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Abstract. Dynamical systems with three degrees of freedom can be reduced to the study of a four-
dimensional mapping. We consider here, as a model problem, the mapping given by the following 
equations: 

xi = xo + oi sin(xo +yo) + b sin(#o + yo + zo + to) 
yi = xt> + ya 
ZI=ZQ + <T2 sin (20 + to) + b sin(xo + yo + zo + to) (mod In) 
t\ =Zo + to 

We have found that as soon as b^O, i.e. even for a very weak coupling, a dynamical system 
with three degrees of freedom has in general either two or zero isolating integrals (besides the usual 
energy integral). 

1. Introduction 

Many studies have been made in the last few years of the motion of a star in an 
axisymmetric galaxy or in the plane of symmetry of a spiral galaxy (see Contopoulos, 
1970). 

It is easy to show that this problem is completely equivalent to the study of a 
dynamical system with two degrees of freedom. The present paper deals with the 
motion of a star in a galaxy without any symmetry, i.e. the study of a dynamical 
system with three degrees of freedom. 

One of the most fruitful methods in the case of two degrees of freedom has been 
the method of 'Surface of Section'. This method dates back to Poincare (1892) and 
consists essentially in considering not a complete trajectory in the phase space but 
only its successive intersections with a certain 'Surface of Section'. 

Let us consider, quite generally, a conservative system with n degrees of freedom. 
The corresponding phase space has In dimensions. However, a given trajectory must 
lie on a manifold with In — 1 dimensions corresponding to a given value of the 
energy. In this manifold we define a 'surface of section' which is a given sub-manifold 
with 2« — 2 dimensions and we consider the successive intersections of the trajectory 
with this sub-manifold. 

For « = 2 the 'surface of section' has two dimensions and the corresponding 
mapping T which maps an intersecting point into the next one is an area preserving 
mapping. In particular it is easy to know whether an isolating integral does exist. 
In this case the set of points obtained by repeated application of the mapping seems 
to lie exactly on a closed curve. On the other hand it has been found that direct 
study of given area preserving mappings displays the usual features of dynamical 
systems with two degrees of freedom. 

For n = 3 the surface of section has four dimensions and the problem of finding 

Astrophysics and Space Science 14 (1971) 110-117. All Rights Reserved 
Copyright © 1971 by D. Reidel Publishing Company, Dordrecht-Holland 

https://doi.org/10.1017/S0252921100028530 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100028530


ISOLATING INTEGRALS IN SYSTEMS WITH THREE DEGREES OF FREEDOM 111 

whether one or two other isolating integrals exist in addition to the integral of the 
energy is more difficult than for n = 2. Nevertheless, using various numerical methods 
we have studied such systems taking the three-dimensional restricted problem as an 
example. We have found (Froeschle, 1969, 1970) that for orbits close to one of the 
primaries the points appear to lie on a two-dimensional manifold and therefore two 
isolating integrals seem to exist besides the Jacobi integral. More distant orbits 
appear to fill a manifold with four dimensions and therefore the two isolating integrals 
have disappeared. In fact they appear to vanish at the same time. 

In order to study the number of isolating integrals in dynamical systems with three 
degrees of freedom or more exactly to find whether cases of transition with only 
one isolating integral besides the integral of the energy do exist, we have taken a 
four-dimensional mapping T of RA into itself as a model problem. We study the 
set of points obtained by repeated applications of the mapping T, i.e. 

P0, P, = T(P0) , . . . , Pn = T"(P0) = T(P„^). 

In Section 2 we give some properties of the mapping T and its features when the 
coupling is equal to zero. 

In Section 3 we study the number of isolating integrals for the coupled case using 
slice-cutting methods. 

2. The Mapping 

We take a mapping T of the (xyzt) space over itself defined by 

*i = *o + «i sin (*o + yo) + b sin (x0 + y0 + z0 + t0) 
yi=Xo + y° . . , u . . , (mod27t) 
zt = z0 + a2 sin (z0 + t0) + b sin (x0 + y0 + z0 + t0) 
H = zo + ô 

The determinant of the Jacobian matrix is equal to 1. This mapping has been 
suggested by Arnold (1965). 

If b = 0 then the mapping T is the product of two area-preserving mappings Tt 

of (JC, y) on itself and T2 of (z, t) on itself. These mappings are inverse mappings 
of those given by Taylor (1969). Each of these mappings displays the well-known 
features of problems with two degrees of freedom (Henon, 1969). 

Figure 1 shows typical sets of points for the transformation Tu i.e. L snows typical scis ui puims IUI mc uaiisiuiw 

[Xl = Xo + axs\n{x0 + yQ) 

[yi =x0 + y0 

for some initial conditions of x0 and y0 given in Table I and for ax = —1.3, N being 
the total number of points plotted for each set of points. 

