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Independent transversals in bipartite
correspondence-covers

Stijn Cambie and Ross J. Kang

Abstract. Suppose G and H are bipartite graphs and L ∶ V(G) → 2V(H) induces a partition of V(H)
such that the subgraph of H induced between L(v) and L(v′) is a matching, whenever vv′ ∈ E(G).
We show for each ε > 0 that if H has maximum degree D and ∣L(v)∣ ≥ (1 + ε)D/ log D for all v ∈
V(G), then H admits an independent transversal with respect to L, provided D is sufficiently large.
This bound on the part sizes is asymptotically sharp up to a factor 2. We also show some asymmetric
variants of this result.

1 Introduction

This note focuses on the progression from list colorings toward independent transver-
sals in vertex-partitioned graphs, specifically for bipartite graphs. This follows close on
the heels of earlier work of the authors together with Alon [3], but because the setup
is considerably strengthened, we provide these results separately both for clarity and
for the benefit of the interested reader.

Allow us to deliberately present list coloring of graphs in an awkward way. Let G be
a simple undirected graph. From a list-assignment L of G, i.e., a mapping L ∶ V(G) →
2Z
+

, we derive the list-cover H�(G , L) for G via L as follows. For every v ∈ V(G), we
let L�(v) = {(v , c)}c∈L(v) and define V(H�) = ⋃v∈V(G) L�(v). We define E(H�) by
including (v , c)(v′ , c′) ∈ E(H�) if and only if vv′ ∈ E(G) and c = c′ ∈ L(v) ∩ L(v′).
Note that L� induces a partition of the vertices of H�. We seek an independent
transversal of H� with respect to this partition, i.e., a vertex subset with exactly one
vertex chosen from each part that simultaneously forms an independent set. The
independent transversals of H� with respect to L� are in one-to-one correspondence
with the proper L-colorings of G, as originally introduced in [14, 24]. We remark that
finding independent transversals of a general graph H with respect to some partition L
of its vertices is another classic combinatorial problem [7]. In both settings, we usually
seek lower bound conditions on the size of the parts in terms of the maximum degree
of H� or H that suffice for the existence of an independent transversal.

In this note, we restrict our attention almost exclusively to the case of bipartite G
and H. For this, we find it helpful to introduce some finer notation. Let G and H be
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bipartite graphs with bipartitions (AG , BG) and (AH , BH), respectively. We say that
H is a bipartite cover of G with respect to a mapping L ∶ V(G) → 2V(H) if
• H is a cover of G with respect to L, i.e., L induces a partition of V(H) and the

subgraph induced between L(v) and L(v′) is empty whenever vv′ ∉ E(G); and
• the partition induced by L agrees with the bipartitions (AG , BG) and (AH , BH), i.e.,

L(AG) induces a partition of AH and L(BG) induces a partition of BH .
The general problem here is as follows.

Problem 1.1 Let G and H be bipartite graphs with bipartitions (AG , BG), (AH , BH),
respectively, such that H is a bipartite cover of G with respect to some L ∶ AG →
2AH , BG → 2BH . What conditions on G, H, and integers kA, kB , ΔA, ΔB , DA, DB (where
ΔA, ΔB are possibly ∞) suffice to ensure the following? If the maximum degrees in
AG , BG , AH , BH are ΔA, ΔB , DA, DB , respectively, and ∣L(v)∣ ≥ kA for all v ∈ AG and
∣L(w)∣ ≥ kB for all w ∈ BG , then there is guaranteed to be an independent transversal of
H with respect to L.

Although our considerations are broader, the symmetric version of Problem 1.1 with
ΔA = ΔB = Δ (possibly infinite) and DA = DB = D is perhaps most natural. We note
in this case that without further conditions on G and H, Problem 1.1 is already close to
settled. This is due to a seminal result of Haxell [17], which implies that kA = kB = 2D
suffices. Furthermore, this is not far from sharp by considering H to be a complete
bipartite graph with D vertices in each part (and G an independent edge). We next
consider what happens when we impose some mild structural constraints on G and
H.

For H assumed to be a (bipartite) list-cover of G with respect to L, we studied
Problem 1.1 in some depth in our previous work with Alon [3]. For this form, it was
conjectured in 1998 by Alon and Krivelevich [4] that if ΔA = ΔB = Δ (and vacuously
DA = DB = Δ), then for some absolute constant C > 0, kA = kB = C log Δ suffices. It
was shown in this same setting in [3] that for each ε > 0, kA = log Δ and kB = (1 +
ε)Δ/ log Δ suffices provided Δ is large enough.

