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1. Introduction

Let k and r be fixed integers such that 1 < r < k. It is well-known that a
positive integer is called r-free if it is not divisible by the r-th power of any integer
> 1. We call a positive integer n, a(k,r)-integer, if n is of the form n = a*b,
where a is a positive integer and b is a r-free integer. In the limiting case, when k
becomes infinite, a (k,r)-integer becomes a r-free integer and so one might con-
sider the (k,r) integers as generalized r-free integers.

It has been shown by one of the authors and V. Siva Rama Prasad [4] that
if 7,y(n) denotes the number of r-free divisors of n, then for x = 3,

X r§'(r)
&) &r
where A(x) = O(x'"8(x)) or O(x*), according as r = 2,3 or r = 4;

8(x) = exp{— Alog**x(loglogx)~"/*}, A being a positive constant and «
is the number which appears in the Dirichlet divisor problem

(.1 S t) = z5(lomx + 20 -1 = L) 4 ),

(1.2) 2 1(n) = x(logx + 2y — 1) + O(x¥),
nsx
where 7(n) is the number of divisors of n.

It is known that § <o <% (cf. [1], p. 272). The best result yet proved
has been obtained recently by Kolesnik [2], who proved that the error term
in (1.2) is O(x"?/3*77*#), for any ¢ > 0. There is a conjecture that a = 4 + &.
In the formula (1.1), {(s), denotes the Riemann Zeta function and {'(s) its de-
rivative and y is Euler’s constant.

It has also been shown in [4] on the assumption of the Riemann hypothesis
that A,(x) = O(x @~ g(x)), Az(x) = O(x 2~ ~69(x)) and A,(x) = O(x*)

1 This research is partially supported by an NRC Grant.
2 On leave from Andhra University, Waltair, India.
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for r 2 4, where w(x) = exp {4logx(loglogx)~'}, A being a positive constant.
For earlier (weaker) estimations of A.x) by various authors, we refer to the
bibliography given in [4].

Let us call a divisor d of a positive integer n, a (k,7)-divisor of n if d is a
(k,r)-integer. Let 14,,(n) denote the number of (k,r)-divisors of n. The object
of this paper is to prove the following:

THEOREM 1. For 1 < r < kand x = 3,
_ tlkx LG
(49 % retn) = o (loax + 211 g2 + 00 + Ao

where A, (x) = O(x'"6(x)) or O(x*), according as r = 2,3 or 4 < r < k, the
0-estimates being uniform in k; §(x) = exp{ — Blog*°x(loglogx)™'/*}, B being
a positive constant and « is the number which appears in (1.2).

k¢’ (k)

THEOREM 2. If the Riemann hypothesis is true, then the error term A (x)
in (1.3) has the following improved 0-estimates:

As(x) = O(xslllw(x)), Apo(x) = O(X(z—a)/(S-“a)w(x))

for kZ 4, Ay(x) = OxP™T70%(x)) for k=24 and A, ,(x) = O(x*) for
4 < r < k; where the O-estimates are uniform in k and o(x) = exp{A4logx
(loglogx)~'}, A being a positive constant and « is given by (1.2).

It may be noted that in the limiting case when k — oo, formula (1.3) co-
incides with (1.1) and the O-estimates of A,(x) = A, (x) obtained in [4] follow
as a particular case.

2. Prerequisites

In this section we prove some lemmas which are needed in the proofs of
Theorem 1 and 2. Throughout the following, x denotes a real variable > 3. The
following elementary estimates are well-known:

(2.1 z ni = 0(x'""%)if0<s < 1.
22) x ni - - % ni - (;I_T) if s> 1.
(2.3) ) longs" - —l(s)= T lof" (bg") if s> 1.

LemMA 2.1 (¢f,. [6]; Satz 3, p. 191),
249 M(x) = X pu(n) = O(xd(x)),

nsx
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where

2.5) 8(x) = exp{ — Alog*°x(loglog x)~'/*},

A being a positive constant.

LEMMA 2.2 (cf. [4] Lemma 2.2). For any s > 1,

Moy _ 1 (5(x)
@6) 5=t o)
LemMA 2.3 (cf. [4], Lemma 2.3). For any s > 1,
umlogn  {'(s) o(x)log x
(27) I = o)

LemMMA 2.4 (cf. [5], Theorem 14-26 (A), p. 316). If the Riemann hypoth-
esis is true, then

(2.8) M(x) = X p(n) = 0(x"*w(x)),
where B
2.9 o(x) = exp{Alogx(loglogx)~'},

A being a positive constant.

