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1. Suppose throughout that a, k are positive numbers and that p is the integer such that
k—1<p<k. Suppose also that ¢(w), Yy(w) are functions with absolutely continuous
(p+1)th derivatives in every interval [a, W] and that ¢(w) is positive and unboundedly
increasing. Let A ={/,} be an unboundedly increasing sequence with 1, > 0.

@O
Given a series Z a,, and a number m = 0, we write

n=1
Y, (w=2A)ma, if w> 2,
Ap(w) =

ApSw

0 otherwise,
and A(w) = A,(w).

w0
If w=mA,,(w) tends to a finite limit as w — 0, ) a, is said to be summable (R, 4, m).

n=1

The object of this note is to obtain conditions sufficient to ensure, when k is not an
integer, the truth of the proposition

@ [}
P. Y ay(4,) is summable (R, ¢ (1), k) whenever Y a, is summable (R, A, k).
n=1

n=1

For integral values of k, the following theorem is known [1].
Tl- 1‘/.

(1) y(w) is positive and absolutely continuous in every interval [a, W] and y'(w) = O(1)
forw2a,

(ii) wy(w)=0 {(M)‘_n} (n=0,1,...,k; wZa),

W

(ii) j 5| Y+ 0(1) | dt < oo,

(iv) j"{v(r)}" | U I() | dr =0{dW) (=12, ., k5 w2 a),

then P.
Other known theorems, which hold for all £ > 0, are

T,. If ¢(w) = e and Y (w) = w™*, then P;
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Ts- l_f
@) ¢(w) is a logarithmico-exponential function,
o1 ¢r(w)
@ 5<% <
o(w) |*
wo'(w)§ °

(iii) ¥ (w) = {

then P;
and T}, which is more general than T,, in that hypothesis (ii) is replaced by
l '
(“)l - < ¢ (‘V) .
w ¢ (w)

T,, which is included in T}, is a well known theorem of Hardy [4, 30] and T, and T}
are due to Guha [2], who derived the latter from the former by means of standard results.
For integral values of k, the hypotheses of T, are satisfied when ¢ (w), y(w) are as in T} and
y(w) = ¢(W)[¢p' (w).

Suppose, from now on, that k is not an integer. We shall prove the following theorems
as companions to T,.

TA. I‘I‘
(i) y(w) is positive and absolutely continuous in every interval [a, W], and y'(w) = O(1)
forw=a,

(i) (@ ¥(w) =0 ({@}k)for wza,

(B) W™ (w) = 0({Lw)}p+l'-")for n=1,2..,p+landwza,

w
(i) rtvﬂ | §P+2(2) | di < oo,
@iv) ¢a' (w) is positive monotonic non-decreasing for w Z a,
(v) y(w)p'(w) =0{p (W)} for w = a or {y(w)}"~ 1™ (w)/¢’(w) is of bounded variation in
[a, ) forn=1,2,...,p+1 according asO <k <lork>1,
(vi) ¢''(w)/¢’'(w) is monotonic non-increasing for w Z a,

(vii) h,(w) = g (wW){Q'(W)}<—" {y(w)}~" is positive monotonic in the range w2 a for
n=0,1,...,p, possibly in different senses for different values of n,

(viii) ¢(w) > c w0 for w = a, where ¢ is a positive constant,
then P.

Ty If T, () to T, (vii) inclusive hold, and, in addition,

(vii)’ h,(w) is non-decreasing,
then P.
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It is evident that T,, for non-integral &, is included in T ,, and it can readily be shown that,
under the hypotheses of T,, the hypotheses of T, are satisfied with y(w) = ¢(w)/¢’(w) and
¢ (w), Yy(w) as in T,.

We are indebted to the referee for valuable suggestions which led to the above formulation
of the results. In the original version of our manuscript we proved that P is a consequence of
conditions T, (i) to T, (vi) inclusive together with the condition that 4,(w) is a positive mono-
tonic non-decreasing function of w in the range w=aforn=20, 1, ..., p. The argument in
§ 4 is due to the referee: it shows that the conditions of T are in fact more stringent than
those of T,.

2. The following lemmas are required.

Lemma 1. If T,(1) and T,(v), then forn=1,2, ... ,p+l and w 2 a,

[[o@y-r 10w 14 = oo @l
and
{y(w)}"¢™(w) = O{p(w)}. 2.2)
Proof. When 0 < k < 1, (2.2) is the same as the operative hypothesis in T, (v) and (2.1)
is a trivial consequence. Suppose that k> 1. Then (2.1) follows from the appropriate part
of T, (v) by integration; hence
Y(W)g'(w) = v(a)¢'(a)+j ()" (1) dt+j Y (D' (1) dt = 0{p (W)},
since y'(f) = O(1), and (2.2) is an immediate consequence. (Cf. [1, Lemma 2].)
LEMMA 2. The nth derivative of {g(t)}™ is a sum of a number of terms like
Afg®im=e T {g™ )},
v=1
where A is a constant, and oy, a,, ... , &, are non-negative integers, such that

n
Y a,=0
v=1

This is a particular case of a theorem due to Faa di Bruno [5, I, pp. 89-90].