Here, we relax the setting somewhat by considering the consequences of our pre-
vious findings for a natural generalization of list-covers. A correspondence-assignment
for G via L is a cover H for G via L such that for each edge vv′ ∈ E(G), the subgraph
induced between L(v) and L(v′) is a matching. We call such an H a correspondence-
cover for G with respect to L. Every list-cover is a correspondence-cover.

Consider Problem 1.1 assuming that H is a correspondence-cover of G with
respect to L. This leads to two natural forms of Problem 1.1 that are strengthenings
of the one that we studied with Alon in [3]. If we only have conditions on ΔA
and ΔB (so with DA ≥ ΔA, DB ≥ ΔB), then this is related to correspondence coloring
[11, 15]. If instead we only have conditions on DA and DB (so with ΔA = ΔB = ∞),
then this is related to finding independent transversals with respect to partitions
of local degree 1, as originally proposed by Aharoni and Holzman (see [21]). Both
of these stronger variants of list coloring have seen interesting recent advances
(see, e.g., [6, 9, 16, 19, 22]). Although here it is corollary to the work of Loh and Sudakov
[21] that for each ε > 0, kA = kB = (1 + ε)D suffices provided Δ is large enough, we
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will see how to improve on this statement in a way that is nearly optimal in various
regimes.

The purpose of this note is to show the following progress toward Problem 1.1
specific to correspondence-covers.

Theorem 1.2 Let G and H be bipartite graphs with bipartitions (AG , BG), (AH , BH),
respectively, such that H is a bipartite correspondence-cover of G with respect to some
L ∶ AG → 2AH , BG → 2BH . Assume one of the following conditions, as stated or with roles
exchanged between A and B.
(i) kB ≥ (ekADB)1/(kA−1)DA.
(ii) e(kADA(kBDB − 1) + 1)(1−(1−1/kB)DA )kA ≤ 1.
(iii) e(ΔA(ΔB − 1) + 1)(1−(1−1/kB)ΔAmin{1, kB/kA})kA ≤ 1.
If the maximum degrees in AG , BG , AH , BH are ΔA, ΔB , DA, DB , respectively, and
∣L(v)∣ ≥ kA for all v ∈ AG and ∣L(w)∣ ≥ kB for all w ∈ BG , then H admits an independent
transversal with respect to L.

This result is quite similar to one in earlier work [3, Theorem 4] and uses the same
methods, but here the setting is considerably stronger. To illustrate, we next indicate
how each of the three conditions in Theorem 1.2 is close to sharp in certain regions. We
do not have the same sharpness in the list-cover case, and so further progress for list-
covers (and, hopefully, in the conjecture of Alon and Krivelevich [4]) will have to take
advantage of some special structure not necessarily present in correspondence-covers.

We highlight and discuss three corollaries of Theorem 1.2.
First, from condition (ii) of Theorem 1.2, we may conclude the following symmetric

result.

Corollary 1.3 For each ε > 0, the following holds for D0 sufficiently large. Let G and
H be bipartite graphs such that H is a correspondence-cover of G with respect to some
L ∶ V(G) → 2V(H). If H has maximum degree D ≥ D0 and ∣L(v)∣ ≥ (1 + ε)D/ log D for
all v ∈ V(G), then H admits an independent transversal with respect to L.

For an appreciation of the strength of this result, let us note that the part size bound
in Corollary 1.3 is sharp up to an asymptotic factor 2 (see [20, Theorem 1]).

Note that an immediate consequence of Corollary 1.3 is that if we assume (more-
over) that the covered graph G has maximum degree Δ ≤ D, then the same conclusion
holds. This is equivalent to correspondence coloring of bipartite graphs, and so
this weaker assertion also follows from a recent result of Bernshteyn [6] (see also
[8]) on correspondence coloring of triangle-free graphs. On the other hand, if one
analogously relaxes the conditions on G and H in Corollary 1.3, i.e., suppose instead
that G and H are triangle-free, then it is unknown whether or not a part size bound
that is o(D) as D →∞ suffices. It could even be possible for the following to be true.

Conjecture 1.4 For each ε > 0, the following holds for D0 sufficiently large. Let G
and H be graphs such that H is a correspondence-cover of G with respect to some
L ∶ V(G) → 2V(H). If G is triangle-free, H has maximum degree D ≥ D0, and ∣L(v)∣ ≥
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(1 + ε)D/ log D for all v ∈ V(G), then H admits an independent transversal with respect
to L.

It is worth mentioning that there is independent supporting evidence toward Con-
jecture 1.4. Specifically, Amini and Reed [5] and Alon and Assadi [2] independently
obtained a particular list-coloring result for triangle-free graphs, a result which is only
slightly weaker than the statement of Conjecture 1.4. If true, Conjecture 1.4 would
directly extend along an important line of work going back to the seminal results of
Ajtai et al. [1] and Johansson [18]. If one were bolder, one could also posit Conjecture
1.4 holding under further relaxed conditions, namely, that G is complete and H is
triangle-free.