For certain values of the initial conditions x0 and y0 the points (xn, y„) generated 
by Tx seem to lie on an invariant curve; this indicates the invariance of one isolating 
integral. 
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The figure shows clearly two curves. This seems to indicate that the points P„ lie 
on a two-dimensional manifold with two sheets. 

If xoy0zoto are such that an invariant curve exists for Tt but not for T2, then one 
isolating integral exists in the uncoupled case b = 0. What can one expect in this case 
for 6#0? In order to study this case of transition the points P„ for which | z„ -z 0 |< 
e2 have been plotted for various values of N, the total number of points. The condition 
|z„ —z0|<82 is no longer a section but it reduces the number of plotted points to 
manageable propositions. 

Figure 3 summarizes the results of these experiments for ^=20000 (20000) 120000. 
For each case we have the initial conditions x0 = 0.5, j>0 = 0.5, z0 = 0.5, t0 = 3 and 
6 = 0.01, e2 = 0.1. 

For N less than 80000, the points lie on strips including the invariant curve which 
corresponds to the zero coupling case. The width of these strips increases with N. 
For N greater than 80000 the points are scattered and ergodicity appears. 

In order to follow the phenomenon in more detail we have used slice cuttings on 
n only (same initial conditions and same parameters). Hence we have plotted the 
projections on the (x,y) plane of the points P„ for which N<n<N+lO0 with 
N= 10000 (10000) 200000. 

Let us come back to Figure 1 which shows that with some given initial conditions 
the points lie either on an invariant curve or are scattered in the ergodic zone. On 
the other hand, Figure 4 shows the two types of behaviour. The curve begins wan
dering in a quasi-random fashion; it changes into islands (N—70000), becomes a 
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Fig. 3. Projections on the (x, y) plane of the set of points Pn = T{Pn-i), n = 0, JV— 1 for the initial 
conditions xo = 0.5, yo = 0.5, z = 0.5, ?o = 3 and ai = —1.3, 02= —1.3, 6 = 0.01 when z» — zo = 0.1 

and N = 20000 (20000) 120000. 
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Fig. 4. Projections on the (x, y) plane of the set of points Pn = T(Pn-i)n = 0, —, 110000 for the 
initial conditions xo = 0.5, yo = 0.5, zo = 0.5, /o = 3, and ay——1.3, 02 = —1.3, 6 = 0.01 when 

N< n ̂  N + 100 with AT= 10000 (10000) 200000. 

curve again, then becomes ergodic (,/V*= 110000 to 130000) and reverts to a curve 
(N= 140000), becomes ergodic again (N= 150000 to 200000). The following explana
tion suggests itself: since T2 has no isolating integral, the points (znt„) behave in 
an ergodic, quasi-random fashion. Therefore the coupling term b sin(x0 +y0 +z0 + t0) 
produces a quasi-random perturbation of the points (xny„). As a result the value of 
the former isolating integral of Tx is subjected to a kind of random walk. 

In order to have some quantitative information about this random walk, a measure 
Dj of the dimension of the curve has been computed where 

/ n=jx100 \ / 
DJ = ( I W-a iO ' . 2 + *»*•.)) /loo. 

W o - i ) i o o / / 
The quadratic term in this expression is constant in the vicinity of the origin in the 
linear approximation. 

Figure 5 shows the variations of D} withy for different cases. The lowest line shows 
the results for the integrable case (two isolating integrals exist) for which Dj is 
approximately constant. On the other hand the upper line shows the variations of 
Dj when only one isolating integral exists initially. The variations of Dj are quite 
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Fig. 5. Dj, a measure of the dimension of the curve, against J for different characteristic cases, 
upper line for the case of Figure 4. - intermediate line for the case of Figure 4 but with 6 = 0. 

lowest line for the case of Figure 2. 
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Fig. 6. Projection on the (x, y) plane of the different sections, for the case of Figure 4 but with 
6 = 0. 
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large and are in good agreement with the graphical results given by Figure 3 and 
Figure 4. 

Figure 6 shows the same results as Figure 4 for b = 0, where all the sections in 
n have been plotted on the same figure. It shows clearly that the effects of the rounding 
errors of the computer are negligible although they could have produced the same 
effects as the coupling. This is also shown in Figure 5 where the intermediate line, 
shows clearly that Dj remains constant with j . 

4. Conclusion 

The results found with the help of a four-dimensional mapping suggest that, apart 
from particular cases (such as 6 = 0 in the present model), a dynamical system with 
three degrees of freedom has in general either two or zero isolating integrals (besides 
the usual energy integral). The disappearance of one of the two isolating integrals 
entails the disappearance of the other. 

This agrees with results obtained earlier for a particular case of the three-dimen
sional restricted problem (Froeschle, 1970). A similar effect probably exists in systems 
with more than three degrees of freedom, i.e. a dynamical system with n degrees 
of freedom has in general either « - l or zero isolating integrals (besides the usual 
energy integral). 
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