum of locally bounded ring topologies. A slight modification of his

proof establishes Theorem 2 below in which the ring topologies finer than

some proper locally bounded ring topology are characterised.

In this note K denotes a (commutative) field, and, for D ^_K 3

we let D* = {x e D : x ^ 0} . By a proper topology we mean a topology

that is neither trivial nor discrete. Value groups of valuations are

written multiplicatively. The supremum (Durchschnitt in [2]) of a

collection T of topologies is denoted by vT . We refer the reader to

[2] for the definition of a bounded set and the definition of a locally
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bounded topology (called a bounded topology in [2]).

By an almost-order (Fastordnung) we mean a subset A of a field K

which satisfies

(01) 0, 1, -1 e A ; A / K j

(02) xy y e A implies xy e A ;

(03) each element in K is a quotient of elements in A ;

(04) there exists z e A, z ^ 0 , such that z(x + y) € A for all

x3y £ A . (Such an element z will be called a 2-addiator.)

The notion of almost-order is well-known. It is defined here

because the definition we have given differs from the one appearing in

[2]: Kowalsky omits the requirements -1 e A and A ^ K . With obvious

modifications, the results we use from [ 2] apply to almost-orders as

defined here. (We note that if A satisfies (01)-(03) and there exists

W e K such that w(x + y) e A for all x,y e A s then A satisfies

(04)).

The utility of almost-orders is established in [2], where it is

shown that, for each almost-order A of a field K , the collection

{xA : x e K*} is a neighbourhood base at zero for a ring topology t^ on

K for which A is a T .-bounded neighbourhood of zero, and, conversely,

every proper locally bounded topology is induced by some almost-order in

this fashion.

THEOREM 1. A subset E of a field K is an intersection of some

collection of almost-orders of K if and .only if 0, 1, -1 e E, E is a

multiplicative semigroup, and E is a bounded subset in some proper

locally bounded ring topology on K .

Proof. The conditions are obviously necessary. Suppose, on the

other hand, they are satisfied. Let A be an almost-order of a topology

T . in which E is bounded. Since 1 e E, A c EA; so EA , which is a

product of T.-bounded sets is a T.-bounded neighbourhood of zero. We

show EA is an almost-order inducing the same topology as A . EA

satisfies (01) because EA is a bounded and, hence, proper subset of K .

Obviously EA satisfies (02) and (03). To verify that EA satisfies

(04) , choose a/b} a, b e. A*, such that (a/b)E £ A . If z is a 2-

addiator of A , then za is a 2-addiator of EA .
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Next, we observe that, for each a e (EA)*, E = E u (cEA) is an

almost-order. Verification of (01)-(03) is straightforward. We see that

cz , where z is a 2-addiator of EA , is a 2-addiator of E :

az(E + E ) c az(EA + EA) c oEA c E .
o o — — — a

Then E = n ,„.,*E } and the proof is complete.

The proof above shows that if a set is an intersection of a collec-

tion of almost-orders, it is an intersection of a collection of almost-

orders all of which induce the same topology.

COROLLARY. A subset E of a field K is an intersection of some

collection of almost-orders of K if and only if 0, 1, -1 e E, E is a

multiplicative semigroup, and there is a proper valuation v on K and

an element y e v(K*) such that v(x) <, y for all x e E .

Proof. Each locally bounded topology contains a topology induced by

a valuation (see [2]).

We recall that a subset M in a commutative topological ring (S, j)

is relatively bounded if there is a neighbourhood V of zero such that

V(M ± M) £ M . Clearly the empty set and {0} are relativey bounded

subsets of any topological ring. Any other relatively bounded subset M

of a field with a ring topology is a neighbourhood of zero by virtue of

the containments

0 e V(M + M) £ M ;

Vm £ V(M ±M) c_M , m e M* .

If M and N are relatively bounded, so are -M and M n N . Therefore

each relatively bounded neighbourhood of zero contains a symmetric

relatively bounded neighbourhood. Certainly the entire ring S is

relatively bounded. A relatively bounded set other than the empty set,

{0} and 5 will be called proper.

