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ON VECTOR-VALUED SPECTRA
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Abstract. Elements o € A ® E of the tensor product of a Banach algebra 4
and a Banach space E induce systems {y/(«) : ¥ € E*} of elements of A indexed by
the dual space E*, whose joint spectrum belongs to the second dual £**. In this note
we investigate when the spectrum actually lies in £ C E**, and extend the spectral
mapping theorem Poy(e) = 04P(x) to polynomial mappings P: E — F between
Banach spaces. When the algebra 4 is commutative and the Banach space £ = B is
another algebra we also reach a sort of vector-valued Gelfand theory.

1991 Mathematics Subject Classification. 47A13.

If 4 is a complex Banach algebra, with identity 1, and (ay),.y a family of ele-
ments in A, then the left and the right spectrum of @ € A are defined as subsets of
the corresponding families of complex numbers ([2];[3, Definition 11.4.1]):

@)= eCi1¢) A, — i), ©-1)
xeX
and
G;ight(a) = {)\ (S CX 01 ¢ Z(a»( - )\x)A}- (02)
xeX

Thus if, for example, A € C¥ is not in the left spectrum of « € AX there is b = (bx)rex
in A, vanishing for all but finitely many x € X, for which >___, b.(ay — A,) = 1. The
right and left spectra are in a sense the same, being interchanged by ‘“‘reversal of
products”. We recall that they are compact subsets of C¥, in the topology of point-
wise convergence on X, possibly empty, and ([3, Theorem 11.4.2]) subject to the one-
way spectral mapping theorem for ‘polynomials’:

po’ (@) € "' pla), po’{F(a) € o pla), ©0-3)

where a polynomial p = (p)yey : A¥ — AY is a system of members of the free alge-
bra generated by the coordinates z, and the identity 1. If in particular the system

a = (ay),x is commutative then by [3, Theorem 11.4.4] the spectra '/(a), o/ (a)
are nonempty, and there is equality in (0.3).
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If, for example, X ={1,2,...,n} then these add up to the *“‘so-called Harte
spectrum” [4] of the n-tuple a = (ay, as, . . . , a,); more generally A € C¥ is in criff’(a) if
and only if every finite restriction of A is in the left spectrum of the corresponding
restriction of @ € AX. Infinite indexing systems X have however the possibility of non-

trivial structure: thus ([2, Lemma 1], [3, Theorem 11.4.3]) we have the following result.

LEMMA 1. If » € C¥ is in the left or the right spectrum of a € AX, and if
a: X — A is either bounded, or continuous, or homomorphic, or linear, then so is
A X — C.

Proof. This is the one way spectral mapping theorem (0.3), together with the
spectral theory of a single element: for arbitrary x,x’, x” in X we find that A,,
Ay — Ay and p(Ay, Ay, Ay) are in o(ay), o(ay — ay,) and o p(ay, ay, a), respectively,
and hence we have

Aol < llaxll 5 1Ay — Al < llay —axll 5 1P, Ax, Ae)| < lplax, ay, ax)ll. (1.1)

The first of these inequalities transmits boundedness, the second continuity, and the
third ensures that (A, Ay, Ay») is subjected to any polynomial identity satisfied by
(axv Aay, ax”)- D

Thus, for example, if X = N and a = (a,) € £,(A4) then

reda) c CV=rety; (1.2)

if instead X = Q is a topological space and a € C(2, A), then
A€o (a) C CF'=1 € C(Q); (1.3)

if, in particular, X = Fis a Banach space and a € BL(F, A) then

red(a) < CF=n e F. (1.4)
In the ultimate special case ([2, Theorem 1]; [3, Theorem 11.4.3]) if a, = x for each
X € X = A, then the left and the right spectrum of « reduce to the Gelfand ‘maximal
ideal space’ of multiplicative linear functionals:

O_{j){t(a) — O_gght(a) — O,(A) (15)

In this note we would like to focus on the situation in which

o0
a=Y a,®e, € AQE (1.6)

n=1

belongs to a uniform cross-normed tensor product [3, Definition 11.7.1] of 4 with a
Banach space E; examples include operator matrices and continuous vector-valued
functions. Waelbroeck [5],[6] has looked here for a functional calculus involving
holomorphic functions in infinitely many variables. Evidently « induces a bounded
linear operator «, : ¥ i—v(«) from the dual space £* into 4, where we write
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an(¥) = Yl@) = ) Yle)a € A (1.7)
n=1

if e F* and « € A® E is given by (1.6). The spectrum of «a, € BL(F, A), with
F = E*, lies by (1.4) in the second dual £** of the space E, and would be a candidate
for the spectrum of the system o € 4 ® E; we would however prefer a spectrum lying
in the space F, writing more intuitively

o) =xeEi1g > AW(@ — y())). (1.8)
yeE*

oM@ =(xe E:1¢ Y (Y(a) - Y(x)4). (1.9)
YeE*

Thus the spectrum of « is essentially the intersection of the space £ = E* C E** with
the spectrum of «,. The good news is that, provided we stay in the ‘projective’ pro-
duct, the spectra of « and «, coincide.