Second, from condition (iii) of Theorem 1.2, the next asymmetric result follows
easily. This is a modest generalization of an earlier result for list-covers [3, Corol-
lary 10].

Corollary 1.5 For each ε > 0, the following holds for Δ0 sufficiently large. Let G and H
be bipartite graphs with bipartitions (AG , BG), (AH , BH), respectively, such that H is a
bipartite correspondence-cover of G with respect to some L ∶ AG → 2AH , BG → 2BH . If G
has maximum degree Δ ≥ Δ0, ∣L(v)∣ ≥ (1 + ε)Δ/ log4 Δ for all v ∈ AG , and ∣L(w)∣ = 2
for all w ∈ BG , then H admits an independent transversal with respect to L.

Our reason for highlighting this bound in particular though is that the part size bound
in Corollary 1.5 is asymptotically sharp, as certified by the following construction.

Proposition 1.6 For infinitely many Δ, there exist bipartite graphs G and H with bipar-
titions (AG , BG), (AH , BH), respectively, such that H is a bipartite correspondence-cover
of G with respect to some L ∶ AG → 2AH , BG → 2BH and such that the following holds.
The maximum degree of G is Δ, ∣L(v)∣ = Δ/ log4 Δ for all v ∈ AG , ∣L(w)∣ = 2 for all
w ∈ BG , and H does not admit an independent transversal with respect to L.

In the special case of H a list-cover, neither a tightness result analogous to Proposition
1.6 nor a stronger form of Corollary 1.5 is known to hold.

As with Corollary 1.3, one might wonder whether Corollary 1.5 could be strength-
ened to hold in the more general situation that we bound instead the maximum degree
of the correspondence-cover H, say, by D. A construction similar to that used in
Proposition 1.6 shows that this is impossible, and in fact far from possible in that if the
B-parts are held to size 2, then the A-parts cannot be size o(D8/5) (see Proposition
3.2 below). One might also wonder what happens when we further relax (at least in
part) the condition that H be a correspondence-cover. In Section 4, we observe how
an aforementioned theorem of Haxell [17] applies to yield the following result.

Proposition 1.7 Let G and H be bipartite graphs G and H with bipartitions (AG , BG),
(AH , BH), respectively, such that H is a bipartite cover of G with respect to some L ∶
AG → 2AH , BG → 2BH and such that the following holds. The maximum degree of H is
D, ∣L(v)∣ ≥ 2D2 for all v ∈ AG , ∣L(w)∣ = 2 for all w ∈ BG , and no vertex of AH is adjacent
to both vertices of L(w) for some w ∈ BG . Then, H has an independent transversal with
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respect to L. Moreover, the conclusion may fail if the part size condition 2D2 is replaced
by D2.

It would be interesting to narrow the gap between D2 and 2D2 in the above result.
Similarly, in the correspondence-cover version of this problem, it would be interesting
to decide on the correct asymptotic behavior for the analogous term, which we know
must lie between Θ(D8/5) (Proposition 3.2) and 2D2.

Third, let us consider a different asymmetric situation: suppose in Problem 1.1 that
kA = kB = k. Then, from condition (i) in Theorem 1.2, we can read off the following.

Corollary 1.8 Let G and H be bipartite graphs with bipartitions (AG , BG), (AH , BH),
respectively, such that H is a bipartite correspondence-cover of G with respect to some
L ∶ AG → 2AH , BG → 2BH . If H has maximum degree 1 in part AH and maximum degree
kk−2/e in part BH , and ∣L(v)∣ ≥ k for all v ∈ V(G), then H admits an independent
transversal with respect to L.

Note that this statement is utterly trivial if H is a list-cover, for then it boils down to
coloring a forest of stars for which each leaf-vertex has more than one color in its list.
Curiously, the statement as is for H a correspondence-cover is tight up to some O(k)
factor.

Proposition 1.9 There exist bipartite graphs G and H with bipartitions (AG , BG),
(AH , BH), respectively, such that H is a bipartite correspondence-cover of G with respect
to some L ∶ AG → 2AH , BG → 2BH and such that the following holds. The maximum
degree of H in part AH is 1 and in part BH is kk−1, ∣L(v)∣ = k for all v ∈ V(G), and
H does not admit an independent transversal with respect to L.

Thus, Corollaries 1.3, 1.5, and 1.8 cannot be improved much, and so neither can
conditions (ii), (iii), and (i), respectively, of Theorem 1.2. Our motivation from [3, 4]
is Problem 1.1 for the special case of list-covers H, but this note proves that further
progress along these lines needs some special insight specific to list-covers but not
correspondence-covers.

