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Abstract. Elements � 2 A
 E of the tensor product of a Banach algebra A
and a Banach space E induce systems f ��� :  2 E�g of elements of A indexed by
the dual space E�, whose joint spectrum belongs to the second dual E��. In this note
we investigate when the spectrum actually lies in E � E��, and extend the spectral
mapping theorem P�A��� � �AP��� to polynomial mappings P : E! F between
Banach spaces. When the algebra A is commutative and the Banach space E � B is
another algebra we also reach a sort of vector-valued Gelfand theory.
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If A is a complex Banach algebra, with identity 1, and �ax�x2X a family of ele-
ments in A, then the left and the right spectrum of a 2 AX are de®ned as subsets of
the corresponding families of complex numbers ([2];[3, De®nition 11.4.1]):

�leftA �a� � f� 2 CX : 1 62
X
x2X

A�ax ÿ �x�g; �0:1�

and

�rightA �a� � f� 2 CX : 1 62
X
x2X
�ax ÿ �x�Ag: �0:2�

Thus if, for example, � 2 CX is not in the left spectrum of a 2 AX there is b � �bx�x2X
in A, vanishing for all but ®nitely many x 2 X, for which

P
x2X bx�ax ÿ �x� � 1. The

right and left spectra are in a sense the same, being interchanged by ``reversal of
products''. We recall that they are compact subsets of CX, in the topology of point-
wise convergence on X, possibly empty, and ([3, Theorem 11.4.2]) subject to the one-
way spectral mapping theorem for `polynomials':

p�leftA �a� � �leftA p�a�; p�rightA �a� � �rightA p�a�; �0:3�

where a polynomial p � �py�y2Y : AX ! AY is a system of members of the free alge-
bra generated by the coordinates zx and the identity 1. If in particular the system
a � �ax�x2X is commutative then by [3, Theorem 11.4.4] the spectra �leftA �a�, �rightA �a�
are nonempty, and there is equality in (0.3).
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If, for example, X � f1; 2; . . . ; ng then these add up to the ``so-called Harte
spectrum'' [4] of the n-tuple a � �a1; a2; . . . ; an�; more generally � 2 CX is in �leftA �a� if
and only if every ®nite restriction of � is in the left spectrum of the corresponding
restriction of a 2 AX. In®nite indexing systems X have however the possibility of non-
trivial structure: thus ([2, Lemma 1], [3, Theorem 11.4.3]) we have the following result.

Lemma 1. If � 2 CX is in the left or the right spectrum of a 2 AX, and if
a : X! A is either bounded, or continuous, or homomorphic, or linear, then so is
� : X! C.

Proof. This is the one way spectral mapping theorem (0.3), together with the
spectral theory of a single element: for arbitrary x; x0; x00 in X we ®nd that �x,
�x0 ÿ �x and p��x; �x0 ; �x00 � are in ��ax�, ��ax0 ÿ ax� and � p�ax; ax0 ; ax00 �, respectively,
and hence we have

j�xj � kaxk ; j�x0 ÿ �xj � kax0 ÿ axk ; jp��x; �x0 ; �x00 �j � kp�ax; ax0 ; ax00 �k: �1:1�

The ®rst of these inequalities transmits boundedness, the second continuity, and the
third ensures that ��x; �x0 ; �x00 � is subjected to any polynomial identity satis®ed by
�ax; ax0 ; ax00 �. &

Thus, for example, if X � N and a � �an� 2 `1�A� then

� 2 �leftA �a� � CN�)� 2 `1; �1:2�

if instead X � 
 is a topological space and a 2 C�
;A�, then

� 2 �leftA �a� � C
�)� 2 C�
�; �1:3�

if, in particular, X � F is a Banach space and a 2 BL�F;A� then

� 2 �leftA �a� � CF�)� 2 F�: �1:4�

In the ultimate special case ([2, Theorem 1]; [3, Theorem 11.4.3]) if ax � x for each
x 2 X � A, then the left and the right spectrum of a reduce to the Gelfand `maximal
ideal space' of multiplicative linear functionals:

�leftA �a� � �rightA �a� � ��A�: �1:5�

In this note we would like to focus on the situation in which

� �
X1
n�1

an 
 en 2 A
 E �1:6�

belongs to a uniform cross-normed tensor product [3, De®nition 11.7.1] of A with a
Banach space E; examples include operator matrices and continuous vector-valued
functions. Waelbroeck [5],[6] has looked here for a functional calculus involving
holomorphic functions in in®nitely many variables. Evidently � induces a bounded
linear operator �^ :  7! ��� from the dual space E� into A, where we write
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�^� � �  ��� �
X1
n�1

 �en�an 2 A �1:7�

if  2 E� and � 2 A
 E is given by (1.6). The spectrum of �^ 2 BL�F;A�, with
F � E�, lies by (1.4) in the second dual E�� of the space E, and would be a candidate
for the spectrum of the system � 2 A
 E; we would however prefer a spectrum lying
in the space E, writing more intuitively

�leftA ��� � fx 2 E : 1 62
X
 2E�

A� ��� ÿ  �x��g; �1:8�

�rightA ��� � fx 2 E : 1 62
X
 2E�
� ��� ÿ  �x��Ag: �1:9�

Thus the spectrum of � is essentially the intersection of the space E � E^ � E�� with
the spectrum of �^. The good news is that, provided we stay in the `projective' pro-
duct, the spectra of � and �^ coincide.

