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In the current work, we study a stochastic parabolic problem. The presented problem is motivated
by the study of an idealised electrically actuated MEMS (Micro-Electro-Mechanical System) device
in the case of random fluctuations of the potential difference, a parameter that actually controls the
operation of MEMS device. We first present the construction of the mathematical model, and then,
we deduce some local existence results. Next for some particular versions of the model, relevant to
various boundary conditions, we derive quenching results as well as estimations of the probability
for such singularity to occur. Additional numerical study of the problem in one dimension follows,
which also allows the further investigation the problem with respect to its quenching behaviour.
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1 Introduction

In the present work, we investigate the following stochastic semilinear parabolic problem

∂u

∂t
= �u + λ

(1 − u)2
+ κ · noise term, x ∈ D, t > 0, (1.1a)

Bu = βc, x ∈ ∂D, t > 0, (1.1b)

0 ≤ u(x, 0) = u0(x) < 1, x ∈ D, (1.1c)

together with some of its variations rise a mathematical interest. Moreover, λ and κ are given
positive constants, and D is a bounded subset of R

d , d = 1, 2, 3 with smooth boundary. In
addition, βc might be a positive or zero constant whilst the boundary operator B gives rise to
Robin boundary conditions, that is Bu := ∂u

∂ν
+ βu, for some positive constant β.
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We remark that, by setting β → ∞ and βc = 0, we obtain Dirichlet boundary conditions. On
the other hand, for 0 < β < ∞ and βc = 0 (homogeneous) Robin boundary conditions arise. The
case of nonhomogeneous Robin boundary conditions, that is when βc > 0, is also considered
which has a significant theoretical interest as well. For the noise term in (1.1a), we consider two
alternative cases. Initially, we consider a multiplicative noise, reflecting the fact of the occurrence
of possible fluctuations into the physical parameters of the MEMS device (see Section 2) of the
form κ(1 − u)∂tW (x, t). The term ∂tW (x, t) denotes by convention the formal time derivative of a
real valued Wiener process W (x, t) on a stochastic basis {�, F , Ft, P} with filtration (Ft)t∈[0,T] ;
W (x, t) is defined rigorously in Section 3. On the other hand, the adopted approach in Section 5
is only applicable for the case of a multiplicative noise of the form κ(1 − u)dBt, where Bt stands
for the one-dimensional Brownian motion, again defined on the stochastic basis {�, F , Ft, P}.

Notably, towards the limit κ → 0+ problem (1.1) is reduced to its deterministic version,

∂u

∂t
= �u + λ

(1 − u)2
, x ∈ D, t > 0, , (1.2a)

Bu = 0, x ∈ ∂D, t > 0, , (1.2b)

0 ≤ u(x, 0) = u0(x) < 1, x ∈ D, (1.2c)

which, for homogeneous boundary conditions, has been extensively studied in [15, 16, 22, 28,
32]. For hyperbolic modifications of the deterministic variation of (1.1), an interested reader can
check [17, 23, 30]. Finally, non-local alterations of parabolic and hyperbolic problems arising in
MEMS technology are treated in [12, 14, 19, 21, 20, 29, 31, 32, 41, 42, 43].

Due to the presence of the term f (u) := 1
(1−u)2 in (1.2a), the occurrence of a singular behaviour,

called quenching, is observed when maxx∈D u → 1. Such a singular behaviour is closely asso-
ciated with the mechanical phenomenon of touching down. It is worth investigating whether
the stochastic problem (1.1) can perform analogous singular (quenching) behaviour. Indeed, the
main purpose of the current paper is twofold: first to examine the circumstances under which
quenching occurs for the stochastic problem (1.1), which is actually a stochastic perturbation of
(1.1) derived by a random perturbation of the tuning parameter λ, cf. Section 2. Secondly, we
intend to obtain, using both analytical and numerical methods, estimates of the probability of
quenching as well as of the quenching time which is actually a random variable. Apart from its
practical importance, such a consideration has its own theoretical importance in the context of
singular stochastic PDEs (SPDEs).

The structure of the current work is as follows. In the next section, a derivation of the stochas-
tic model (1.1) is delivered. In Section 3, we provide the main mathematical tools from the field
of stochastic calculus used through the manuscript as well as give the main concepts of solu-
tions for the stochastic problem (1.1) and its considered variations. Section 4 deals with the local
existence of (1.1), for a general space-time noise, whilst in Section 5, we appeal to the key prop-
erties of exponential functionals of Brownian motion Bt to derive estimates of the quenching
time as well as estimates of the quenching probability for stochastic problem (1.1) and some of
its variations. As far as we know, this is the first time in the literature of SPDEs where such
an approach is used for MEMS nonlinearities. A numerical approach is delivered in Section 6,
again for a general space-time noise, which verifies through various numerical experiments the
analytical results of the previous sections for nonhomogeneous conditions. Furthermore, the
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FIGURE 1. Schematic representation of a MEMS device

numerical study also provides quenching results for the case of homogeneous boundary condi-
tions, which is not treated via the analysis of Section 5. The current work closes with discussion
of the importance of the obtained results in Section 7.

2 The mathematical model

Our main motivation for investigating problem (1.1) is its close connection with the opera-
tion of some electrostatic actuated MEMS. By the term ‘MEMS’, we more precisely refer to
precision devices which combine both mechanical processes with electrical circuits. MEMS
devices range in size from millimetres down to microns and involve precision mechanical com-
ponents which can be constructed using semiconductor manufacturing technologies. Indeed,
the last decade various electrostatic actuated MEMS have been developed and used in a
wide variety of devices applied as sensors and have fluid-mechanical, optical, radio frequency
(RF), data storage, and biotechnology applications. Interesting examples of microdevices of
this kind include microphones, temperature sensors, RF switches, resonators, accelerometers,
micromirrors, micropumps, microvalves, data storage devices etc., [32, 49, 54].

The key part of such a electrostatic actuated MEMS device usually consists of an elastic plate
(or membrane) suspended above a rigid ground one. Regularly, the elastic plate is held fixed at
two ends whilst the other two edges remain free to move, see Figure 1.

When a potential difference V is applied between the elastic membrane and the rigid ground
plate, then a deflection of the membrane towards the plate is observed. Assuming now that the
width d of the gap, between the membrane and the bottom plate, is small compared to the device
length L, then the deformation of the elastic membrane u, after proper scaling, can be described
by the dimensionless equation

∂u

∂t
= �u + λ̃ h(x, t)

(1 − u)2
, x ∈ D, t > 0, (2.1)
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see [32, 49, 50]. Here the term h(x, t) describes the varying dielectric properties of the mem-
brane and for some elastic materials can be taken to be constant; for simplicity henceforth, we
assume that h(x, t) ≡ 1, although the general case is again considered in Section 5. Moreover, the
parameter λ appearing in (2.1) equals to

λ̃ = V 2L2ε0

2T 
3
,

and is actually the tuning parameter of the considered MEMS device. Note that T stands for
the tension of the elastic membrane, 
 is the characteristic width of the gap between the mem-
brane and the fixed ground plate (electrode), whilst ε0 is the permittivity of free space. MEMS
engineers are interested in identifying under which conditions the elastic membrane could touch
the rigid plate, a mechanical phenomenon usually called touching down and could lead to the
destruction of MEMS device. Touching down can be described via model (2.1) and occurs when
the deformation u reaches the value 1; such a situation in the mathematical literature is known as
quenching (or extinction).

Experimental observations, see [40, 54], show a significant uncertainty regarding the values
of V and T . More specifically, V fluctuates around an average value V0 (corresponding to some
λ > 0) inferring the parameter λ̃ = λ + σ η(x, t) (or alternatively λ̃ = λ + σ η(t) if V fluctuates
only in time). Note that σ > 0 is a coefficient measuring the intensity of the fluctuation (noise
term) η(x, t) (or η(t).) Naturally, the coefficient σ depends on the deformation u (that is σ ≡
σ (u)), whereas a feasible choice for the noise could be a space-time white noise, that is η(x, t) =
∂tW (x, t), and thus, we consider λ̃ = λ + σ (u)∂tW (x, t). Alternatively, if the noise is chosen as
η(t) = dBt, where Bt is the standard one-dimensional Brownian motion, then we end up with
λ̃ = λ + σ (u)dBt.

It would be compelling, from the applications point of view, to investigate the impact of uncer-
tainty on the phenomenon of touching down. Accordingly, it would be feasible to choose the
diffusion coefficient σ (u) as a power of the difference 1 − u, that is σ (u) = κ(1 − u)ϑ , measur-
ing the distance to quenching (touching down), where κ is a positive constant with rather small
values to guarantee the positivity of λ.

Next, we choose θ = 3 to derive

λ̃

(1 − u)2
= λ

(1 − u)2
+ κ(1 − u)∂tW

or alternatively

λ̃

(1 − u)2
= λ

(1 − u)2
+ κ(1 − u)dBt.