1.1 Probabilistic preliminaries

We will use the following standard version of the local lemma.

The Lovász Local Lemma [13] Take a set E of (bad) events such that for each A ∈ E,
(i) P(A) ≤ p < 1, and
(ii) A is mutually independent of a set of all but at most d of the other events.
If ep(d + 1) ≤ 1, then with positive probability none of the events in E occur.

2 Proofs

Before proceeding to the main proofs, let us first show how Corollary 1.3 follows from
Theorem 1.2. We in fact have the following slightly more general statement. We note
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that this statement is reminiscent of “local” list-coloring results in which the list sizes
can vary depending on the structural parameters of the individual vertices (such as
their degree; see [9] and especially Section 8.2 therein for one of the most general
results along these lines).

Theorem 2.1 For each ε > 0, the following holds for D0 sufficiently large. Let G and H
be bipartite graphs with bipartitions (AG , BG), (AH , BH), respectively, such that H is a
bipartite correspondence-cover of G with respect to some L ∶ AG → 2AH , BG → 2BH . If H
has maximum degree DA in part AH and maximum degree DB in part BH for DA, DB ≥
D0, ∣L(v)∣ ≥ (1 + ε)DA/ log DA for all v ∈ AG , and ∣L(w)∣ ≥ (1 + ε)DB/ log DB for all
w ∈ BG , then H admits an independent transversal with respect to L.

Proof Without loss of generality, we can assume DB ≥ DA.
If DB ≥ D2

A, say, then the result follows from condition (i) in Theorem 1.2. For then,
we have that

kB ≥ (1 + ε)DB/ log DB = ((1 + ε)D1/4
B )(D

1/4
B / log DB)

√
DB

≥ ((1 + ε)
√

DA)(D1/4
B / log DB)DA.

Now, note that

(1 + ε)
√

DA ≥ (ekA)1/(kA−1) ,

because

kA ≥ (1 + ε)DA/ log DA, and D1/4
B / log DB ≥ D1/(kA−1)

B ,

both provided D0 is sufficiently large. So we can conclude with Theorem 1.2 as we
have verified condition (i).

If DB ≤ D2
A, it is a consequence of condition (ii) in Theorem 1.2. Let δ = ε/2 > 0.

We have 1 − 1/kB ≥ exp(−(1 + δ)/kB) for kB sufficiently large. So then,

1 − (1 − 1/kB)DA ≤ 1 − exp (−(1 + δ)DA/kB)
≤ exp (− exp (−(1 + δ)DA/kB)) .

Hence, letting kB ≥ (1 + ε)DB/ log DB , we can verify using kA ≤ DA and kB ≤ DB that

e(kADA(kB DB − 1) + 1) (1 − (1 − 1/kB)DA)kA

≤ eD6
A exp (− exp (−(1 + δ)DA/kB) kA)

≤ eD6
A exp (− exp (−((1 + δ)/(1 + ε)) log DA) kA)

≤ eD6
A exp (−(1 + ε)Dδ/(1+ε)

A / log DA)
< 1. ∎

We now proceed to the proof of Theorem 1.2. Note that these arguments are nearly
identical to those given in [3], but we include them in the notation of this stronger
setup and for completeness.

We apply a simple result about hypergraph transversals, which needs a little more
notation. Let H = (V , E) be a hypergraph. The degree of a vertex in H is the number
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of edges containing it. Given some partition of V, a transversal of H is a subset of V
that intersects each part in exactly one vertex. A transversal of H is called independent
if it contains no edge (see [12]). The following is in fact a modest strengthening of the
main result of [13]. See [3, Lemma 11] for its straightforward derivation with the Lovász
Local Lemma.

Lemma 2.2 Fix k ≥ 2. Let H be a k-uniform vertex-partitioned hypergraph,
each part being of size �, such that every part has degree sum at most Δ. If
�k ≥ e(k(Δ − 1) + 1), then H has an independent transversal.

Lemma 2.2 implies Theorem 1.2 under condition (i).

(Proof of Theorem 1.2 under condition (i)) Let kA, kB , DA, DB satisfy condition
(i). For every w ∈ BG with ∣L(w)∣ > kB , take a subset of exactly kB vertices of L(w)
and remove the other vertices and incident edges. We do similarly for every v ∈ AG
with ∣L(v)∣ > kA. We define a suitable hypergraph H with V(H ) = V(H).

Let (w1 , . . . , wkA) be an edge of E(H ) if the w i are elements from different L(w),
for w ∈ BG , and there is some v ∈ AG such that there is a perfect matching between
{w1 , . . . , wkA} and L(v).

Note that H is a kA-uniform vertex-partitioned hypergraph, where the parts are
naturally induced by each L(w), for w ∈ BG , and so are each of size kB . We have
defined H and its partition, so that any independent transversal of H corresponds
to a partial independent transversal of H with respect to L that can be extended to an
independent transversal of H.