THEOREM 2. [fa = ) 02 ay ® e, € A ® E with max,||a,|| < oo and ), |le,| < oo,
then

(ay) = o) € E* € B, 07" () = 0" ()" € E* € E™. 2.1)
Proof. 1f we write e": E* — £, for the operator which sends ¥ € E* to

(Y(eyn)) € €1, then each & € aff’(a) is ‘majorized’ [3, Definition 10.1.1] by e”:
EW)| < llallsle™ (Wl (2.2)

and hence by [1, Lemma 1] (cf. [3, Theorem 5.5.3]) factors through e”":

E=0oe" with e £} (2.3)

obtained by Hahn-Banach extension from the functional 6y : e"(E*) — C, defined
by setting 6y(e”(¥)) = (). Thus there is A € £, for which

o0
E=Y e) e EN (2.4)
n=1

O

When the element o€ A®E is commutative, in the sense that
{Y(a) : ¥ € E*} C A is commutative, this extends to all uniform products.

THEOREM 3. If @ € A ® E is commutative, then (2.1) holds. If, in particular, A is
commutative then

o/ (@) = of" (@) = {p(@) : ¢ € (AN}, (3.1)
where o(A) C A* is the ‘maximal ideal space’ of A and where if « € A® E and

o € o(A) we have
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o(a) = lim{z (ay)e; : Z a;®e — o} € E. (3.2)

jeJ jeJ
The Gelfand mapping

ai—a’: AQ E— C(o(A), E), (3.3)

is continuous, and the spectrum of @ € A® E is the range of the Gelfand transform
o” =)

Proof. Suppose first that the algebra 4 is commutative: if « € 4 ® E and if

g€ E* isin 0/"(a,) then

L > AW(a) — EW)). (3.4)

ey
By Gelfand theory [3, Theorem 9.6.3], there is ¢ € o(A4) for which

W@ —6W) 1 ¥ € EY) S ¢ (0), 3.5)
which means, if « € 4 ® E, that

im{) " gla)yie) : Y a;® e; — a} = &) for each € E*. (3.6)

jeJ jeJ
But this means that

= lim{(z go(a_,»)e_,-)A : Zaj ®e¢ — a} € EN C E*. (3.7)

jeJ jeJ

For the continuity observe that, with @« € 4 ® E and arbitrary ¢ € o(A4), we have

()] < supyy<i[¥(@)]. (3.8)

If more generally @ € A ® E is commutative, then this argument applies to the closed
(unital) subalgebra B C A generated by the elements {y/(«) : ¥ € E*}, so that

Ufﬂ(a) - 65;/"(01) C EM.

O

Theorem 3 survives if the algebra 4 is commutative modulo its radical, or if
o € A ® Eis for example ‘quasi-commutative’ [3, Definition 11.8.3], in the sense that
all the commutators ¥(a)f(x) — 6(a)¥ () commute with each ¢(«a). Theorem 2
sometimes holds for non commutative 4, nonreflexive E and arbitrary products.

ExXAMPLE 4. If E = ¢, so E** =2 £, and if

aeA®cy) S Ao co(A) S loo(A), 4.1)

https://doi.org/10.1017/5S0017089500020103 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500020103

ON VECTOR-VALUED SPECTRA 251

then there is implication

left

y € M) U o (@) C o=y € ¢. (4.2)

Proof. This result follows from Lemma 1.

The ‘polynomials’ of (0.3), specialised to the systems o, = (Y(a)),cp» are gen-
erated by “co-ordinates’ (zy)ycg+, and continue to act on the “E-valued” spectra
(1.8) and (1.9). In this context however there are more serious polynomials
P : E — F, induced by symmetric bounded multilinear operators:

N
P= ZP,, € Poly(E, F) with P,(x) = P)(x,x, ..., x) € Poly,(E, F)(x), (4.3)
n=0

where P : E" — F is bounded symmetric n-linear. Thus Poly,(E, F) = BL(E, F) is
just the space of bounded linear operators and Polyo(E, F) = F is the constants; a
product ¢ - T: x —>y(x)T(x) with ¢ € E* and T € BL(E, F) is a rather special kind
of element of Poly,(E, F). These ‘polynomials’ also act on the (projective) product
A Q E if we define (cf [S, Chapter VIII p. 127], [6, p. 106])

N 00
P@)=) Y a®@P(e)if a=) a,@ep, (4.4)
n=0 |k|=n m=0
where we write
e = (E,’kl sy Chyy v vs ek”) and di = Aj, A, - . . A, if k= k]kz .. .k,,. (4.5)

It has to be checked that P(«) is well-defined; then the spectral mapping theorem
holds.