1

A
A

2": Ve, = n.
v=1

LEMMA 3. Ifa,isreal,a £& L w, then

T(k+1)

F(p+ DT k—p) = e 14O

4
‘[ A (Y (w—rt)-r-1dt | <
e aStS¢

A proof of this lemma has been given by Hardy and Riesz [4, 28].
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LemMma 4. If

Ermw, t)|dt <o and lim .rlf(w,t)ldt=0

w—o Jg w—®o Jg

for every finite y > a, and if s(t) is a bounded measurable function in (a, c0) which tends to
zero as t tends to infinity, then

lim rf(w, £)s(t) dt = 0.

For a proof of this simple result see [3, 50] or [1, Lemma 3].
Lemma 5. If T,(iv) and T 4(vi), then

1 ow)—¢@)
o) w—t

is @ monotonic non-increasing function of t for a £t < w.

x(O=

Proof. We have, forast < w,
@) _{gm-o@}-(w—0¢'(®) _¢" 1)

x() {o(w)—d ()} (w—1) ')

_¢m=¢'() 9"

= Sm=e® () (0 >n>1)
L PW-40) _¢0)
= Fm=60) _ ¢0

$'® ¢
O  FO (w>¢>1)
<0.

Since x(¢) = 0, the result follows.

3. Proof of T,. We assume, without loss of generality, that

Aw)=0 for 0Zw=a

and A (W) = o(wh), 3.1
and note that, for w 2 g, it is sufficient to prove that
o4 |*
1— Aa,,
¢(A,.)ZS¢(w>{ d(w) } v i&a,
which is equal to
v o) |*
L { I-W} Y (1) dA(), (3.2
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tends to a finite limit as w — 0. After p+ 1 integrations by parts, (3.2) reduces to a constant

multiple of
w a p+1 ¢(t)
I o)™ ({1-5) vo)a

which, by Lemma 2 and Leibnitz’s theorem on the differentiation of a product, can be ex-
pressed as a sum of constant multiples of integrals of the types

1 = (o) + " 4, (e D(0) (S0 - b}

Jva

1, ={¢p(w)}~* WA,,(t)'I"”*“”(t) {d(w)—d ()} Ijl {o™ ()} at

va

and

= (84| 4,000 B -sp-0 TT ($0@)

where o, a5, ..., &, By, B3, ..., Bp+, are non-negative integers such that

v=1 v=1
pti pt+t

1Y B,=ps 'Y B, =p+1.
v=1 v=1

Consider first I,. Integrate it by parts to obtain
I, = —1,+kl,,
where
Ty =800} [ Ay 04020 900 -0}
and

Iy = (W)} j Ay (WD (1) {BO0) - OP1 .

Now, by a standard result [4, 29] and (3.1),
Apei(w) = o(wp* ). (3.3)
Hence, using (3.3) and T, (iii), we obtain

r| YO D(W)A, 4 (1) | dE < o,

a

and so, by Lebesgue’s theorem on dominated convergence, I, tends to

=j. YerD()A,. () dt as w— o0,
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1 being finite.
For I,,, consider the function
fi(w, 1) ={¢(w)} ~*er* 1Y+ D ()P (1) {p(w) - (O} 1.

Using T, (ii), we note that, for w >t > a,

1f100 )1 <My {@(w)}~+' (1) {6 (w) - S ()},

where M, is a constant. Hence f, (w, ¢) satisfies the hypotheses of Lemma 4, and so

wal(w, P 14,4, (1)dt—>0 as w— o0,

Thatis lim 7, =0 and so

W—r 0
lim I, =1 (3.9
Wb
Considering now /,, we see, on integrating by parts, that it is equal to the sum of constant
multiples of integrals of the types

P

Ly ={d)}* | Ayt (@20 (1) (W) — (O}~ H (™ ()} dt,

I, ={¢(w)}~* “”A”n(t)\b“’“'”(t){¢(W)—¢(t)}““’“‘¢’(t) I__[l {p™M @)} dt

and

[w

By = (600} | Ay (Wt -0 {800 - 60— TT (900} a

where a,, a,, ..., a,, 8, d,, ... , 6,4, are non-negative integers, such that

r r
12 Y a,=02 ) va,=r<p;
v=1 v=1
r+1 rt+1
0,=0; vé,=r+1.
v=1 v=1

For I,,, consider
S200, 8) ={@(w)}ker* 1y r+2=0(2) {$(w) = p()}¢~ ] {pM (1)}
v=1
Suppose that the non-vanishing «, of highest suffix is «.. Then