Lemma 2.5 (¢f. [4], Lemma 2.5). If the Riemann hypothesis is true, then
forany s > 1,

pn) 1 s
(2.10) ;:x s C()+0(x* o(x)).

LEMMA 2.6 (c¢f. [4], Lemma 2.6). If the Riemann hypothesis is true, then

1
{;’flf)"y Zh S umlegn _ )

1+-s
2 o = (s + O(x*7* w(x)logx).

LemMA 2.7 (¢f. [3], Lemma 2.6). If gq,,(n) denotes the characteristic
function of the set of (k,r)-integers, that is, q,,(n) = 1 or 0 according as n is or
is not a (k,r)-integer, then
(2.12) Qi (1) = o Z p(b).

LEMMA 2.8. 7 (1) = Zpre = 1(b)7(c).

PrOOF. We have 1 ,,(n) = Z45-,4x.(d), so that by (2.12),

T(k,r)(") = X > ub) = X ub)

dé=n akbrc=d akbrcé=n
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Sub) T 1= I uby (ﬁ}

akbr|n ¢d=(n/akb") akbr(n
= X ub(c).
akbre=n

Hence Lemma 2.8 follows.

LEMMA 29. For k = 3,

(2.13) 2 1(c) = {(k)x (logx +2y—1+4

akcSx

k{'(k)

f@) + R,

where
(2.14) R,(x) = O(x? logx) or O(x%), according as k = 3 or k = 4, where the
second O-estimate is uniform in k

Proor. We have by (1.2), (2.2) and (2.3),

T )= X X o)

akesx askyx c=Zx/ak
x X x*
- (e v mr-1) ro (5]
1 1
= x(logx+2y—1) % _—S—kx X o—fa-{— O(x“ b a"‘“)
agkyx @ agkyx @ PELNF:

= x(logx + 2y — D{l(k) + O(x~F MY} — kx{ — ¢'(k)

+o(tin) | +olx, X.e)
kC (k)
)

L(k)x (logx+2y—1+ ) +0(x’/"logx)+0(x“ Z_a"“‘).

askyx

Since } <a < 4, we have ka s 1 according as k = 3 or k = 4. Hence, by (2.1)
and (2.2), the last O-term in the above is O(x!) or O({(kx)x®) = O({(4a)x%)
= O(x%), uniformly in k, according as k = 3 or k = 4. Hence Lemma 2.9 follows.

3. Proof of Theorem 1
By Lemma 2.8, we have

Tan(h) = kz u(byw(c).

akbrc=n

Hence
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3.1 E TenM = X X pd()= T wub)(o),
n<x akb'c=n akbre<x

where the summation on the right being taken over all ordered triads (a, b, ¢) such
that a*b"c < x.

Let z = x!/*. Further, let 0 < p = p(x) < 1, where the function p(x) will be
suitably chosen later.

Now, if a*b’c < x, then both b > pz and a*c > p=" can not simultaneously
hold good. Hence from (3.1), we have

32 T = T u®@+ X ub@)— T ubyle)

nsx akbreSx akb'cgx Spz
b<pz akc<Sp-T a"cSp""
= 5,4+ S, —S;, say.
By (2.13), we have

(33 Si= X uble)= X pdb) X ()
a’;b;i’fx b<pz akc 5 (x/b7)

I

ZHO(0 s (s 2r= 1 5) o1 ()]

(o {togx + 29 -1+ 2£0) p u(b)

() 2
- Lors % @},"—g”wk,()

where

(3.4 B = X u(b)Rk( )

Hence by (3.3), (2.6) and (2.7), we have

20 4ol )
{2 o) 1t

rg'(r) | k{'(K)
GG )

+ O(U(k)p! ~"28(p2) log z) + E, (x).
By (2.14) and (3.4), we have

E,(x)=0( X lo()orO(Zﬁ),
k. (x) (bgp b3 g b e XE

35) S = C(k)X(

_ )x
G}

(logx+2y 1-
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according as k = 3 or k = 4. Since 1 <r <k, we have r = 2, when k = 3 and
since + < « < %, we have by (2.1) and (2.2), the following O-estimates:

E; 5(x) = O(p'/3 x/? log x)
E,(x) = O(p'~"z)
E.(x) = O(p'~"z) or O(x9,

3.6)

accordingasr =2,3 or 4 £ r <k;

where the 0-estimates are uniform in k. We have

S = Z b)) = ) X (o) , Tz wb)
:"ggg?'{ akesp™” bs \/(x/akc)
" x
= akcgo_,r(c)M (\/;’;)

— yr —kjr ,~1r r_x_
_0<x akcg_rr(c)a ¢ 5(\/a"c)>’

by (2.4). Since 6(x) is monotonic decreasing and \/ —;—:E 2 0z, we have

5( \/a_ffz) < 6(p2). Also, by (2.1), (2.2) and (1.2),

~kjr ~1/r __ -k -1
) SZl.r'r(c)a Ire=4r = Z_:r/ka r _Zr‘,_k 7(c)e "
akeSp asp cgp~ra
= 0 ( E a—k/r(p—'ra "k)l-(l/r)log(p—fa—k))
asp-r/k

I

1
o (o1 (_) —k)
(p o8 P a§zp"/"a
0<z(k)p"'log (%) )
Hence

3.7 S, = O(C(k)pl"zé(pz( log (—;—) )

Further, we have by (2.4) and (2.13),

It

(3.8) S; = X uby(e)= X ulb) X 1)
kb%pz . b<pz akesp—T
akcgp-
= M(pz) ) Z_ 7(c)

O(pzd(pz){(k)p~"log(p~")
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- o(c(k)p‘-'zé(pznog(pi)).
Hence by (3.2), (3.5), (3.7) and (3.8)

 kyx e KR
I, fwn( = (“’g"”y =T C(k))

(3.9) +0({(k)p' ~"z8(pz) log z)

+ 0<C(k)p‘ " z8(pz)log g—)) + B ().

Now, we choose,

(310) p = p(x) — {5(x1/2r)} 1/r,
and write
(311) f(x) = 10g3/5(x1/2'){10glog(x1/2r)}—1/5

1 3/5
= (5) U3V —10g2.)" /3,

where U = logx and V = loglog x.

(3.12) For V = 2log2r, that is, U = 4r%, x = exp(4r?), we have

~-1/5 _ -1/5 _K s
V = (V —log2r) = >

and therefore
(3.13) lz_r“3/5U3/5V—1/5 é f(x) é r-S/SUS/SV_l/S.

(3.14) We assume without loss of generality that the constant A in (2.5) is less
than 1.

By (3.10), (2.5) and (3.11), we have
(3.15) p=exp — 2700}

By (3.12), we have

_ - U
r 8/5U3/5V 1/5 é .
2r

Hence, by (3.13), (3.14), (3.15) and the above,
p g CXp(—A r—8/5 U3/5V—1/5) g exp( _ r—8/5U3/5V"1/5)

U logx
expl| — 5; =CXp| — T .

(\%

sothat p x~2n,

v
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(3.16) log (71)—) < log(\/E) = 0(logx) and pz = xV/®"

Since &(x) is monotonic decreasing, we have §(pz) < 8(x'/?”) = p’, by (3.10),
so that by (3.13) and (3.15), we have

(3.17) P " 8(pz) £ p Sexp {— gr“*ISU”SV‘”5 .

Hence, by (3.16) and (3.17), the first and second 0-terms of (3.9) are
O(L(k)x " exp { — %r' 8/5y3/5y -1/5} log x)

O((r + 1)x7exp{ —%r“8/5U3/5V“/5}logx), since k = r+1

O(x'rexp { — _’;,r- 8/5y3/5y -1/5}log x, uniformly in k.

Hence, if A, ,(x) denotes the error term in the asymptotic formula (3.9), then
we have

3.18) A, (x) = O(x"rexp{ — i4—r‘8’5U3/5V‘1/5 logx) + E, (x),
o 2 »

where the O-estimate is uniform in k.

Case k = 3. In this case r must be = 2. By (3.6) and (3.17), we have
E; 1(x) = O(x*2exp { ~ 5-(2)7*/°U%*V ~1/*} log),

so that by (3.18),

(3.19) A; 5(x) = O(x?exp { — Blog*°x(loglogx)~'/%}),

where B is a positive constant ( 0<B< %(2)‘8/ 5.)