Thus, under some imposed uncertainty model (2.1) can be transformed to (1.1a). Notably, the
choice θ = 3 is made since it leads to a linear type diffusion term for which case the local exis-
tence theory is well established for a general Lipschitz nonlinearity, cf [8, 33], and [27] for the
non-Lipschitz nonlinearity (1 − u)−2. Also, for the case of a model with a general diffusion term
σ (u) the interested reader can check [27]. When the two edges of the membrane are attached
to a pair of torsional and translational springs, modelling a flexible nonideal support [12, 54],
see also Figure 2, then homogeneous boundary conditions of the form (1.1b), with βc = 0, are
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FIGURE 2. Schematic representation of a MEMS device with support nonideal and subject to external
forces.

imposed together with the stochastic equation for the deformation u and complemented with
initial condition (1.1c).

The case of having βc > 0 may arise as well with a configuration where the support or can-
tilever of MEMS devises might be nonideal and flexible. More specifically, considering the
situation in which together with the spring force at the edges of the membrane we also have
a significant external force opposite to the spring force, for example due to gravity, cf. [54]. The
latter consideration would result in a boundary condition of the form ∂u

∂ν
= −βu + βc where βc

stands for this external force. For simplicity and without loss of generality, especially regarding
the analysis in Section 5, we may take βc to be of the same magnitude as β. Then, we end up
with a nonhomogeneous boundary condition of the form ∂u

∂ν
= β(1 − u) for some β > 0.

Notably, the mathematical model (1.1a), as a stochastic perturbation of (2.1), is built up to
capture possible destructions due to the uncertainty in parameter measurements of the MEMS
system. Thus, under these circumstances is more realistic compared to (2.1).

3 Preliminaries

The current Section is devoted to the introduction of the main mathematical concepts and tools
from the field of stochastic calculus that will be used throughout the manuscript. Henceforth, C,
K will denote positive constants whose values might change from line to line.

We first consider the stochastic basis {�, F , Ft, P} with filtration (Ft)t∈[0,T] . Next, take
H := L2(D) and let also Q ∈L1(H) be a linear non-negative definite and symmetric operator
which has an orthonormal basis χj(x) ∈ H , j = 1, 2, 3, . . . of eigenfunctions with corresponding
eigenvalues γj ≥ 0, j = 1, 2, 3, . . . such that Tr(Q) =∑∞

j=1 γj < ∞; that is Q is of trace class.
Then W (·, t) is a Q-Wiener process if and only if

W (x, t) =
∞∑

j=1

γ
1/2
j χj(x)βj(t), almost surely (a.s.) , (3.1)

where βj(t) are independent and identically distributed (i.i.d) Ft-Brownian motions and the
series converges in L2(�, H), cf. [7]. It is worth noting that the eigenfunctions {χj(x)}∞j=1

may be different from the eigenfunctions {φj(x)}∞j=1 of the elliptic operator A = −� : D(A) =
W 2,2(D) ∩ W 1,2(D) ⊂ H → H associated with boundaries conditions of the form (1.1b) and is
self-adjoint, positive definite with compact inverse. Note that the trace class operator Q is also a
Hilbert-Schmidt operator and then we denote Q ∈L2(H).
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For such an operator Q ∈L2(H) with Tr(Q) < ∞, there exists a kernel q(x, y) such that

(Qu)(x) :=
∫

D
q(x, y)u(y) dy, for any x ∈ D, u ∈ H ,

see [7, p. 42-43] and [37, Definition 1.64]. The kernel q(x, y) is also called the covariance function
of the Q-Wiener process W (x, t).

Let X be a Banach space endowed with the norm ‖ · ‖X we then define the following Hilbert
space

L0
2(H ; X ) =

⎧⎨⎩π ∈ L(H , X ) :
∞∑

j=1

‖πQ1/2(φj)‖2
X =

∞∑
j=1

γj‖π (φj)‖2
X < ∞

⎫⎬⎭ ,

where L(H , X ) denotes the space of all bounded operators from H to X . L0
2(H ; X ) is equipped

with the norm ‖π‖L0
2
=
(∑∞

j=1 γj‖π (φj)‖2
X

)1/2
. For � : [0, T] → L0

2(H , X ), the stochastic inte-

gral
∫ T

0 �(t) dW (x, t) is well defined, [8].
For the case of a one-dimensional Brownian motion Bt, we recall that Itô’s formula (see [35,

Theorem 4.16 page 112]) entails

F(Bt) − F(B0) =
∫ t

0
F′(Bs)dBs + 1

2

∫ t

0
F′′(Bs)ds, (3.2)

for any function F ∈ C2(R), which in differential form reads

dF(Bt) = F′(Bt)dBt + 1

2
F′′(Bt)dt.

Closing the current section, we recall the integration by parts formula for stochastic processes.
Indeed, if Xt and Yt are Itô stochastic processes given by

Xt = X0 +
∫ t

0
�s ds +

∫ t

0
�s dBs and Yt = Y0 +

∫ t

0
�̃s ds +

∫ t

0
�̃s dBs

then

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs + [X , Y ]t , t ∈ [0, T], (3.3)

where the last term in (3.3) is the quadratic variation of Xt, Yt and is defined as

[X , Y ]t :=
∫ t

0
�s�̃s ds, (3.4)

cf. [35, page 114].

4 Local Existence

According to the setting introduced to the previous section, then problem (1.1), for a space-time
Wiener perturbation, can be written in the form of the following Itô problem

dut = (�ut + λf (ut)) dt + σ (ut)∂tW , x ∈ D, t > 0, (4.1a)

0 ≤ u0 < 1, almost surely (a.s.), (4.1b)
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where f (v) := (1 − v)−2, σ (v) := κ(1 − v) and W = W (x, t) is the space-time Wiener process
defined by (3.1). The local existence theory is developed for this general model (4.1); the latter
model is also used for the numerical study demonstrated in Section 6.

Note that, σ : H →L2
0 satisfies a (global) Lipschitz condition whilst it can be easily checked

that f : H → H , does not satisfy a Lipschitz condition, but only locally.
Then, ut := u(·, t) can be interpreted as a predictable H−valued stochastic process. Next

recalling that A = −� : D(A) = W 2,2(D) ∩ W 1,2(D) ⊂ H → H then −A is a generator of an ana-
lytic semigroup G(t) = e−tA on H . Notably, if homogeneous Dirichlet boundary conditions are
considered then D(A) = W 2,2(D) ∩ W 1,2

0 (D) and again an analytic semigroup is generated by −A.
If we set z = 1 − u, then z satisfies

∂z

∂t
= �z − λ

z2
− κz∂tW , x ∈ D, t > 0, (4.2a)

B(1 − z) = βc x ∈ ∂D, t > 0, (4.2b)

0 < z0(x) := z(x, 0) = 1 − u0(x) = ξ (x) ≤ 1, x ∈ D. (4.2c)

In particular, if u = 0 on �T this results in z = 1 for condition (4.2b), or otherwise into ∂z
∂ν

+ βz =
0 if u satisfies the boundary condition ∂u

∂ν
= β(1 − u).

Accordingly, Itô problem (4.1) is written equivalently as follows:

dzt =
(

�zt − λ

z2
t

)
dt − κzt∂tW , x ∈ D, t > 0, (4.3a)

0 < z0 = ξ ≤ 1, a.s. x ∈ D . (4.3b)

In the sequel, we focus on the investigation of (4.3) and we only come back to (4.1) in Section 6
where its numerical investigation is delivered.

Definition 4.1 A stopping time τ : � → (0, ∞) with respect to the filtration {Ft, t ≥ 0} is a
quenching time of a solution z of (4.3) if

lim
t→τ

inf
x∈D

|z(x, t)| = 0, a.s. on the event {τ < ∞}, (4.4)

or equivalently

P

[
inf

(x,t)∈D×[0,τ )
|z(x, t)| > 0

]
= 1, a.s. on the event {τ < ∞}. (4.5)

We will write τ = +∞ if τ > t for all t > 0.

Below we introduce some concepts of solutions for problem (4.3) that will be used through
the manuscript.

Definition 4.2 A predictable H−valued stochastic process {zt : t ∈ [0, τ )} is called a weak
solution of problem (4.3) if for any v ∈D(A) and for any t ∈ [0, τ ),

(zt, v) = (z0, v) +
∫ t

0
[−(zs, Av) + (λ̃f (zs), v)]ds +

∫ t

0
(̃σ (zs)dWs, v), P− a.s., (4.6)
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where f̃ (z) := − 1
z2 and σ̃ (z) = −κz. Furthermore, (·, ·) stands for the inner product into Hilbert

space H = L2(D). Note that the stochastic integral
∫ t

0 (̃σ (us)dWs, v) is well defined, cf. [7,
Theorem 2.4].

Definition 4.3 A predictable H−valued stochastic process {zt : t ∈ [0, τ )} is called a mild solution
of (4.3) if for any t ∈ [0, τ ), there holds

zt = G(t)z0 + λ

∫ t

0
G(t − s)̃f (zs)ds +

∫ t

0
G(t − s)̃σ (zs)dWs, P− a.s. and a.e. in D. (4.7)

Remark 4.4 It is evident from the above definitions that any solution of problem (4.3) ceases to
exist as soon as it hits 0 almost surely for some x ∈ D, cf. [44, 45, 46] Such a phenomenon, which
is defined more rigorously in the next section, will be called quenching.

Remark 4.5 Notably, any weak (variational) solution is a mild solution of (4.3) under the
assumption of the local Lipschitz continuity of f̃ , see [24]. Conversely, by appealing to a stochas-
tic Fubini theorem, cf. [51, Theorem 2.6], we get that any mild solution of (4.3) is also a weak
solution. Indeed, the weak formulation (4.6) will be used in section 5 for the investigation of the
quenching behaviour.

