Spring Conference 2018, 26–27 March 2018, Nutrient-nutrient interaction

A systematic review and meta-analysis of randomized controlled trials exploring the role of inter-individual variability on the effect of flavanols on insulin and HOMA-IR

N. Alshammari¹, S.A. Palma-Duran¹, G. Jiang¹, A. González-Sarrías², P. Pinto³, M. Garcia-Aloy⁴, E. Gibney⁵, MT. García-Conesa², P. Kroon⁶, A. Konić Ristić⁷, A. Katsaltou⁸, C. Morand⁹, A. Rodriguez-Mateos¹⁰ and E. Combet¹

¹University of Glasgow, UK, ²Centro de Edafologia y Biologia Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Spain, ³Polytechnic Institute of Santarem, Portugal, ⁴University of Barcelona, Spain, ⁵University College, Dublin, Ireland, ⁶Quadram Institute, Norwich, UK, ⁷University of Belgrade, Serbia, ⁸University of Thessaly, Greece, ⁹Institut National de la Recherche Agronomique, France and ¹⁰King's College London, UK.

Meta-analyses of randomised controlled trials (RCTs) report that polyphenol-rich diets can modulate a range of cardiometabolic biomarkers, with increasing evidence that inter-individual factors (e.g. age, BMI, or ethnicity) contribute toward the variability in the response to the bioactive^(1,2). This systematic review and meta-analysis assessed the effect of flavanols from cocoa, apple and tea on fasting insulin and HOMA-IR and explored the role of inter-individual variability.

PubMed and Web of Science databases were searched from inception to October 2017 (PROSPERO reg. CRD42016033878). The effect of flavanols supplementation on insulin and HOMA-IR was estimated using a random effects meta-analysis model and reported as standardised mean difference (SMD) and 95%CI. Subgroup analyses (Q tests; multivariate meta-regression) focused on baseline BMI, gender, age, and geographical location to explore the role of inter-individual variability.

Out of 1409 studies identified, 31 RCTs were included for insulin (n = 1792) and 21 RCTs for HOMA-IR (n = 1152). Low heterogeneity was found between studies (insulin $I^2 = 0\%$, p = 0.98; HOMA-IR $I^2 = 5.9\%$, p = 0.38) with evidence of low publication bias. Flavanol-rich interventions (2–26 weeks; 88 to 1344 mg flavanols/day) decreased both insulin (SMD –0.25, 95% CI –0.33; –0.16) and HOMA-IR (SMD –0.26; 95% CI –0.36, –0.16). Results were consistent across subgroups (Q tests) with lack of effect in subgroups with BMI<25 or male subjects only; multivariate meta-regression showed that baseline BMI (overweight versus lean, coef. –1.07; 95% CI –2.03, –0.08; p = 0.03) and study location (Asia versus other sites, coef. 0.94; 95% CI 0.03, 1.84; p = 0.04) impacted on the effect on HOMA-IR significantly. There was no impact of age, gender, baseline BMI or geographical location on the effect on insulin.

Factor	Subgroup	Insulin (95% CI)	Q value	(n, N)	HOMA-IR (95% CI)	Q value	(n, N)
Age	<50 years	-0.21 (-0.36, -0.05)	Q bet 0.276 p = 0.6	(15, 662)	-0.34 (-0.54, -0.14)	Q bet 0.62 p = 0.43	(13, 522)
	>50 years All	-0.26 (-0.36, -0.15) -0.24 (-0.33, -0.15)	•	(24, 1373)	-0.22 (-0.35, -0.10) -0.25 (-0.36, -0.15)	•	(14, 630)
Gender	Male	-0.12 (-0.40, 0.15)	Q bet 1.46, p = 0.48	(3, 14)	N/A		
	Female All	-0.21 (-0.37, -0.04) -0.25 (-0.33, -0.16)	•	(9, 475)	-0.09 (-0.28, 0.09)	N/A	(7, 372)
Baseline BMI (kg/M ²⁾	<25	-0.2 (-0.44, 0.03)	Q bet 1.67 $p = 0.4$	(4, 156)	-0.10 (-0.42, 0.22)	Q bet 2.4 $p = 0.29$	(2, 98)
	25–30 >30 All	-0.31 (-0.34, -0.16) -0.19 (-0.33, -0.05) -0.25 (-0.33, -0.16)		(13, 898) (12, 696)	-0.32 (-0.46, -0.19) -0.23 (-0.43, -0.04) -0.27 (-0.38, -0.17)	-	(12, 653) (12, 401)
Geographical location	Asia	-0.23 (-0.33, -0.10) -0.19 (-0.33, -0.04)	Q bet 1.01 p = 0.79	(13, 748)	-0.20 (-0.34, -0.05)	Q bet 2.27 p = 0.51	(8, 496)
	USA Europe Other All	$\begin{array}{c} -0.27 \ (-0.52, \ -0.02) \\ -0.29 \ (-0.42, \ -0.16) \\ -0.33 \ (-0.69, \ 0.05) \\ -0.25 \ (-0.33, \ -0.16) \end{array}$		(5, 213) (21, 731) (3, 100)	$\begin{array}{c} -0.29 \ (-0.63, \ 0.06) \\ -0.36 \ (-0.53, \ -0.19) \\ -0.29 \ (-0.74, \ 0.17) \\ -0.27 \ (-0.37, \ -0.17) \end{array}$	·	(6, 106) (10, 434) (3, 100)

Values are showed in SMD (95%CI). n, number of trials; N, number of participants.

Flavanols from tea, apple and cocoa were effective in modulating insulin and HOMA-IR. Inter-individual variability in the response was limited in contrast to previous studies^(1,2). This could be partly explained by the small number of trials reporting data for specific subgroups, and the broad range of doses and duration tested among the studies.

1. Pinto P & Santos C. Eur J Nutr. 2017;56(4):1393-1408.

2. González-Sarrías A, Combet E, Pinto P et al. Nutrients. 2017;9(7):746.