F2(w, ) ={@(W)} 1P+ 1Y e 220 () (1) {p (W) — (D)} ° ﬁ {$0(0)} » {$@ ()}
v=1

and

1

A
IIA

i o, =0 SZ v, =r.
vl v=1
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Using (2.2) and T, (ii), we find that, for w > £ = q,

|f200, ) | <M {¢ (W)} ~Fep+t {p(@)}r=1e=2=1 | $(B) | { (W)= b (O}~ {p(D)}"~* {y(0)}*~"
<M, {pwW)}= {HrOF~1 1 69D |,

where M, is a constant. Because of (2.1), f,(w, t) satisfies the hypotheses of Lemma 4, and so

jwfz(w,t)t‘P“Ap“(t)dt—»O as w-— 0.

a

That is, lim I,, =0. Similarly lim 7, =0, and lim /,, =0 in the case k—o—1 > 0. The

W0 w—0

remaining case of I,, is that in which » = ¢ = p, and we write the integral as

(0w} ijm(r)W(t) CHOHaR CIOREIO a3

Consider

f3tw, ) ={dw)} e 1y ()¢ (1) {d (W) — (O} -7~ {@'(D)}*.
Using (2.2) and T, (ii), we find that, for w> 1 2 a,
[f3(w, ) | <Ma{¢p(w)} kot H{y ()}t =P =16 (1) {d(w) - p(O)}* P~ 1{b(t)}? {y(D)} ~»
<My{p(w)}r=*¢' (1) {p(W) -}~
where M, is a constant. Hence f,(w, ¢) satisfies the hypotheses of Lemma 4, and so
wa3(w, OEP14,, () dt -0 as w0

That is, lim 7I,, = 0 in the case r = ¢ = p. Hence

Wb OO

lim I, =0. @3.5)

W0

Finally, consider /5, which can be written in the form

I, = () -* j”A,(x)(w—z)k-p-*{¢(w)—¢(t)}v“-pg<t> H(Ohy 1,0

where

(1 g\t _
g(t)-(¢,(t). — ) foragt<w, gw=1

and

o= T (L2900

¢'(1)

v=1
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where 8,, B, ..., ﬂ,; , are non-negative integers such that

P

p+1 +1
12 Y By=p< ) vB,=p+1.
v=1 =1

v

Then H(t) is of bounded variation in [a, ), because of T, (v), and so can be expressed as the
difference between two bounded monotonic non-increasing functions. Consequently, we can
assume, without loss of generality, that H(¢) is bounded and monotonic non-increasing. Also,

{o(w)—(1)}p+1-2,g(t) and h,,, _,(¢) are monotonic functions of ¢ in the range a < ¢ < w,
the first being non-increasing since p+1—p = 0 and the second non-decreasing by Lemma 5.
Using the second mean-value theorem for integrals twice, we now see that

I ={¢>(w)}—k{¢(w)}p+l-ﬂH(a)g(w)th_,,(x) L’ A (D(w—rt)k-r=1 dy,
where w2 &, > ¢, =2 a, and x = w or a according as A
increasing. Hence, by Lemma 3 and (3.1),

Iy=o({pw)}r* 1 =r=*wkhyy (X)) = 0(G(w, %)), say.
Now, by (2.2), and T, (ii),
G(w, w) =0({p(w)}r* =24y (w){y(w)}e~p=H{' (W)}t +r-P=1wk) = O(1),
and, by T, (viii),
G(w, @) =0({gp(w)}r*1-0=*wh)
=0({op(w)}'~?) =0(),
sincep 2 1. Hence lim I,=0. (3.6)

W—>0

Because of (3.4), (3.5) and (3.6) we can deduce that (3.2) tends to a finite limit as w tends
to infinity. This completes the proof of T ,.

»+1-p(1) is non-decreasing or non-

4. Proof of T,. Suppose that T,(i), T,(ii)(a) and T,(vii)’ hold. It is clearly sufficient
to show that T, (viii) is a consequence.

It follows from T, (vii)’ that, for w = a,

Y (w){d'(w)}-»
Doy ©

where c is a positive constant; and hence, by T, (ii) (@),

{r(m}r =0WwW{¢' (M} =0 <{M} {&' W)} ") :

w

Consequently, by T, (i),
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wk =0 ({y(w)¢’(W)}*=») =0 ({we’ (w)}*~?)
and so wP =0 ({¢’'(w)}*~»).
Hence, for w 2 a, ¢'(w) > bwr/t*=p») where b is a positive constant, and T, (viii) follows by

integration.
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