Every vertex in H has degree at most DBDA
kA−1, and so the result follows from

Lemma 2.2 with � = kB and Δ = kB DB DkA−1
A . ∎

(Proof of Theorem 1.2 under condition (ii) or (iii)) Let kA, kB , DA, DB satisfy
condition (ii) or kA, kB , ΔA, ΔB satisfy condition (iii). By focusing on a possible
subgraph of H, we can assume ∣L(v)∣ = kA for every v ∈ AG and ∣L(w)∣ = kB for every
w ∈ BG . We pick randomly and independently one vertex in L(w) for every w ∈ BG ,
resulting in a set B′ of ∣BG ∣ vertices. Let Tv ,c be the event that for some v ∈ AG , the
vertex c ∈ L(v) has a neighbor in B′. Let Tv be the event that Tv ,c happens for all
c ∈ L(v).

Claim The events Tv ,c , for fixed v as c ranges over all vertices in L(v), are negatively
correlated. In particular, P(Tv) ≤ ∏c∈L(v) P(Tv, c).

Proof We have to prove, for every I ⊂ L(v), that P(∀c ∈ I∶Tv ,c) ≤ ∏c∈I P(Tv ,c).
We prove the statement by induction on ∣I∣. When ∣I∣ ≤ 1, the statement is trivially true.
Let I ⊂ L(v) be a subset for which the statement is true, and let c′ ∈ L(v) ∖ I. We now
prove the statement for I′ = I ∪ {c′}. We have P(∀c ∈ I∶Tv ,c) ≤ P(∀c ∈ I∶Tv ,c ∣ ¬
Tv ,c′) as the probability to forbid all vertices in I is larger if no neighbor of c′ is selected.
This is equivalent to

P(∀c ∈ I∶Tv ,c) ≥ P(∀c ∈ I∶Tv ,c ∣ Tv ,c′),
⇐⇒ P(∀c ∈ I′∶Tv ,c) ≤ P(∀c ∈ I∶Tv ,c)P(Tv ,c′).

https://doi.org/10.4153/S0008439521001004 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521001004


Independent transversals in bipartite correspondence-covers 889

This last expression is at most ∏c∈I′ P(Tv ,c) by the induction hypothesis, as
desired. ∎

Let us write L(v) = {c1 , . . . , ckA}, and for each i ∈ [kA], let the degree of c i in the
neighboring lists of v be x i . Note that P(Tv ,c i ) = 1 − (1 − 1/kB)x i .

Under condition (ii), we have x i ≤ DA for every i . So, by the claim, we have

P(Tv) ≤ (1 − (1 − 1
kB
)

DA

)
kA

.

Each event Tv is mutually independent of all other events Tu apart from those
corresponding to vertices u ∈ AG such that some w1 ∈ L(u) and w2 ∈ L(v) both have a
neighbor in the same part L(b) for some b ∈ BG . As there are at most kADA(kB DB − 1)
such vertices besides v, the Lovász Local Lemma guarantees with positive probability
that none of the events Tv occur, i.e., there is an independent transversal, as desired.

Now, we assume condition (iii). Using x i ≤ ΔA for every 1 ≤ i ≤ kA and the claim,
we have

P(Tv) ≤ (1 − (1 − 1
kB
)

ΔA

)
kA

.

Noting that∑kA
i=1 x i ≤ kB ΔA and that the function log(1 − (1 − 1/kB)x) is concave and

increasing, Jensen’s Inequality together with the claim implies that

P(Tv) ≤ (1 − (1 − 1
kB
)

kB ΔA/kA

)
kA

.

Each event Tv is mutually independent of all other events Tu apart from those
corresponding to vertices u ∈ A that have a common neighbor with v in G. As there
are at most ΔA(ΔB − 1) such vertices besides v, the Lovász Local Lemma guarantees
with positive probability that none of the events Tv occur, i.e., there is an independent
transversal, as desired.