Existence and uniqueness of a solution for problem (4.3) is guaranteed by the following:

Theorem 4.6 For any initial data z0 ∈ L2(�, D(A)) such that 0 < z0 ≤ 1 almost surely there exists
T > 0 such that problem (4.3) has a unique mild solution in [0, T).

Proof. The proof follows closely the approach developed in [46] and so it is kept short.
First, note that f̃ is not (globally) Lipshcitz continuous, and thus, classical existence results,
cf. [7, Theorem 6.5] or [8, Theorem 7.5], are not applicable straight away to problem (4.3). To
overcome this difficulty, we then define:

f̃n(z) := − 1

(max{z, 1
n })2

,

which is Lipschitz continuous and set τn be the first time t so that infx∈D |z(x, t)| ≤ 1
n . It is readily

seen that {τn}∞n=1 is a decreasing sequence.
Then by virtue of [7, Theorem 6.5] and [8, Theorem 7.5] or using an approach introduced to

[44], we obtain that Itô problem

dzn
t = (

�zn
t + f̃ (zn

t )dt
)+ σ̃ (zn

t )∂tW , x ∈ D, t > 0,

0 < zn
0 = ξ ≤ 1, a.s. x ∈ D ,

has a unique mild solution

zn
t = G(t)zn

0 + λ

∫ t

0
G(t − s)̃f (zn

s )ds +
∫ t

0
G(t − s)̃σ (zn

s )dWs ,

for any n = 1, 2, . . . , which also remains bounded within its existence interval.
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However, since f̃ (z) = − 1
z2 for z ≥ 1

n , it arises that z(x, t) = zn(x, t) for t ≤ τn where z is any
solution of Itô problem (4.3). Set now T = limn→∞ τn then 0 < T < ∞ since the initial data z0

is strictly positive almost surely; hence, we infer existence and uniqueness of mild solution for
(4.3) in the time interval [0, T).

Throughout the current work, the following variation of problem (4.1) is also investigated

dut = (g(t)�ut + λh(x, t)f (ut)) dt + κ(t)(1 − ut)∂tW , x ∈ D, t > 0, (4.8a)

0 ≤ u0 < 1, a.s. x ∈ D, (4.8b)

where g, κ : R+ →R+ and h : D ×R+ →R+ are continuous and bounded functions. It is also
assumed that g ∈ C1(R+).

Setting z = 1 − u then z solves the following Itô problem

dzt =
(
g(t)�zt − λh(x, t)z−2

t

)
dt − κ(t)zt∂tW , x ∈ D, t > 0, (4.9a)

0 < z0 = ξ ≤ 1, a.s. x ∈ D. (4.9b)

Remarkably, under the given assumptions for g, cf. [48], then the Green’s function G
associated with the deterministic problem

ζt = g(t)�ζ , x ∈ D, t > 0,

B(ζ ) = βc, x ∈ ∂D, t > 0,

0 ≤ ζ (x, 0) = ζ0(x) < 1, x ∈ D,

exists and satisfies the growth conditions∣∣∂m
x ∂


t G(x, t; y, s)
∣∣≤ c(t − s)−

d+|m|+2

2 exp

[
−|x − y|2

t − s

]
, (4.10)

where m = (m1, ..., md) ∈N
N , 
 ∈N and |m| + 2
 ≤ 2, |m| =∑N

j=1 mj.
Then, we define the corresponding semigroup E(t) on H = L2(D) as follows

E(t)w(x) :=
∫

D
G(x, t; y, 0) w(y)dy for any x ∈ D and t > 0. (4.11)

A stopping time τ for problem (4.9) is defined again by (4.4) or via (4.5).
Next, we define the notion of weak and mild solutions for problem (4.9).

Definition 4.7 A predictable H−valued stochastic process {zt : t ∈ [0, τ )} is called a weak
solution of problem (4.9) if for any v ∈D(A) and for any t ∈ [0, τ ),

(zt, v) = (z0, v) +
∫ t

0
[−g(s)(zs, Av) + λ(h(·, s)̃f (zs), v)]ds +

∫ t

0
(̃σ1(zs)dWs, v), P− a.s.,

(4.12)
where σ̃1(z) := −κ(t)z clearly satisfies a Lispchitz condition for κ(t) bounded.
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Definition 4.8 A predictable H−valued stochastic process {zt : t ∈ [0, τ )} is called a mild solution
of (4.9) if for any t ∈ [0, τ ), there holds

zt = E(t)z0 + λ

∫ t

0
E(t − s)h(·, s)̃f (zs)ds +

∫ t

0
E(t − s)̃σ1(zs)dWs, P− a.s. and a.e. in D .

(4.13)

Using an approach similar to Theorem 4.6, we guarantee the existence and uniqueness of a
mild solution for the Itô problem (4.9). Such a solution is also proven to be a weak solution by
virtue of a stochastic Fubini theorem, see also [51]. Again any solution to (4.9) ceases to exist as
soon as it hits the zero value.

It is worth noting that the more general problem

dzt = (�zt + f (zt)) dt + σ (zt)∂tW , x ∈ D, t > 0, (4.14)

0 < z0 = ξ ≤ 1, a.s. x ∈ D , (4.15)

where f (z) = 1
zα , α > 0 and c < |σ (z)| < C(1 + |z|γ ) for c, C > 0 and γ ∈ (0, 3

2 ) is investigated
by C. Mueller and his collaborators. In particular, it is shown, cf. [45, 46], that if 0 < α < 3 then
the solution of Itô problem (4.14)-(4.15) hits 0 in finite time, that is a quenching phenomenon
arises (see next section), with positive probability. Otherwise, if α ≥ 3, cf. [44, 55], the solution
of (4.14)-(4.15) remains strictly positive with probability 1 (almost surely).

In the current work a similar problem to (4.14)-(4.15) is considered, see (4.3) where now
f (z) = − λ

z2 and σ (u) = −κu for some λ, κ > 0. It is anticipated, according to the preceding results
for problem (4.14)-(4.15), that since in that case α = 2 (a value closely related with an application
from MEMS industry) then the solution of (4.3) should hit zero with positive probability. In the
following section, by applying some innovative approach we move one step further and improve
the quenching results proven in [45, 46]. In particular, we provide estimates of the hitting to
zero (quenching) probability not only for problem (4.3) but also for the nonautonomous problem
(4.9). Furthermore, using numerical methods we also provide estimates of the quenching time.
To the best of our knowledge, such results are novel in the literature and we expect them to be
valuable both to mathematicians working on SPDEs as well as to MEMS engineers.

5 Estimation of Quenching Probability

In the current section, we focus on the case of a one-dimensional Brownian motion Bt, since the
adopted approach for the estimation of the quenching probability is straightforward in that special
case. The implementation of this approach to the case of space-time Wiener process would be
explored in a future work.

5.1 The basic model

In the sequel, we will first investigate the quenching behaviour of problem (4.3) but with one-
dimensional Brownian motion Bt, in place of space-time Wiener process W (x, t), whose solution
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can be expressed as an Itô process as follows

zt = z0 − κ

∫ t

0
zsdBs +

∫ t

0

(
�zs − λ

z2
s

)
ds. (5.1)

Remarkably, the analysis that follows applies to the imposed homogeneous Robin boundary
condition ∂zt

∂ν
+ βzt = 0 which corresponds to the situation that a boundary condition (1.1b) is

applied for βc > 0. The nonhomogeneous Robin boundary condition, arising for βc = 0, is treated
only numerically in section 6.

We define now the stochastic process

vt := eκBt zt, 0 ≤ t < τ , (5.2)

cf.[9], where τ identifies a (random) stopping time, which is actually the quenching time for
stochastic processes zt as defined by (4.4). Relation (5.2) and the a.s. path continuity of Bt imply
that zt and vt quench at the same time τ , cf. [10].

Next, using Itô’s formula (3.2) for F(u) = eκu we obtain

eκBt = eκB0 + κ

∫ t

0
eκBs dBs + κ2

2

∫ t

0
eκBs ds

= 1 + κ

∫ t

0
eκBs dBs + κ2

2

∫ t

0
eκBs ds, (5.3)

since B0 = 0, or equivalently

d(eκBt ) = κeκBt dBt + κ2

2
eκBt dt, (5.4)

v0 = eκB0 = 1.

In the sequel, we use for simplicity the notation

zt(φ) :=
∫

D
ztφ dx, t ≥ 0,

for any function φ ∈ C2(D).
Then, problem (5.1), using also second Green’s formula, can be written in a weak formulation

as follows

zt(φ) = z0(φ) +
∫ t

0

∫
∂D

[
∂zs

∂ν
φ − zs

∂φ

∂ν

]
dσds +

∫ t

0
zs(�φ)ds

− λ

∫ t

0
z−2

s (φ)ds − κ

∫ t

0
zs(φ)dBs, (5.5)

for some test function φ ∈ C2(D), where

z−2
s (φ) :=

∫
D

z−2
s φ dx.