THEOREM 5. If @« € A® E is arbitrary and if P: E — F is a polynomial, there is
inclusion

Po' (@) € 0 P(a) and Po"*" () € /" P(ax) | (5.1)
with equality if a is commutative.

Proof. We claim that, acting on 4 ® E, a weak remainder theorem (cf[3, Theorem
11.2.1]) is valid for polynomials P € Poly(E, F): for arbitary 6 € F* we have

6(P(a) — P(x)) € cl ) A(Y(@) — (). (5.2)

yeE*

It is clear that (5.2) holds if P is either a constant or a linear operator, and holds if
P =0+ R where Q and R are polynomials for which (5.2) holds. It is therefore
sufficient to establish (5.2) for P e Poly,(E, F) for each n e N. Generally if
P € Poly,1\(E,F),ifa =1 an®en € AR® E and x € E, we have
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P@)—Px)= Y (@®D(D_ an®P'(er. ¥ en) = 1® PY(er. ¥, x).  (53)
|k|+j|=n m=1

This remainder theorem gives the one way inclusion (5.1); if, in particular, « is
commutative then by [3, Theorem 11.4.4] together with (2.1)

y € 6" P(a) € F=>3x € E with (x,y) € o"/'(, P(c)) (5.4)
and by [3, Theorem 11.2.6]
(x, ) € 0"(a, P(@))=>y = P(x). (5.5)
To prove (5.5) we write Q(z, w) = w — P(z) and notice that

O(x.y) € 00 (@, P(@)) € 04 O, P(@)) = 0'3/(0) = {0}.
[
When 4 is commutative and we stay in the projective product, Waelbroeck [6]
establishes a functional calculus fi—fla) from functions ‘holomorphic’ near
o4(0) C E to A. If, in particular, E = B is another Banach algebra and the cross-

norm on 4 ® Eis such that A ® E = A ® B is again a Banach algebra, then there are
three kinds of ‘spectrum’ induced on @ € 4 ® B:

o4(@) € B; op(a) CA; oygpl@) CC. (5.6)

These are sometimes related. See [2, (2.4)].

THEOREM 6. If A and B are Banach algebras with A commutative, then for arbi-
trarya € AQ B

U,l:gB( ) = U left(b) be /é’ft(a)} 2;1;( )_U{ lzg,hr(b) be )lg.,/n(a)}. (61)

Proof. Recall [3, Theorem 11.7.5] that if @ € A¥ and b € BY are arbitrary there is
equality
ol a® 1,18 b) =0'(a) x o3 (b) : (6.2)

inclusion one way is obvious, since if for example ) _y a\.(ax — 1) = 1 then

Y@ @D =)@ D+ (@b b, —p)=101

xeX yeY

with b;, =0. Conversely if (A, u) is in the right hand side, so that
M=cl)  yA(ay— i) and N=cl}" _ B(b, — u,) are proper closed left ideals of
A and B, then by the Hahn-Banach theorem there are ¢ € 4* and 6 € B* for which
o(1) =1 =06(1) with (M) = {0} = 6(N). But now since the product 4 ® B is uni-
form, the linear functional ¢ ® 0 is well-defined and bounded on 4 ® B, and satisfies

(eR6)(1®1)=1with (0 ® O)(M ® B+ A® N) = {0}.
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Towards (6.1) suppose b € afﬂ(oe), so that by Theorem 3 there is ¢ € o(A4) for which

b = ¢(a). By (6.2) it follows from u € aff ‘o(a) that
(1) €L A1, 1@ ¢(a) € A" x C, (6.3)
or equivalently
(o, ) € (A0 1, ), (6.4)

since by [3, Theorem 11.3.5] @« — 1 ® ¢() is in the closed left ideal of 4 ® B gener-
ated by

A1 —pR1={(c—9(c)®1:ce A4}.

By the one way spectral mapping theorem (0.3) this gives u € aﬁ'{;B(a). Conversely
this implies by the two way spectral mapping theorem that there is ¢ € o(A4) for
which (6.4) holds; hence we have established (6.3), which by (6.2) gives u € af;/ "o(a),
with of course b = p(a) € aiff ). O

From Theorem 6 we can deduce that the spectrum of a commutative operator
matrix, an upper triangular operator matrix, or a continuous vector-valued func-
tion, is what it ought to be [3, Theorem 11.7.7; (11.7.7.13), (11.7.7.16)], and also give
an alternative proof of Allen’s theorem [3, Theorem 11.7.9] about holomorphic one
sided inverses. Specifically Theorem 6 offers a sort of vector-valued Gelfand theorem
for 4 ® B: if 4 is commutative then « is left, or right, invertible in 4 ® B if and only
if p(@) is left, or right, invertible in B for every ¢ € o(A).
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