3 Constructions

Proof Let Δ = 22k
for some integer k > 1, and let G be the complete bipartite graph

with ∣AG ∣ = ∣BG ∣ = Δ. Without loss of generality, we may assume that L induces an
arbitrary disjoint collection of Δ sets of size Δ/ log4 Δ (for AH) and Δ sets of size
2 (for BH). We next describe how to define H with respect to L. We write AG =
{v1 , . . . , vΔ}. Arbitrarily partition the vertices of BG into Δ/ log2 Δ parts of size log2 Δ,
call them C1 , . . . , CΔ/ log2 Δ . Similarly, for each v j ∈ AG , arbitrarily partition L(v j)
into 1

2 Δ/ log4 Δ = Δ/ log2 Δ pairs, write them (pv j
1 , pv j

1 ), . . . , (pv j
Δ/ log2 Δ , pv j

Δ/ log2 Δ). Fix
i ∈ {1, . . . , Δ/ log2 Δ}. Note that the subcover of G with respect to L induced by C i
has exactly 2log2 Δ = Δ possible independent transversals, because it has log2 Δ parts
of size 2. Call these transversals T i

1 , . . . , T i
Δ . For each j ∈ {1, . . . , Δ}, add a union of

perfect matchings between each pair of C i and the pair (pv j
i , pv j

i ) according to the
transversal T i

j of C i as follows. Connect the chosen vertex of each pair with vertex pv j
i
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and the nonchosen vertex of each pair with vertex pv j
i . Note that this does not violate

the maximum degree condition.
Now, consider any transversal T of the subcover of G with respect to L induced

by BH . This corresponds, say, to subtransversals T 1
j1

, . . ., T Δ/ log2 Δ
jΔ/ log2 Δ

of C1, . . ., CΔ/ log2 Δ ,
respectively. Note for each i ∈ {1, . . . , Δ/ log2 Δ} that the construction ensures, among
(pv1

i , pv1
i ), . . . , (pvΔ

i , pvΔ
i ), that only (pv j i

i , pv j i
i ) and the pair corresponding to the

transversal of C i complementary to T i
j i

have some vertex that has no neighbor in
the transversal T. It follows that there are at most 2Δ/ log2 Δ vertices in AH that have
no neighbor in T. However, we need Δ such vertices in order to be able to extend
T to an independent transversal of H with respect to L. Noting that k > 1 implies
Δ > 2Δ/ log2 Δ, this completes the proof. ∎

Proof We define G and H as follows. Let ∣AG ∣ = kk and ∣BG ∣ = k (so that ∣AH ∣ = kk+1

and ∣BH ∣ = k2). From each possible k-tuple of vertices taken from ∏w∈BG L(w), we
add an (arbitrary) matching to the k vertices of L(v) for some distinct v ∈ AG . This
satisfies the degree requirements, and any transversal of BH cannot be extended to an
independent transversal of H with respect to L, as required. ∎

Proposition 3.1 For any k ≥ 2, consider a complete bipartite graph G = (V = A∪
B, E) with ∣B∣ = k. If ∣A∣ < kk/k!, then for any bipartite correspondence-cover H of
G with respect to some L such that ∣L(v)∣ ≥ k for all v ∈ A∪ B, H admits an inde-
pendent transversal with respect to L. If ∣A∣ ≥ kk+1

k! log k, then there exists a bipartite
correspondence-cover H of G with respect to some L such that ∣L(v)∣ = k for all
v ∈ A∪ B and such that H does not admit an independent transversal with respect
to L.

Proof First assume ∣A∣ < kk/k!. Let H be any bipartite correspondence-cover of G
with ∣L(v)∣ = k for every v ∈ A∪ B. Note that by restricting to some subgraph H′ if
necessary, we can assume this. For every v ∈ A, there are at most k! transversals T of
L(B) such that every vertex in L(v) has a neighbor in T. Because there are kk choices
for transversals of L(B) and ∣A∣k! < kk , there exists a transversal of L(B) that can be
extended to an independent transversal of H with respect to L.

Now, let ∣A∣ > kk+1

k! log k. We will construct a correspondence-cover H of G with
respect to some L such that ∣L(v)∣ = k for every v ∈ A∪ B and such that H admits no
independent transversal with respect to L. Without loss of generality, we may assume
that L induces an arbitrary collection of ∣A∣ + ∣B∣ disjoint sets of size k. To specify
H with respect to L, let us consider a random bipartite correspondence-cover of G
formed by taking a uniformly random perfect matching between L(v) and L(w)
for each v ∈ A and w ∈ B. Now, for each transversal T of L(B), the probability that
every vertex v ∈ A has at least one element c ∈ L(v)without a neighbor in T is exactly
(1 − k!/kk)∣A∣. Thus, the expected number of transversals of L(B) that can be extended
to an independent transversal is kk(1 − k!/kk)∣A∣, which is less than 1, because
∣A∣ > kk+1

k! log k. The existence of the promised H is guaranteed by the probabilistic
method. ∎
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The strengthened form of Corollary 1.5 under only a maximum degree condition
on the cover graph H fails. In the following proposition, we prove that an optimal
choice for kA in this case will not even be linear in D.

Proposition 3.2 For all D, there exist bipartite graphs G and H with bipartitions
(AG , BG), (AH , BH), respectively, such that H is a bipartite correspondence-cover of
G with respect to some L ∶ AG → 2AH , BG → 2BH and such that the following holds. The
maximum degree of H is at most D, ∣L(v)∣ = Ω(D8/5) for all v ∈ AG , ∣L(w)∣ = 2 for all
w ∈ BG , and H does not admit an independent transversal with respect to L.