Next, we take as a test function φ ∈ C2(D) the solution of the eigenvalue problem

−�φ = λ1φ, x ∈ D, (5.6)
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∂φ

∂ν
+ βφ = 0, x ∈ ∂D, (5.7)

normalised as ∫
D

φ(x)dx = 1. (5.8)

Note that the principal eigenvalue λ1 is positive for β 
= 0, cf. [3, Theorem 4.3].
In particular, the boundary integral in (5.5) thanks to the applied homogeneous Robin-type

boundary conditions gives∫
∂D

[
∂zt

∂ν
φ − zt

∂φ

∂ν

]
dσ =

∫
∂D

(−βztφ + βztφ) dσ = 0,

and thus, the weak formulation (5.5) reduces to

zt(φ) = z0(φ) +
∫ t

0
zs(�φ) ds − λ

∫ t

0
z−2

s (φ)ds − κ

∫ t

0
zs(φ)dBs. (5.9)

Applying now the integration by parts formula (3.3) to the Itô process defined by (5.1) and
(5.3) we have

vt = eκBt zt = eκB0 z0 +
∫ t

0
eκBs dzs +

∫ t

0
zsdeκBs + [

eκBs , zs

]
(t),

where the quadratic variation is given by

[
eκBs , zs

]
(t) = −κ2

∫ t

0
eκBs zs ds, t ≥ 0, (5.10)

and thus

vt = z0 +
∫ t

0
eκBs dzs +

∫ t

0
zsdeκBs − κ2

∫ t

0
eκBs zs ds. (5.11)

Next, multiplying (5.11) by φ and integrating over the domain D we obtain

vt(φ) = z0(φ) +
∫ t

0
eκBs

[∫
D

(
�zs − λz−2

s

)
φ dx

]
ds − κ

∫ t

0
eκBs zs(φ) dBs

+κ

∫ t

0
eκBs zs(φ) dBs + κ2

2

∫ t

0
eκBs zs(φ) ds − κ2

∫ t

0
eκBs zs(φ) ds

= z0(φ) +
∫ t

0
eκBs

[∫
D

(
�zs − λz−2

s

)
φ dx

]
ds − κ2

2

∫ t

0
zs(φ)eκBs ds

= z0(φ) +
∫ t

0
eκBs zs(�φ) ds − λ

∫ t

0
eκBs z−2

s (φ) ds − κ2

2

∫ t

0
zs(φ)eκBs ds

= z0(φ) − λ1

∫ t

0
eκBs zs(φ) ds − λ

∫ t

0
eκBs z−2

s (φ) ds − κ2

2

∫ t

0
eκBs zs(φ) ds, (5.12)

using also (4.3a) and (5.4) together with second Green’s identity and stochastic Fubini’s theorem,
cf. [8, Theorem 4.33].
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Expressing (5.12) in terms of the vt, and since zt = vte−κBt , then thanks to (5.2) we infer

vt(φ) = z0(φ) − λ1

∫ t

0
vs(φ) ds − λ

∫ t

0
e3κBsv−2

s (φ) ds − κ2

2

∫ t

0
vs(φ) ds

= v0(φ) −
(

λ1 + κ2

2

) ∫ t

0
vs(φ) ds − λ

∫ t

0
e3κBsv−2

s (φ) ds, (5.13)

taking also into account that z0(φ) = v0(φ) due to (5.2).
Then, the differential form of (5.13) reads

dvt(φ)

dt
= −

(
λ1 + κ2

2

)
vt(φ) − λe3κBtv−2

t (φ) t > 0, v0(φ) > 0. (5.14)

By virtue of Jensen’s inequality, since r(s) = s−2, s > 0 is convex, and via (5.8) we have

v−2
t (φ) =

∫
D

v−2
t φ dx ≥

(∫
D

vtφ dx

)−2

= (vt(φ))−2

and thus (5.14) leads to the following differential inequality

dvt(φ)

dt
≤ −

(
λ1 + κ2

2

)
vt(φ) − λe3κBt (vt(φ))−2, v0(φ) > 0.

By a standard comparison principle, we have that vt(φ) ≤Y(t) where Y(t) satisfies the following
Bernoulli differential equation:

Y ′(t) = −
(

λ1 + κ2

2

)
Y(t) − λe3κBtY−2(t), Y0 =Y(0) = v0(φ) > 0,

and is given by

Y(t) = e
−
(

λ1+ κ2
2

)
t
[
v3

0(φ) − 3λ

∫ t

0
e

3

[(
λ1+ κ2

2

)
s+κBs

]
ds

]1/3

. (5.15)

Next, taking into account (5.15) we can define the stopping (quenching) time for Y(t) as

τ1 := inf

{
t ≥ 0

∣∣∣ ∫ t

0
e

3

[(
λ1+ κ2

2

)
s+κBs

]
ds ≥ 1

3λ
v0(φ)3

}
,

and so it follows that Y(t) quenches) (hits to zero) in finite time on the event {τ1 < +∞}. The
fact that 0 ≤ vt(φ) ≤Y(t) implies that τ1 is an upper bound of the stopping (quenching) time τ

for vt(φ), hence the function

t �→
∫

D
eκBt zt(x)φ(x) dx,

quenches in finite time under the event {τ1 < +∞} . Using now (5.8) as well as the fact that
t �→ eκBt is bounded away from zero on [0, τ1], since τ1 is finite (cf. (5.17) and (5.18) below),
then we deduce that the function t �→ infD zt cannot stay away from zero on [0, τ1] when τ1 < ∞.
Consequently, zt also quenches in finite time on the event {τ1 < +∞} and τ1 is an upper bound
for the quenching time of zt.

https://doi.org/10.1017/S0956792522000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000262


1222 O. Drosinou et al.

In the sequel, we are working towards the estimation of the probability of the event
{τ1 = +∞} , so we have

P[τ1 = +∞] = P

[∫ t

0
e3κBs+3(λ1+ κ2

2 )sds <
1

3λ
v3

0(φ), for all t > 0

]
= P

[∫ +∞

0
e3κBs+3(λ1+ κ2

2 )sds ≤ 1

3λ
v3

0(φ)

]
. (5.16)

Then, by virtue of the law of the iterated logarithm for the Brownian motion Bt, cf. [4, Theorem
2.3] and [25, Theorem 9.23], that is

lim inf
t→+∞

Bt

t1/2
√

2 log(log t)
= −1, P− a.s. , (5.17)

and

lim sup
t→+∞

Bt

t1/2
√

2 log(log t)
= +1, P− a.s. , (5.18)

we deduce that for any sequence tn → +∞
Btn ∼ αnt1/2

n

√
2 log(log tn),

with αn ∈ [−1, 1], and thus, ∫ +∞

0
e3κBs+3(λ1+ κ2

2 )sds = +∞.

The latter implies that

P [τ1 = +∞] = P

[∫ +∞

0
e3κBs+3(λ1+ κ2

2 )sds ≤ 1

3λ
v3

0(φ)

]
= 0,

and hence

P [τ1 < +∞] = 1 − P[τ1 = +∞] = 1 − 0 = 1. (5.19)

Therefore, Y(t) and consequently vt(φ) quenches a.s. which in turn implies that zt(φ) quenches
a.s. as well. The latter entails, due also to (5.8), that

zt(φ) =
∫

D
zt(x)φ(x) dx ≥ inf

x∈D
|zt(x)|

and thus

lim
t→τ

inf
x∈D

|zt(x)| = 0, a.s. on {τ < ∞},
for some τ ≤ τ1 and independently of the initial condition z0 and the parameter value λ. Thus,
we have the following result.

Theorem 5.1 The weak solution of problem (5.1), that is

dzt =
(

�zt − λ

z2
t

)
dt − κztdBt, x ∈ D, t > 0,

0 < z0 = ξ ≤ 1, a.s. x ∈ D ,

https://doi.org/10.1017/S0956792522000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000262


A stochastic MEMS problem 1223

quenches in finite time with probability one, that is almost surely, regardless the size of its initial
condition as well as that of parameter λ.

Remark 5.2 The result of Theorem 5.1 shows that the impact of the noise for the dynamics
of problem (5.1) is vital. In particular, the presence of the nonlinear term f (z) = z−2 forces the
solution towards quenching almost surely. On the other hand, for the corresponding deterministic
problem, that is when k = 0, and for homogeneous boundary conditions then quenching occurs
only either for large initial data or for large values of the parameter λ, cf. [15, 28, 32].

5.2 Introducing a regularising term into model (4.3)

A natural question that arises is: can model (4.3) be modified appropriately so its destructive
quenching behaviour to be only limited in a certain range of parameters? To this end, we con-
sider a model with a modified nonlinear drift term; indeed, the drift term f (z) = z−2, which is
responsible for the almost surely quenching (cf. Remark 5.2), is now multiplied by e−3γ t for
some positive constant γ .

Specifically, problem (4.3) is now modified to

dzt = (�zt − λe−3γ tz−2
t )dt − κztdBt, x ∈ D, t > 0, (5.21a)

∂zt

∂ν
+ βzt = 0, x ∈ ∂D, t > 0, β, κ , γ > 0, (5.21b)

0 < z0(x) = z(x, 0) ≤ 1. (5.21c)

In the sequel, we proceed similarly as in the proof of Theorem 5.1, so we first set

zt(φ) :=
∫

D
ztφ dx and z−2

t (φ) :=
∫

D
z−2

t φdx,

where φ again solves (5.6)-(5.8) and then by second Green’s identity we obtain

�zt(φ) = zt(�φ),

recalling that

zt(�φ) :=
∫

D
zt�φ dx.