Theorem 2. If � �P1n�1 an 
 en 2 A
 E with maxnkank <1 and
P

n kenk <1,
then

�leftA ��^� � �leftA ���^ � E^ � E��; �rightA ��^� � �rightA ���^ � E^ � E��: �2:1�

Proof. If we write e^ : E� ! `1 for the operator which sends  2 E� to
� �en�� 2 `1, then each � 2 �leftA ��� is `majorized' [3, De®nition 10.1.1] by e^:

j�� �j � kak1je^� �j; �2:2�

and hence by [1, Lemma 1] (cf. [3, Theorem 5.5.3]) factors through e^:

� � � � e^ with � 2 `�1 �2:3�

obtained by Hahn-Banach extension from the functional �0 : e^�E�� ! C, de®ned
by setting �0�e^� �� � �� �. Thus there is � 2 `1 for which

� �
X1
n�1

�ne
^
n 2 E^: �2:4�

&

When the element � 2 A
 E is commutative, in the sense that
f ��� :  2 E�g � A is commutative, this extends to all uniform products.

Theorem 3. If � 2 A
 E is commutative, then (2.1) holds. If, in particular, A is
commutative then

�leftA ��^� � �rightA ��^� � f'��� : ' 2 ��A�g^; �3:1�

where ��A� � A� is the `maximal ideal space' of A and where if � 2 A
 E and
' 2 ��A� we have
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'��� � limf
X
j2J
'�aj�ej :

X
j2J

aj 
 ej ! �g 2 E: �3:2�

The Gelfand mapping

� 7!�^ : A
 E! C���A�;E�; �3:3�

is continuous, and the spectrum of � 2 A
 E is the range of the Gelfand transform
�^ : ' 7!'���.

Proof. Suppose ®rst that the algebra A is commutative: if � 2 A
 E and if
� 2 E�� is in �leftA ��^� then

1 62
X
 2E�

A� ��� ÿ �� ��: �3:4�

By Gelfand theory [3, Theorem 9.6.3], there is ' 2 ��A� for which

f ��� ÿ �� � :  2 E�g � 'ÿ1�0�; �3:5�

which means, if � 2 A
 E, that

limf
X
j2J
'�aj� �ej� :

X
j2J

aj 
 ej ! �g � �� � for each  2 E�: �3:6�

But this means that

� � limfÿX
j2J
'�aj�ej

�^
:
X
j2J

aj 
 ej ! �g 2 E^ � E��: �3:7�

For the continuity observe that, with � 2 A
 E and arbitrary ' 2 ��A�, we have
j'���j � supk k�1j ���j: �3:8�

If more generally � 2 A
 E is commutative, then this argument applies to the closed
(unital) subalgebra B � A generated by the elements f ��� :  2 E�g, so that

�leftA ��� � �leftB ��� � E^:
&

Theorem 3 survives if the algebra A is commutative modulo its radical, or if
� 2 A
 E is for example `quasi-commutative' [3, De®nition 11.8.3], in the sense that
all the commutators  ������� ÿ ���� ��� commute with each ����. Theorem 2
sometimes holds for non commutative A, nonre¯exive E and arbitrary products.

Example 4. If E � c0, so E�� � `1, and if

� 2 A
 c0 � A� c0 � c0�A� � `1�A�; �4:1�
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then there is implication

y 2 �leftA ��� [ �rightA ��� � `1�)y 2 c0: �4:2�

Proof. This result follows from Lemma 1.

The `polynomials' of (0.3), specialised to the systems �^ � � ���� 2E� , are gen-
erated by ``co-ordinates'' �z � 2E� , and continue to act on the ``E-valued'' spectra
(1.8) and (1.9). In this context however there are more serious polynomials
P : E! F, induced by symmetric bounded multilinear operators:

P �
XN
n�0

Pn 2 Poly�E;F� with Pn�x� � P_n �x; x; . . . ; x� 2 Polyn�E;F��x�; �4:3�

where P_n : En! F is bounded symmetric n-linear. Thus Poly1�E;F� � BL�E;F� is
just the space of bounded linear operators and Poly0�E;F� � F is the constants; a
product  � T : x 7! �x�T�x� with  2 E� and T 2 BL�E;F� is a rather special kind
of element of Poly2�E;F�. These `polynomials' also act on the (projective) product
A
 E if we de®ne (cf [5, Chapter VIII p. 127], [6, p. 106])

P��� �
XN
n�0

X
jkj�n

ak 
 P_n �ek� if � �
X1
m�0

am 
 em; �4:4�

where we write

ek � �ek1 ; ek2 ; . . . ; ekn� and ak � ak1ak2 . . . akn if k � k1k2 . . . kn: �4:5�

It has to be checked that P��� is well-de®ned; then the spectral mapping theorem
holds.