Proof Let q be a power of 16, which is sufficiently large (q ≥ 256 suffices), and let
D = (q1/4 + 1) (q + 1). Note that with suitable rounding the following argument also
works for q a prime power with exponent divisible by 4. Although this will only prove
the statement for certain values of D, the reader should be able to routinely check that
it holds for all D, because the primes are sufficiently dense (Bertrand’s postulate is
sufficient for this, but one also can simply take the largest value of k for which q = 16k

satisfies (q1/4 + 1) (q + 1) ≤ D).
Let ∣AG ∣ = 2a ∶= 2 (q1/4 + 1) (q + 1)q1/4, and write AG = {v1 , v2 , . . . , v2a}. Let k =

q2 + q + 1. Note that k = Ω(D8/5) as q and hence D goes to infinity. For every 1 ≤ i ≤
2a, let L(v i) = {x i ,1 , . . . , x i ,k}.

So far, we have only defined AG , AH , and L, so that ∣L(v)∣ = k for all v ∈ AG . (So, it
is trivially a bipartite correspondence-cover at this point, taking BG = BH = E(H) =
∅.) We will further define BG , BH , and L in successive stages while maintaining that
∣L(w)∣ = 2 for all w ∈ BG . Throughout these stages, we will also specify the edges of
H while maintaining that H is a bipartite correspondence-cover of G with respect to
L and that H has maximum degree at most D. At the end, we show that H admits no
independent transversal with respect to L.

For every 1 ≤ j ≤ k, let X j be the set of all vertices x i , j , where 1 ≤ i ≤ a, and let X′j
be the set of all vertices x i , j , where a + 1 ≤ i ≤ 2a. We first prove the following claim,
which also holds analogously with X′j instead of X j .

Claim For each 1 ≤ j ≤ k, one can add edges between the vertices in X j and some of
the vertices in L(w) for some additional vertices w ∈ BG with ∣L(w)∣ = 2, so that the
degree in H of every x i , j , 1 ≤ i ≤ a, is increased by at most (q1/4 + 1) log2 D, the degree
of every additional vertex in H is at most D, H remains a bipartite correspondence-cover
of G with respect to L, and no independent transversal of H with respect to L may contain
two vertices from X j .

Proof Let r = q1/4 . Divide the a vertices of X j into r2 + r + 1 parts of nearly equal
size (being at most q + 1). By considering a projective plane of order r, i.e., a (r2 +
r + 1, r + 1, 1)-design, we can form r2 + r + 1 different unions of r + 1 parts each. Such
a union contains at most D elements. For each such union, we take � = log2 D new
vertices w j

1 , . . . , w j
� in BG with ∣L(w j

1)∣ = ∣L(w
j
2)∣ = ⋯ = ∣L(w

j
�)∣ = 2, and match each

vertex in the union with a distinct transversal of L({w j
1 , w j

2 , . . . , w j
�}), joining edges

across. Note that all of the additional vertices in BH have degree at most D and the
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degree of any x i , j , 1 ≤ i ≤ a, has increased by (r + 1)� = (q1/4 + 1) log2 D. Moreover,
we have not added any edges to H that would violate the bipartite correspondence-
cover condition. By the definition of the design, every two vertices x i1 , j and x i2 , j , 1 ≤
i1 , i2 ≤ a, belong to a common union and hence are joined to two distinct transversals
of some L({w j

1 , w j
2 , . . . , w j

�}), from which the conclusion follows. ∎

Let us invoke this first claim for every possible j, both for the X j ’s and the X′j ’s.
So, now, we know that every X j and X′j may have at most one element from an
independent transversal of H. We also have that the degree of any vertex in AH
is (q1/4 + 1) log2 D. Next, for specified 1 ≤ j, j′ ≤ k, we show how to augment the
construction in such a way that the vertices in X j and X′j′ gain additional degree of
at most q1/4 and no independent transversal in H can contain vertices from both X j
and X′j′ .

Claim Given 1 ≤ j, j′ ≤ k, one can add edges between the vertices in X j ∪ X′j′ and in
L(w) for some new vertices w ∈ BG with ∣L(w)∣ = 2, so that the vertices in X j ∪ X′j′
gain additional degree in H of at most q1/4, the degree of every additional vertex in H
is at most D, H remains a bipartite correspondence-cover of G with respect to L, and no
independent transversal of H with respect to L may contain both a vertex from X j and
from X′j′ .