Then, the weak formulation of (5.2) is :

zt(φ) = z0(φ) +
∫ t

0
zs(�φ)ds −

∫ t

0
λe−3γ tz−2

s (φ) ds − κ

∫ t

0
zs(φ)dBs, P− a.s. (5.22)

We again consider the stochastic process vt = eκBt zt, for 0 ≤ t < τ with τ being the stopping
(quenching) time of stochastic process zt defined by (4.4). Next, using integration by parts
formula, see also (3.3) and (3.4), for the stochastic processes

zt = z0 − κ

∫ t

0
zsdBs +

∫ t

0

(
�zs − λe−3γ s

z2
s

)
ds
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and for eκBt given by (5.3), we obtain that

vt(φ) = v0(φ) +
∫ t

0
eκBs dzs(φ) +

∫ t

0
zs(φ)d

(
eκBs

)+ [
eκBs , zs(φ)

]
(t), (5.23)

where the quadratic variation, represented by the last term into (5.23), is given by (5.10).
Therefore, by virtue of (5.2), (5.22) and Itô’s formula, cf. (5.4), we obtain that

vt(φ) = v0(φ) +
∫ t

0
vs(�φ)ds − λ

∫ t

0
e3κBs e−3γ sv−2

s (φ)ds − κ2

2

∫ t

0
vs(φ)ds, (5.24)

taking also into account that zt = e−κBtvt.
Notably, via (5.24) we deduce that vt(x) = v(x, t) is a weak solution of the following random

Stochastic PDE (RPDE)

∂v

∂t
(x, t) = �v(x, t) +

(
γ − κ2

2

)
v(x, t) + λe3κBtv−2(x, t), x ∈ D, t > 0, (5.25a)

∂v(x, t)

∂ν
+ βv(x, t) = 0, on x ∈ ∂D, t > 0, (5.25b)

v(x, 0) = z0(x), x ∈ D. (5.25c)

Problem (5.2) should be understood pathwise, and its local existence, uniqueness and positivity
of solution up to eventual quenching time can be derived by [18, Theorem 9, Chapter 7].

Recalling that φ solves the eigenvalue problem (5.6)-(5.8) then equation (5.24) is reduced to

vt(φ) = v0(φ) − (λ1 + κ2

2
)
∫ t

0
vs(φ)ds. − λ

∫ t

0
e−3(γ s−κBs) v−2

s (φ)ds, (5.26)

or (cf. Subsection 5.1) in differential form

dvt(φ)

dt
= −

(
λ1 + κ2

2

)
vt(φ) − λe−3(γ t−κBt)v−2

t (φ).

Next, by virtue of Jensen’s inequality we deduce

dvt(φ)

dt
≤ −

(
λ1 + κ2

2

)
vt(φ) − λe−3(γ t−κBt)(vt(φ))−2, v0(φ) > 0.

By comparison, we get vt(φ) ≤ �(t) where �(t) satisfies the following Bernoulli differential
equation

� ′(t) = −
(

λ1 + κ2

2

)
�(t) − λe−3(γ t−κBt)�−2(t), �0 = �(0) = v0(φ) > 0,

with solution

�(t) = e
−
(

λ1+ κ2
2

)
t
[
v3

0(φ) − 3λ

∫ t

0
e

3

(
λ1−γ+ κ2

2

)
s+3κBs

ds

] 1
3

, 0 ≤ t < τ ,

with

τ2 := inf

{
t ≥ 0 :

∫ t

0
e

3

(
λ1−γ+ κ2

2

)
s+3κBs

ds ≥ 1

3λ
v3

0(φ)

}
,

being the stopping time of �(t).
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It follows that �(t) hits 0 in finite time on the event {τ2 < +∞}. Since vt(φ) ≤ �(t), then
τ2 is an upper bound for the stopping (extinction) time τ of vt(φ), which is also the stopping
(quenching) time of vt and zt.

More specifically, we have

P [τ2 = +∞] = P

[∫ t

0
e

3κBs+3

(
λ1−γ+ κ2

2

)
s
ds <

1

3λ
v3

0(φ), for all t > 0

]

= P

[∫ +∞

0
e

3κBs+3

(
λ1−γ+ κ2

2

)
s
ds � 1

3λ
v3

0(φ)

]
. (5.27)

Then, via the change of variables s1 �→ 9κ2s
4 and making use of the scaling property of Bt we

obtain

P [τ2 = +∞] = P

[
4

9κ2

∫ +∞

0
e

2Bs1 + 4
3κ2

(
λ1−γ+ κ2

2

)
s1

ds1 �
1

3λ
v3

0(φ)

]
. (5.28)

Setting B(μ)
s := Bs + μs, with μ := 2

3κ2

(
λ1 − γ + κ2

2

)
then (5.28) reads

P [τ2 = +∞] = P

[
4

9κ2

∫ +∞

0
e2B

(μ)
s ds ≤ 1

3λ
v3

0(φ)

]
= P

[∫ +∞

0
e2B

(μ)
s ds ≤ 3κ2v3

0(φ)

4λ

]
, (5.29)

We now distinguish two cases:

(i) We first take γ ≥ λ1 + κ2

2, and thus, we have∫ ∞

0
e2Bμ

s ds
Law= 1

2Z−μ

,

see [53, Chapter 6, Corollary 1.2], where Z−μ is a random variable with law �(−μ), that is

P
(
Z−μ ∈ dy

)= 1

�(−μ)
e−yy−μ−1 dy,

where �(·) is the complete gamma function, cf. [1].

Hence, (5.29) entails (see also [5, formula 1.104(1) page 264])

P [τ2 = +∞] = P

[
1

2Z−μ

≤ 3κ2

4λ
v3

0(φ)

]
= P

[
Z−μ ≥ 2λ

3κ2v3
0(φ)

]
= 1 − P

[
Z−μ ≤ θ

]= 1 − 1

�(−μ)

∫ θ

0
e−yy−μ−1 dy, (5.30)

where θ := 2λ

3κ2v3
0(φ)

.

Therefore,

P [τ2 < +∞] = P
[
Z−μ ≤ θ

]= 1

�(−μ)

∫ θ

0
e−yy−μ−1 dy
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and since τ < τ2, we have that

P [τ < +∞] ≥ 1

�(−μ)

∫ θ

0
e−yy−μ−1 dy. (5.31)

(ii) Next, we assume that μ > 0, that is γ < λ1 + κ2

2 . Then using the law of the iterated
logarithm, cf. (5.17) and (5.18), for Bt, we obtain

∫ +∞

0
e

3κBs+3

(
λ1−γ+ κ2

2

)
s
ds = +∞,

hence via (5.27) we derive

P [τ2 = +∞] = P

[∫ +∞

0
e3κBs+3(λ1+ κ2

2 )sds ≤ 1

3λ
v3

0(φ)

]
= 0

and thus

P [τ2 < +∞] = 1 − P [τ2 = +∞] = 1.

Summarising the above, we have the following result

Theorem 5.3

(i) If γ ≥ λ1 + κ2

2, then the weak solution of problem (5.21) quenches in finite time with
probability bounded below as shown in (5.31).

(ii) In the complementary case when γ < λ1 + κ2

2 then the weak solution of problem (5.21)
quenches in finite time almost surely.

Remark 5.4 Let us fix γ and κ so that γ − κ2

2 > 0. Then Theorem 5.3(ii) entails that quenching
behaviour dominates when λ1 is rather big, a case that only occurs when the domain D is rather
small.

In Figure 3, an upper bound of the probability of global existence, provided by (5.30), is
displayed with respect to the parameter λ in Figure 3(a) and with respect to the parameter a
in Figure 3(b). In that case, an initial condition of the form z0(x) = 1 − ax(1 − x) is considered.
Specifically, in Figure 3(a) we observe a decrease of the probability of global existence, as λ

increases. Similarly, in Figure 3(b) again reducing the minimum of the initial condition results
in decreasing the probability of global existence and this becomes more intense as λ increases.

Besides, in Figure 4 the behaviour of the probability of the global existence, bounded above
by the quantity defined in (5.31), is examined with respect to the parameter γ and the noise
amplitude κ . In particular, the impact of parameter γ , that is the coefficient of the regularising
term, is displayed in Figure 4(a). Note that the condition γ > λ1 + κ2 should be satisfied (here
λ1 = π2 and κ = 1); then we observe a peak of the probability at the value γ = 13.77. Moreover,
in Figure 4(b) the variation of that probability with respect to the parameter κ for various values
of the parameter λ is shown. In that case a similar peak is attained at the value κ = 1.084.
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FIGURE 3. Diagram of the probability P [τ = +∞] (a) with respect to the parameter λ, (b) with respect to
the parameter a in the initial condition for various values of the parameter λ.
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FIGURE 4. Diagram of the probability P [τ = +∞] for various values of the parameter λ, (a) with respect
to the parameter γ , (b) with respect to the noise amplitude κ

5.3 Model (4.9)

In the current Subsection, we investigate the probability of quenching for the solution of problem
(4.9) where g, κ1 : R+ →R+ and h : D ×R+ →R+ are continuous functions. Note that from
mathematical modelling perspective the function g(t) represents the dispersion coefficient whilst
h(x, t) describes the varying dielectric properties of the elastic membrane ([16]), cf. section 2.