Case k = 4. Inthiscaser = 2or3.Since} <a < f,wehaveO0<1—ra<1.
By (3.6) and (3.17), we have

Ad—ro

E4 (x) = O(x”’exp { - 3

—8/5U3/5V-1/5} )

Again, since 0 < 1 — ra < 1, the first O-term in (3.18) is also of the above order
of E, (x). Hence

(3.20) Ay (x) = O(x'""exp{ — Blog**x(loglogx)~/*}),

where B is a positive constant.
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Case k= 5. Inthiscase r = 2,3 0or 4 < r < k. When r = 2 or 3, by (3.6)
and (3.17), we have

A(l — ra
E, (x) = O(x”'exp { - -(—2-——) r-8/5U3/5V—1/5=),
so that by (3.18),
(3.21) AcAx) = O(x'"exp { — Blog*/*x (loglog )~ /%)),

where B is a positive constant and the 0-estimate is uniform in k.

When 4 < r < k, by (3.6), E, ,(x) = O(x*) and the first O-term in (3.18) is
0(x''"), so that we have

(3.22) A (%) = O(x%),
where the 0-estimate is uniform in k.

Hence, by (3.9), (3.18)(3.22), Theorem 1 follows.

4. Proof of theorem 2

Following the same procedure adopted in the proof of theorem 1 and making
use of (2.10) and (2.11) instead of (2.6) and (2.7) we get that
4.1 A (x) = O(p”z"z”zw(pz)logz)) + O(p”z"zllzw(pz)log (;—))

\ + E (%), I

where the 0-estimates are uniform in k and E, (x) is given by (3.6).

Case k = 3. In this case r must be = 2. Choosing p = z~3/!!, we see that

O<p<l, lp < z, so that log(%) < log z, and
p1/2—221/2 — p1/3z — x5/11'

Since w(x) is monotonic increasing, w(pz) < w(z). Hence, by (4.1), (3.6) and the
above, we have

(4.2) Az (%) = O(x*Maw(x?)logx) + O(x*/*! log x)
= 0(x*w(x)).
Case k = 4. In this case r = 2 or 3. Choosing p = z /A +2r(1=a) = ye

seethat 0 < p <1, % < z, so that log (17) < logz, and

1/2-r,1/2 2-a/(1+2r(1~a))

p — pl-rzz = x

Since w(x) is monotonic increasing, w(pz) < w(z). Hence by (4.1), (3.6) and the
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above, we have

4.3) Ay (%)

]

0 (x 2—-af(1+2r(1 ‘a)w(xl/z) Ing)

=0 (x 2—a/(1+2r(1~a) (D(X))

Case k= 5. Inthiscase r = 2,3 0r4 < r < k. When r = 2 or 3, we have
by (3.6), E;(x) = O(p' ™™ z). Choosing p = z~ MU *+ZU=e) "5 in the case
k = 4, we get that

(4.4) Ay (x) = O (7T EETN0(xy),
where the O-estimate is uniform in k. When 4 < r < k, by (3.6), we have

E; (x) = O(x%). We have w(x) = O(x") and logz - O(x®) for every ¢> 0. We
assume that 0 < € < 1. Hence, by (4.1), we have

(45) Ak r(x) = O(p 1/2-r+e ZI/2+25)
+ 0<p1/2—r+ez 1/2+¢ log (%)) + O(x“).

1
Now, choosing p = z ~(32~1#4/(2r=1728) e see that 0 < p < 1, > < z, so that

log ( /1)—) <logz = 0(z*) and

1/2-r+e_ 1/2+2¢ _ _a
z =

P x%

Hence, by (4.5), we have
(4.6) Ay (%) = O(x7),

where the Q-estimate is uniform in k. Hence, by (4.2), (4.3), (4.4) and (4.6),
Theorem 2 follows.

REMARK. In the case 4 < r < k, we may choose the function p = p(x),
which tends to zero as x — oo to be a function which tends to zero more rapidly
than that chosen above. In such a case, although the first and second O-terms
in (4.5) are 0(x?), where B < a, but because of the third O-term in (4.5), we again
get A, (x) = O(x%). Hence we can not improve the result that A, ,(x) = O(x%) for
4 £ r < k, even on the assumption of the Riemann hypothesis.
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