Theorem 5. If � 2 A
 E is arbitrary and if P : E! F is a polynomial, there is
inclusion

P�leftA ��� � �leftA P��� and P�rightA ��� � �rightA P��� ; �5:1�

with equality if � is commutative.

Proof. We claim that, acting onA
 E, a weak remainder theorem (cf [3, Theorem
11.2.1]) is valid for polynomials P 2 Poly�E;F�: for arbitary � 2 F� we have

��P��� ÿ P�x�� 2 cl
X
 2E�

A� ��� ÿ  �x��: �5:2�

It is clear that (5.2) holds if P is either a constant or a linear operator, and holds if
P � Q� R where Q and R are polynomials for which (5.2) holds. It is therefore
su�cient to establish (5.2) for P 2 Polyn�E;F� for each n 2 N. Generally if
P 2 Polyn�1�E;F�, if � �

P1
m�1 am 
 em 2 A
 E and x 2 E, we have
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P��� ÿ P�x� �
X
jkj�jjj�n

�ak 
 1�ÿX1
m�1

am 
 P_�ek; xj; em� ÿ 1
 P_�ek; xj; x�
�
: �5:3�

This remainder theorem gives the one way inclusion (5.1); if, in particular, � is
commutative then by [3, Theorem 11.4.4] together with (2.1)

y 2 �leftA P��� � F�)9x 2 E with �x; y� 2 �leftA ��;P���� �5:4�

and by [3, Theorem 11.2.6]

�x; y� 2 �leftA ��;P�����)y � P�x�: �5:5�

To prove (5.5) we write Q�z;w� � wÿ P�z� and notice that

Q�x; y� 2 Q�leftA ��;P���� � �leftA Q��;P���� � �leftA �0� � f0g:
&

When A is commutative and we stay in the projective product, Waelbroeck [6]
establishes a functional calculus f 7!f��� from functions `holomorphic' near
�A��� � E to A. If, in particular, E � B is another Banach algebra and the cross-
norm on A
 E is such that A
 E � A
 B is again a Banach algebra, then there are
three kinds of `spectrum' induced on � 2 A
 B:

�A��� � B ; �B��� � A ; �A
B��� � C : �5:6�

These are sometimes related. See [2, (2.4)].

Theorem 6. If A and B are Banach algebras with A commutative, then for arbi-
trary � 2 A
 B

�leftA
B��� �
[
f�leftB �b� : b 2 �leftA ���g; �rightA
B��� �

[
f�rightB �b� : b 2 �rightA ���g: �6:1�

Proof. Recall [3, Theorem 11.7.5] that if a 2 AX and b 2 BY are arbitrary there is
equality

�leftA
B�a
 1; 1
 b� � �leftA �a� � �leftB �b� : �6:2�

inclusion one way is obvious, since if for example
P

x2X a0x�ax ÿ �x� � 1 thenX
x2X
�a0x 
 1���ax ÿ �x� 
 1� �

X
y2Y
�1
 b0y��1
 �by ÿ �y�� � 1
 1

with b0y � 0. Conversely if ��; �� is in the right hand side, so that
M � cl

P
x2X A�ax ÿ �x� and N � cl

P
y2Y B�by ÿ �y� are proper closed left ideals of

A and B, then by the Hahn-Banach theorem there are ' 2 A� and � 2 B� for which
'�1� � 1 � ��1� with '�M� � f0g � ��N�. But now since the product A
 B is uni-
form, the linear functional '
 � is well-de®ned and bounded on A
 B, and satis®es

�'
 ���1
 1� � 1 with �'
 ���M
 B� A
N� � f0g:
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Towards (6.1) suppose b 2 �leftA ���, so that by Theorem 3 there is ' 2 ��A� for which
b � '���. By (6.2) it follows from � 2 �leftA '��� that

�'; �� 2 �leftA
B�A
 1; 1
 '���� � A� � C; �6:3�

or equivalently

�';�� 2 �leftA
B�A
 1; ��; �6:4�

since by [3, Theorem 11.3.5] �ÿ 1
 '��� is in the closed left ideal of A
 B gener-
ated by

A
 1ÿ '
 1 � f�cÿ '�c�� 
 1 : c 2 Ag:

By the one way spectral mapping theorem (0.3) this gives � 2 �leftA
B���. Conversely
this implies by the two way spectral mapping theorem that there is ' 2 ��A� for
which (6.4) holds; hence we have established (6.3), which by (6.2) gives � 2 �leftB '���,
with of course b � '��� 2 �leftA ���. &

From Theorem 6 we can deduce that the spectrum of a commutative operator
matrix, an upper triangular operator matrix, or a continuous vector-valued func-
tion, is what it ought to be [3, Theorem 11.7.7; (11.7.7.13), (11.7.7.16)], and also give
an alternative proof of Allen's theorem [3, Theorem 11.7.9] about holomorphic one
sided inverses. Speci®cally Theorem 6 o�ers a sort of vector-valued Gelfand theorem
for A
 B: if A is commutative then � is left, or right, invertible in A
 B if and only
if '��� is left, or right, invertible in B for every ' 2 ��A�.
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