Next, we define the stochastic process

Mt :=
∫ t

0
κ1(s)dBs,

and we set

vt := eMt zt, 0 ≤ t < τ , (5.32)

where again τ is the stopping (quenching) time of stochastic process zt determined by (4.4).
In the sequel, we proceed as in [2]. Itô’s formula implies the semimartingale expansion

eMt = 1 +
∫ t

0
κ1(s)eMsdBs + 1

2

∫ t

0
κ2

1 (s)eMsds. (5.33)

https://doi.org/10.1017/S0956792522000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000262


1228 O. Drosinou et al.

By letting zt(φ) := ∫
D ztφdx and z−2

t (φ) := ∫
D z−2

t φdx, where again φ ∈ C2(D) solves the eigen-
value problem (5.6)-(5.8), we have

zt(φ) = z0(φ) +
∫ t

0
g(s)�zs(φ)ds − λ

∫ t

0
h(x, s)z−2

s (φ)ds −
∫ t

0
κ1(s)zs(φ)dBs, (5.34)

P− a.s. for all t ∈ [0, τ ).
Note also that for any fixed φ, the process (zt(φ)1[0,τ )(t))t∈R+ is also a semimartingale.

Moreover, using integration by parts formula, cf. (3.3) and (3.4), we get the weak formulation

vt(φ) = eMt zt(φ)

= eM0 z0(φ) +
∫ t

0
eMs d(zs(φ)) +

∫ t

0
zs(φ)d(eMs ), + [

eMt , zt(φ)
]

, (5.35)

where the quadratic variation (see [38, section 7.6, pg. 113]) is given by

[
eMt , zt(φ)

]
(t) := −

∫ t

0
κ2

1 (s)eMszs(φ)ds.

Next, (5.35) in conjunction with (5.32), (5.33) and (5.34) yields

vt(φ) = z0(φ) +
∫ t

0
eMs

(
g(s)�zs(φ) − λz−2

s (hφ)
)

ds

+
∫ t

0
eMsκ1(s)zs(φ)dBs −

∫ t

0
eMsκ1(s)zs(φ)dBs

+1

2

∫ t

0
κ2

1 (s)eMszs(φ)ds −
∫ t

0
κ2

1 (s)eMszs(φ)ds

= v0(φ) +
∫ t

0
g(s)vs(�φ)ds − λ

∫ t

0
e3Msv−2

s (hφ)ds − 1

2

∫ t

0
κ2

1 (s)vs(φ)ds

= v0(φ) − λ1

∫ t

0
g(s)vs(φ)ds − λ

∫ t

0
e3Msv−2

s (hφ)ds − 1

2

∫ t

0
κ2

1 (s)vs(φ)ds, (5.36)

where

v−2
s (hφ) :=

∫
D

v−2
s (x)h(x, t)φ(x) dx,

taking also into account that z0(φ) = v0(φ) due to (5.32) as well as that �vs(φ) = vs(�φ) =
−λ1vs(φ) via Green’s second identity.

Equation (5.36) can then be written in differential form as

dvt(φ)

dt
= −

(
λ1g(t) + 1

2
κ2

1 (t)

)
vt(φ) − λe3Mtv−2

t (hφ),

v0(φ) > 0,

which by virtue of Jensen’s inequality infers

dvt(φ)

dt
≤ −

(
λ1g(t) + 1

2
κ2

1 (t)

)
vt(φ) − ληe3Mt (vt(φ))−2,

v0(φ) > 0,
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where η := max(x,s)∈D̄×[0,τ ] h(x, s) > 0 and by means of a comparison argument we get

vt(φ) ≤ A(t), 0 ≤ t < τ , (5.37)

where now A(t) denotes the solution of the initial value problem

A′(t) = −
(

λ1g(t) + 1

2
κ2

1 (t)

)
A(t) − ληe3Mt A−2(t), 0 < t < τ , A0 = A(0) = v0(φ) > 0,

with solution

A(t) = e
−
(
λ1K(t)+ 1

2 J (t)
) [

v3
0(φ) − 3λη

∫ t

0
e3Ms+3(λ1K(s)+ 1

2 J (s))ds

] 1
3

, (5.38)

where K(t) := ∫ t
0 g(s)ds and J (t) := ∫ t

0 κ2
1 (s)ds.

The maximum existence (stopping) time τ3 of A(t) is then given by

τ3 :=
{

t ≥ 0 :
∫ t

0
e3Ms+3(λ1K(s)+ 1

2 J (s))ds ≥ 1

3λη
v3

0(φ)

}
,

and actually A(t) quenches in finite time on the event {τ3 < +∞} .
The fact that 0 ≤ vt(φ) ≤ A(t) reveals that τ3 is an upper bound of the stopping (extinction)

time τ for vt(φ); hence, the function

t �→
∫

D
eMt zt(x)φ(x) dx,

quenches in finite time under the event {τ3 < +∞} . Using now (5.8) as well as the fact that
t �→ eMt is bounded below away from zero (cf. (5.17), (5.18) and the fact that κ1(t) is bounded )
on [0, τ3], once τ3 < ∞, then we deduce that the function t �→ infD zt cannot stay away from zero
on [0, τ3] for τ3 < ∞. Therefore, zt quenches in finite time on the event {τ3 < +∞} and so τ3 is
an upper bound for the quenching time of zt.

Observe that Mt =
∫ t

0 κ1(s)dBs is a continuous martingale and so it can be written as Mt =
BJ (t), where J (t) = [M](t) = ∫ t

0 κ2
1 (s)ds is the quadratic variation of Mt, cf. [25, Theorem 4.6 page

174] and [52, Theorems 1.6 and 1.7 in Chapter V], a result known as Dambis-Dubins-Schwarz
theorem.

Set ρ := 1
3λη

v3
0(φ) then

P(τ3 = +∞) = P

(∫ t

0
e3Ms+3(λ1K(s)+ 1

2 J (s))ds < ρ, for all t > 0

)
= P

(∫ +∞

0
e3BJ (s)+3(λ1K(s)+ 1

2 J (s))ds ≤ ρ

)
= P

(∫ +∞

0

1

κ2
1 (J−1(s1))

e
3Bs1 +3

(
λ1K(J−1(s1))+ 1

2 s1

)
ds1 ≤ ρ

)
, (5.39)

where s1 := J (s).
At that point, we introduce the assumption that coefficients g(t) and κ1(t) satisfy: there exists

some positive constant C such that

1

κ2
1 (t)

e
3λ1

(
K(t)+ 1

2 J (t)
)
≥ C for any t ≥ 0. (5.40)
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Then, (5.39) via (5.40) reads

P(τ3 = +∞) ≤ P

(∫ ∞

0
e

3Bs1 +
(
− 3

2 λ1J (J−1(s1)+ 3
2 s1

)
ds1 ≤ ρ

C

)
= P

(∫ ∞

0
e3Bs1 + 3

2 (1−λ1)s1 ds1 ≤ ρ

C

)
. (5.41)

Next, we introduce the change of variables s2 �→ (
3
2

)2
s1, and thus again via the scaling property

of Bt then (5.41) entails

P (τ3 = +∞) ≤ P

(
4

9

∫ ∞

0
e

3B 4
9 s2

+ 3
2 (1−λ1) 4

9 s2
ds2 ≤ ρ

C

)
= P

(∫ ∞

0
e

2Bs2 +2
(

1−λ1
3

)
s2 ds2 ≤ 9ρ

4C

)
= P

(∫ +∞

0
e2B

(μ)
s ds ≤ 9ρ

4C

)
, (5.42)

where μ := 1−λ1
3 and B(μ)

s := Bs + μs.
In the following, we distinguish the following cases:

(i) Initially, we assume that μ < 0, that is λ1 > 1. Then by virtue of (5.42) and following the
same reasoning as in Subsection 5.2, we obtain

P(τ3 = +∞) ≤ P

(
1

2Z−μ

≤ 9ρ

4C

)

= 1 − 1

�(−μ)

∫ 2C
9ρ

0
y−μ−1e−ydy = 1

�(−μ)

∫ ∞

2C
9ρ

y−μ−1e−ydy, (5.43)

cf. [53, Corollary 1.2 page 95].

Hence, from (5.43) we derive

P (τ3 < +∞) = 1 − P(τ3 = +∞) ≥ 1

�(−μ)

∫ 2C
9ρ

0
y−μ−1e−ydy. (5.44)

(ii) In the complimentary case μ ≥ 0, that is when λ1 ≤ 1, then via the iterated logarithm law for
Bs, cf. (5.17) and (5.18), we obtain ∫ +∞

0
e2B

(μ)
s ds = +∞

and thus

P[τ = +∞] = P

(∫ +∞

0
e2B

(μ)
s ds ≤ 9ρ

4C

)
= 0.

The latter implies that

P[τ < +∞] = 1 − P[τ = +∞] = 1,

and so in that case A(t) quenches a.s. independently of the initial condition v0 and the
parameter λ, which also entails that vt and zt quench as well.
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Theorem 5.5 Assume that condition (5.40) holds true for the continuous positive functions
g(t), κ1(t) > 0. Then:

(i) if λ1 > 1 the probability of quenching of the weak solution of problem (4.9) is lower bounded
as shown in (5.43),

(ii) whilst for λ1 ≤ 1 then the weak solution of problem (4.9) quenches in finite time τ < ∞
almost surely.