Proof Let r = q1/4 . Partition the vertices of X j into r parts S1 , . . . , Sr of size D and
similarly X′j′ into r parts S′1 , . . . , S′r of size D. For every pair of parts Ss and S′s′ , we add
a new vertex w in BG with ∣L(v)∣ = 2, joining all vertices in Ss to one of the vertices in
L(w) and joining all vertices in S′s′ to the other. Note that every additional vertex in
BH has degree D and every vertex in X j ∪ X′j′ has been joined to r additional vertices
in BH . Moreover, we have not added any edges to H that would violate the bipartite
correspondence-cover condition. The conclusion follows from the fact that any pair
of a vertex in X j and a vertex in X′j′ are joined to two different vertices in L(w) for
some w ∈ BG . ∎

Consider a (k = q2 + q + 1, q + 1, 1)-design on [k] with blocks B1 , B2 , . . . , Bk . For
every j ∈ [k], let us apply this second claim between X j and X′j′ for each j′ ∈ B j . After
this, by the definition of the design as well as the degree promises of the claims, the
degree of any vertex in AH is at most (q + 1)q1/4 + (q1/4 + 1) log2 D < (q + 1)q1/4 +
(q + 1) = D for q sufficiently large. The claims have also allowed us to maintain the
other desired properties for H.

Suppose now, for a contradiction, that there is an independent transversal
T of H with respect to L. Because T must contain exactly 2a vertices from
AH , it follows from the first claim that T should contain exactly one vertex
from each of a distinct X j and a distinct X′j′ . As such, let us suggestively write
T = {x j1 , . . . , x ja , x′j′1 , . . . , x′j′a}. Because T is an independent transversal, we may
assume from our application of the second claim that j′1 , . . . , j′a and B j1 , . . . , B ja

induce a nonincident set of a points and a blocks in the (q2 + q + 1, q + 1, 1)-design.
However, since a = (q1/4 + 1) (q + 1)q1/4 > 1 + (q + 1)(√q − 1), this contradicts a
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known extremal result on nonincident sets in such a design (see [23, Theorem 3.3],
[10, Theorem 3]). This completes the proof.

4 An asymmetric version of Haxell’s theorem

Proof We construct an auxiliary graph H′ on the vertex set AH , partitioned by
L ∣AG ∶ AG → 2AH . In H′, two vertices u, v ∈ AH are connected if and only if there exists
w ∈ BG such that u is adjacent to one of the vertices in L(w) and v is adjacent to
the other vertex in L(w). Note that the maximum degree of H′ is at most D2. Thus,
by Haxell’s theorem [17, Theorem 2], H′ admits an independent transversal TA with
respect to L ∣AG . Trivially, TA is partial independent transversal of H with respect
to L: we next show how TA can be extended to a full independent transversal of H
by specifying the choices on BG . Let w ∈ BG and write L(w) = {x , y}. If x has no
neighbor in TA, then we may add x to the independent transversal. On the other hand,
if x has a neighbor in TA, then by the definition of H′ and TA, it must be that y has no
neighbor in TA, in which case we may add y to the independent transversal. (Note that
here we have used the condition that no vertex in AH is adjacent to both vertices in
L(w) for some w ∈ BG .) By doing this for all w ∈ BG , this completes the independent
transversal of H with respect to L and thus the proof.

For the sharpness construction, we let AG = {v , v′} and let L(v) = {x1 , . . . , xD2}
and L(v′) = {x′1 , . . . , x′D2}. We also define BG = {w i , j ∶ 1 ≤ i , j ≤ D} and let L(w i , j) =
{x i , j , x′i , j} for each 1 ≤ i , j ≤ D. To define H, we add edges between x i , j and each of
x(i−1)D+1 , x(i−1)D+2 , . . . , x i D and between x′i , j and each of x′( j−1)D+1 , x′( j−1)D+2 , . . . , x′jD
for each 1 ≤ i , j ≤ D. Note that H is a D-regular graph, L satisfies the desired part size
requirements, and no vertex in AH is adjacent to both vertices in L(w) for some
w ∈ BG . Suppose to the contrary that H admits an independent transversal T with
respect to L. By symmetry, we may assume without loss of generality that x1 belongs
to T. By the definition of H, this forces that x′1, j for each 1 ≤ j ≤ D must also belong to
T, which then contradicts there being a choice from L(v′) for T. ∎

It is worth remarking that the condition in Proposition 1.7 that no vertex in AH
is adjacent to both vertices in L(w) for some w ∈ BG is necessary. For consider the
following easy star construction. Let v ∈ AG such that ∣L(v)∣ = kA for any kA > 0. In
H, join every x ∈ L(v)with both vertices of some L(w), w ∈ B, with ∣L(w)∣ = 2. Then,
H has maximum degree 2, and clearly, there can be no independent transversal of H
with respect to L.
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