THEOREM 2. A proper ring topology T on a field is finer than some

proper locally bounded ring topology if and only if there is at least one

proper i-relatively bounded subset.

Proof. Suppose there is a relatively bounded neighbourhood of zero

U ̂  K . By the discussion following the definition of relative boundedness,

we may assume that U is symmetric. We define the set
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A = {x e K : xU £ U] t

which was shown in [2, p. 179] to be an almost-order and a neighbourhood

of zero. Since A is a T-neighbourhood of zero, T . ̂  T : the T.-

neighbourhoods xA , x e K* , are T-neighbourhoods of zero.

Conversely, suppose that there is a proper locally bounded topology

p weaker than T . Any p-bounded neighbourhood of zero U is a proper

T-relatively bounded set: Since (U + U) u (U - U) is P- bounded, there

is an p-neighbourhood V of zero (which is therefore a T-neighbourhood

of zero) such that V(U ± U) <=_U .

We state formally some definitions for the property "local

boundedness" which have obvious analogues for any property.

DEFINITION. A nontrivial ring topology is said to be s-looally

bounded (n-loaally bounded, z-loaally bounded) if it is the supremum of

some family of locally bounded ring topologies (respectively3 not the

supremum of any family of locally bounded ring topologies, not finer than

any nontrivial locally bounded ring topology).

Note that in the analogues of the above definition only weaker ring

topologies are considered.

An w-locally bounded topology is sometimes referred to as being of

type N . The following four properties are mutually exclusive and each

property might be thought of as being "less related" to local boundedness

than the one before it:

(1) locally bounded,

(2) s-locally bounded but not locally bounded,

(3) n-locally bounded but not s-locally bounded,

(4) 3-locally bounded.

EXAMPLE 1: (a) The p-adic topology T on the rationals is

locally bounded.

(b) The supremum over all primes p of the topologies T is s-

locally bounded but not locally bounded.

(c) If T is a topology defined by the scheme in [3, Section 1 ] ,

then the topology T V T is M-locally bounded but not 2-locally

bounded.

(d) The topology T described above is 3-locally bounded.
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2°
Podewski [5] shows each countable field has 2 (where a is the

cardinality of the continuum) w-locally bounded topologies.

A ring topology on a ring 5 is a-bounded if S is the union of

a countable collection of bounded subsets. In [6, proof of Theorem 3] (in

[7, Question 2 of Section 2]) it is shown that each proper neighbourhood of

zero in a nontrivial a-bounded ring topology (ring topology with a nondis-

crete countable subset) on a field is also a neighbourhood of zero in some

coarser nontrivial first countable ring topology. Thus each nontrivial

ring topology which is a-bounded or has a nondiscrete countable subset is

s-first countable.

Thus, all ring topologies on a countable field K are s-first

countable. Since the assignment T -*• {V } , where {V } is any fixed

neighbourhood base at zero for T , defines an injective map into the set

of sequences of subsets of K , there are at most 2 first countable ring

po
topologies on K . Hence, there are 2 s-first countable, but not first

countable, ring topologies on each countable field.

A supremum of uncountably many independent (as defined in [ 82 or [9])

first countable ring topologies is s-first countable but not first count-

able. If K is an uncountable field, then K is an extension of a sub-

field F(x) , where F is an uncountable subfield and x is transcenden-

tal over F . Then {T } _ , where x is any topology induced by

an extension of the (x - aJ-adic valuation on Fix) to K t is an

uncountable collection of independent first countable ring topologies.

Any valuation-induced topology which is not first countable is z-

first countable (because topologies induced by valuations are minimal).

EXAMPLE 2. Let V be a valuation on K such that the topology x

induced by V is not first countable, and let w be a nontrivial valua-

tion inducing a first countable topology T . Then x v x is not first
W V W

countable: The supremum of independent topologies is not discrete, and

each sequence of nonzero elements is bounded away from zero in the

topology T and, hence, also in the supremum. By construction the

supremum is not z-first countable. We do not know whether the supremum

is s-first countable or n-first countable.
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