Remark 5.6 Note that in the special case g(t) = 1, κ1(t) = κ =constant and h(x, t) = 1 then via
relation (5.39) we recover the result of Theorem 5.1.

Remark 5.7 Actually, Theorem 5.5 (ii) implies that when the diffusion coefficient g(t) is large
enough, ensured by condition (5.40), then quenching behaviour dominates in the case of a rather
big domain D. This might look to be counterintuitive to what has been pointed out in Remark 5.4
in the first place; however, it is in full agreement with the phenomenon observed in [34] where a
strong reaction coefficient, enhanced there by the evolution of the moving domain, fights against
the development of a singularity.

Remark 5.8 Note that since K(t) and J(t) are increasing functions we have

e
3λ1

(
K(t)+ 1

2 J (t)
)
≥ e

3λ1

(
K(0)+ 1

2 J (0)
)
= 1,

and thus condition (5.40) holds true provided that κ1(t) is bounded above, that is sup(0,∞) κ1(t) =
L < ∞. In that case, we have that C = 1

L2 .

Alternatively, if κ1(t) gets unbounded as t → ∞ but satisfies the growth condition

dκ2
1 (t)

dt
≤ βκ2

1 (t), t > 0, for some β > 0,

then by virtue of L’ Hôpital’s rule we can show that

lim
t→∞

eJ (t)

κ2
1 (t)

= ∞,

and then using again the monotonicity of K(t) we derive (5.40) with C = 1.
In relation to applications, it is of particular interest to simulate the stochastic process describ-

ing the operation of MEMS device and so to investigate under which circumstances it quenches.
To this end, in the following section we present such a numerical algorithm together with various
related simulations for problem (1.1).

6 Numerical Solution

6.1 Finite Elements approximation

In the current section, we present a numerical study of problem (1.1) in the one-dimensional case
for the general case of a space-time Wiener process W (x, t). Notably, our numerical approach
could be easily implemented to the case of the standard Brownian motion Bt. For that purpose,
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we apply a finite element semi-implicit Euler in time scheme, cf. [37]. The considered noise
term is a multiplicative one and of the form σ (u) ∂tW for σ (u) = κ(1 − u) with κ > 0. We also
assume homogeneous Dirichlet boundary conditions at the points x = 0, 1, although some of
the presented numerical experiments also concern homogeneous and nonhomogeneous Robin
boundary conditions. A homogeneous Dirichlet boundary condition u(0, t) = u(1, t) = 0 corre-
sponds in having z = 1 at those points. Remarkably, this case is not actually covered by the
analysis in section 5.

We apply a discretisation in [0, T] × [0, 1], 0 ≤ t ≤ T , 0 ≤ x ≤ 1 with tn = nδt, δt = [T/N] for
N the number of time steps and we also introduce the grid points in [0,1], xj = jδx, for δx = 1/M
and j = 0, 1, . . . , M .

Then, we proceed with a finite element approximation for problem (1.1). Let �j, j =
1, . . . , M − 1 denote the standard linear B− splines on the interval [0, 1] that is

�j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − xj−1

δx
, xj−1 ≤ x ≤ xj,

xj+1 − x

δx
, xj ≤ x ≤ xj+1,

0, elsewhere in [0, 1],

(6.1)

for j = 1, 2, . . . , M − 1. We then set u(x, t) =∑M−1
j=1 auj (t)�j(x), t ≥ 0, 0 ≤ x ≤ 1.

Substituting the later expression for u into equation (1.1a) and applying the standard Galerkin
method, that is multiplying with �i, for i = 1, 2, . . . , M − 1 and integrating over [0, 1], we
obtain a system of equations for the auj ’s as follows

M−1∑
j=1

dauj (t) < �j(x), �i(x) > = −
M−1∑
j=1

axj (t)〈�′
j(x), �′

i(y)〉

+
〈

F

⎛⎝M−1∑
j=1

auj (t)�j(x)

⎞⎠ , �i(x)

〉
,

+
〈
σ

⎛⎝M−1∑
j=1

auj (t)�j(x)

⎞⎠ dW (x, t), �i(x)

〉
, (6.2)

where < f , g >:= ∫ 1
0 f (x)g(x)dx and i = 1, 2, . . . , M − 1, and in our case F(s) = λ

(1−s)2 , σ (s) =
κ (1 − s).

Setting au = [au1 , au2 , . . . , auM−1 ]T the system of equations for the au’s take the form

A dau(t) = −Bau(t) + b(t) + bs(t),

for

b(t) =
⎧⎨⎩
〈

F

⎛⎝M−1∑
j=1

auj (t)�j(x)

⎞⎠ , �i(x)

〉⎫⎬⎭
i

,

bs(t) =
⎧⎨⎩
〈
σ

⎛⎝M−1∑
j=1

auj (t)�j(x)

⎞⎠ dW (x, t), �i(x)

〉⎫⎬⎭
i

,
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the latter coming from the corresponding Itô integral. Note also that ∂tW (x, t) � �Wh(x, t) =
Wh(x, t + δt) − Wh(x, t) for Wh(x, t) the finite sum giving the discrete approximation of W (x, t).

More specifically, the approximation Wh, for a sample point x in [0,1], should have the form
Wh(x, t) :=∑M−1

j=1
√

qjχj(x)βj(t). Additionally, in order to obtain the same sample path W (x, t)
with different time steps we use the reference time step δtr = T/(mN), m ∈N

+.
The increments over intervals of size δt = mδtr are given by

Wh(x, t + δt) − Wh(x, t) =
m−1∑
n=0

Wh(x, t + tn+1) − Wh(x, t + tn).

Moreover, we approximate the space-time white noise by taking

Wh(x, tn+1) − Wh(x, tn) =√
δtr

M−1∑
j=1

√
qjχj(x)ξ n

j ,

where ξ n
j := (βj(tn+1) − βj(tn))/

√
δtr and ξ n

j ∼ N(0, 1) are i.i.d. random variables for i.i.d. stan-

dard Brownian motions βj(t). Also, the eigenfunctions χj = χj(x) = √
2 sin (jπx), j ∈N

+ are
taken as a basis of L2(0, 1) and q′

js are chosen to be

qj =
{

l−(2r+1+ε) j = 2l + 1, j = 2l,
0 j = 1,

(6.3)

for l ∈N, r being the regularity parameter, 0 � ε < 1 to obtain an Hr
0(0, 1)-valued process.

We then apply a semi-implicit Euler method in time by taking

A dau(tn) � A
(
an+1

u − an
u

)
/(δt) = −Ban+1

u + b(tn) + bs(tn),

or

(A + δtB) an+1
u = an

u + δt b(tn) + δt bs(tn),

with the(M − 1) × (M − 1) matrices A, B having the form

A = δx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3

1

6
0 . . . 0

1

6

2

3

1

6
. . . 0

0 0
. . .

. . . 0

0 0 . . .
1

6

1

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B = 1

δy

⎡⎢⎢⎢⎢⎢⎢⎣
2 −1 0 . . . 0

−1 2 −1 . . . 0

0 0
. . .

. . . 0

0 0 . . . −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

bn = b(tn) =
⎧⎨⎩
〈

F

⎛⎝M−1∑
j=0

an
uj
�j(x)

⎞⎠ , �i(x)

〉⎫⎬⎭
i

,

bn
s = bs(tn) =

⎧⎨⎩
〈
σ

⎛⎝ M∑
j=0

an
uj
�j(x)

⎞⎠�W n
h , �i(x)

〉⎫⎬⎭
i

,

for an
uj

= auj (tn), i = 1 . . . , M − 1.
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FIGURE 5. (a) Realisation of the numerical solution of problem (1.1) for λ = 1, k = 1, M = 102, N = 104,
r = 0.1 and initial condition u(x, 0) = c x(1 − x) for c = 0.1. (b) Plot of ‖u(·, t)‖∞ from a different realisation
but with the same parameter values.

Finally, the corresponding algebraic system for the an
u’s after some manipulation becomes

an+1
u = (A + δtB)−1

[
an

u + δt bn + δt bn
s

]
, (6.4)

for a0
u being determined by the initial condition.

6.2 Simulations

Initially, we present a realisation of the numerical solution of problem (1.1) in Figure 5(a) for
λ = 1, κ = 1, r = 0.1 initial condition u(x, 0) = c x(1 − x) for c = 0.1 and homogeneous Dirichlet
boundary conditions (β → ∞, βc = 0). By this performed realisation the occurrence of quench-
ing is evident. For a different realisation but for the same parameters in Figure 5(b) the maximum
of the solution at each time step is plotted and again a similar quenching behaviour is observed.

Next, in Figure 6(a) we observe the quenching behaviour of five realisations of the numerical
solution of problem (1.1) for λ = 2. In an extra realisation depicted in Figure 6(b), the spatial
distribution of the numerical solution at different time instants can be seen.

An interesting direction that is worth investigating is the derivation of estimates of the proba-
bility of quenching in a specific time interval [0, T] for some T > 0. It is known, cf. [27], that for
imposed Dirichlet boundary conditions, then the solution u will eventually quench in some finite
time Tq for large enough values of the parameter λ or big enough initial data.

From the application point of view, an estimate of the probability that Tq < T would be useful
with respect to various values of the parameter λ.

In Table (T1), the results of such a numerical experiment are presented. In particular, imple-
menting NR realisations then in the first column we print out the values of λ considered, whilst
the second column contains the number of times that the solution quenched before the time T ,
whilst in the last two columns the mean m(Tq) and the variance Var(Tq) of the quenching time
respectively are given. More specifically, the quenching time Tq numerically is approximated as
Tq � tm for tm the maximum time step for which the condition maxj

(
u(xj, tm)

)≤ 1 − ε holds for a
predefined small number ε. In the following simulations ε it is taken to be the machine tolerance,
that is ε = 2.2204 10−16. Note that for example in Figure 6 in the presented realisations, we have
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Table 1 Realisations of the numerical solution of problem (1.1) for
NR = 1000 in the time interval [0, 10].

λ Quenching Events m(Tq) σ 2(Tq)

0.5 0 - -
1 0 - -
1.5 1000 1.4642 0.0071
2 1000 0.3542 3.7852e-05
2.5 1000 0.2184 4.2468e-06
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FIGURE 6. (a) Realisation of the ‖u(·, t)‖∞ of the numerical solution of problem (1.1) for λ = 2, k = 1,
M = 102, N = 104, r = 0.1 and initial condition u(x, 0) = c x(1 − x) for c = 0.1. (b) Plot of u(x, ti) from a
different realisation with the same parameter values at five time instants.

maxj

(
u(xj, tm)

)
noticeably smaller than 1 − ε whilst for the time step tm+1 the aforementioned

condition is not satisfied. More accuracy in the estimation of the stopping time tm would require
an adaptive time stepping numerical scheme. The rest of the parameters were taken to be the
same as in the previous simulations but with κ = 0.1.

By the results in Table (T1), we observe that in a finite time interval the stochastic prob-
lem performs a dynamic behaviour which resembles that of the deterministic one. Specifically,
increasing the value of λ initially we have no quenching in this time interval whilst after
λ > λ∗

T > 1 we have quenching almost surely at a time Tq with mean and variance decreasing
with λ.

Additionally, we perform another experiment for simulation time T = 1 and λ = 1.65, chosen
in a λ−range where the occurrence of quenching is not definite, and for a larger number of
realisations NR = 104, whilst the rest of the parameter values being kept the same as in Table
(T1). Then, we obtain a numerical estimation for the probability of quenching equal to 0.3464
with m(Tq) = 0.3380 and Var(Tq) = 0.2157.

Next, we consider the case of nonhomogeneous boundary conditions of the form (1.1b)
or equivalently (4.2b) with β = βc, since such a case is of particular interest in the light of
the quenching results of section 5. It is sufficient for Robin-type boundary conditions to be
satisfied in the weak sense, although they could even hold in the classical sense too, see [33,
Theorem 4.1]. A simulation implementing the previously described numerical algorithm for this
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FIGURE 7. (a) Realisation of the numerical solution of problem (1.1) for λ = 0.3, κ = 1, M = 102, N =
104, r = 0.1, initial condition u(x, 0) = c x(1 − x) for c = 0.1 and with β = βc = 1 in the nonhomogeneous
boundary condition. (b) Plot of ‖u(·, t)‖∞. The quenching behaviour is apparent.
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FIGURE 8. (a) Realisation of the ‖u(·, t)‖∞ of the numerical solution of problem (1.1) for λ = 2, κ = 1,
M = 102, N = 104, r = 0.1 and initial condition u(x, 0) = c x(1 − x) for c = 0.1. (b) Plot of u(x, ti) from a
different realisation with the same values of the parameters at five time instants.

particular case is presented in Figure 7(a). The presented realisation is for problem (1.1), and
the parameters used here are λ = 0.3, k = 1, β = βc = 1. Also, in Figure 7(b) the quenching of
||u(·, t)||∞ for one realisation is depicted.

Similarly, in the next set of graphs in Figure 8(a) we display the quenching behaviour of five
realisations of the numerical solution of problem (1.1) for λ = 0.3. In an extra realisation pro-
vided by Figure 8(b), the spatial distribution of the numerical solution at different time instants
is presented.

Additionally, in the following Table (T2) we present the results of such a numeri-
cal experiment. Indeed, implementing NR realisations we derive analogous results as in
Table (T1).

We notice a transition of the behaviour of the solution u around the value λ ∼ 0.7. So, in the
next table, Table (T3), we focus around this value and point out a gradual increase of the number
of quenching results as the parameter λ increases.

In the next set of experiments, we solve numerically problem (4.9). We choose the diffusion
coefficient to be of the form g = g(t) = c0 + c1 cos(ωt), with c0 = 1, c1 = 0.1, ω = 10. We also
consider a potential in the source term of the form h(x) = xb, for b = 1

2 . The results of these
experiments are demonstrated in Table (T4).
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Table 2 Realisations of the numerical solution of problem (1.1) in the
case of nonhomogeneous Robin boundary conditions for NR = 1000 in the

time interval [0, 1].

λ Quenching Events m(Tq) σ 2(Tq)

0.2 0 - -
0.4 0 - -
0.6 0 - -
0.8 1000 0,75945 0.0014
1 1000 0.5547 5.41553e-04

Table 3 Realisations of the numerical solution of problem (1.1) in the case
of nonhomogeneous Robin boundary conditions for NR = 1000 in the time

interval [0, 1].

λ Quenching Events m(Tq) Var(Tq)

0.6 0 - -
0.65 85 0.9894 10.5387
0.675 594 0.9713 0.6469
0.7 877 0.9380 0.1244
0.75 1000 0.8332 0.0016

Table 4 Realisations of the numerical solution of problem (4.9) in the case
of nonhomogeneous Robin boundary conditions for NR = 1000 in the time

interval [0, 1].

λ Quenching Events m(Tq) Var(Tq)

0.6 0 - -
0.8 0 - -
1 776 0.9469 0.26
0.2 1000 0.7432 0.0011
0.4 1000 0.6029 5.2540e-04

Moreover, focusing again around the value λ ∼ 1 we can observe the transitional behaviour of
the system in Table (T5) for T = 1.

7 Discussion

In the current work, we demonstrate an investigation of a d−dimensional, d = 1, 2, 3, stochastic
parabolic problem related to the modelling of an electrostatic MEMS device part of which is a
membrane-rigid plate system. Firstly, the basic stochastic model is presented. Later, local exis-
tence and uniqueness of the basic stochastic u−problem (1.1), as well as of its main variations,
and for general boundary conditions is discussed.
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Table 5 Realisations of the numerical solution of problem (4.9) in the
case of nonhomogeneous Robin boundary conditions for NR = 1000 in the

time interval [0, 1].

λ Quenching Events m(Tq) Var(Tq)

0.9 0 0 0
0.95 35 0.9914 27.1037
0.97 191 0.9858 4.1184
0.99 431 0.9740 1.2535
0.995 502 0.9701 0.9347
1.1 993 0.8501 0.0069

Next, and for a certain form of boundary conditions (cf. equation (4.2b)) it is shown that the
solution of z−problem (4.2) quenches almost surely regardless the chosen initial condition or the
value of the tuning parameter λ. This is actually a striking and counterintutive result; indeed for
the corresponding deterministic problem, quenching occurs only if the parameter λ or the initial
data are large enough. To the best of our knowledge, this the first result of such kind derived in
the context of semilinear SPDEs related to MEMS.

Furthermore, adding a regularising term into equation (4.2a), in the form of a modified non-
linear drift term, changes the dynamics of solution z = 1 − u and we then obtain a dynamical
behaviour resembling that of the deterministic problem. Moreover, in this particular case a lower
estimate of the quenching probability is provided by formula (5.31).

The case of including time-dependent coefficients related to dispersion and varying dielec-
tric properties in the equation is tackled by a similar approach. Again, a lower bound for the
quenching probability or quenching almost surely are derived, depending on the size of the first
eigenvalue of the Laplacian operator associated with relevant boundary conditions.

We end our investigation by the implementation of a finite element numerical method, for the
solution of the stochastic time-dependent problem in the one-dimensional case. We also provide
a series of numerical experiments initially for the case of homogeneous Dirichlet boundary con-
ditions (for the u-problem) and next for nonhomogeneous Robin conditions. In each case, we
present various results estimating the quenching events in a specific time interval [0,T], which
are of particular interest for MEMS practitioners.

Finally, we would like to point out that other kind of noise terms could be considered in the
same context of MEMS applications. A more rough in time noise perturbation, realised via a
fractional Brownian, is treated in a forthcoming paper, cf. [13]. Indeed, such a consideration
is linked with more irregular changes (including possible jumps in the values) of the features
of MEMS device, as it is indicated in [40]. Furthermore, the consideration of a more general
continuous-time stochastic perturbation, like a Lévy noise, would be of considerable interest
from mathematical as well as from applications point of view. In addition, the estimation of
quenching probability for a space-time Wiener process, via the approach of Section 5, seems to
be a challenging issue, since it requires a quite technical analysis, and thus, it will be treated in a
future work.
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