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1. Introduction and notation
Let G be a group and let K be an algebraically closed field of characteristic

p>0. The twisted group algebra ^(G) of G over K is defined as follows:
let G have elements a, b, c, ... and let K'(G) be a vector space over K with basis
elements a, b, c, ...; a multiplication is defined on this basis of K'(G) and
extended by linearity to K'iG) by letting

xy = a(x, y)xy (x, y e G),

where <x{x, y) is a non-zero element of K, subject to the condition that

a(x, y)a.(xy, z) = ct(y, z)cc(x, yz) (x, y, z e G)

which is both necessary and sufficient for associativity. If, for all x, yeG,
a{x, y) is the identity of K then K\G) is the usual group algebra K(G) of G
over K. We denote the Jacobson radical of IC(G) by JK'(G). We are interested
in the relationship between JK\G) and JIC(H) where H is a normal subgroup
of G. In § 2 we show, among other results, that if certain centralising conditions
are satisfied and if JK(H) is locally nilpotent then JK(H)K(G) is also locally
nilpotent and thus contained in JK{G). It is observed that in the absence of
some centralising conditions these conclusions are false. We show, in particular,
that if H and G/C(H) are locally finite, C(H) being the centraliser of H, and
if G/H has no non-trivial elements of order p, then JK(G) coincides with the
locally nilpotent ideal JK(H)K(G). The latter, and probably more significant,
part of this paper is concerned with particular types of groups. We introduce
the notion of a restricted S'JV-group and show that if G is such a group and if
G has no non-trivial elements of order p then JEC(G) = {0}. It is also shown
that if G is polycyclic then JK'(G) is nilpotent.

We let e be the identity of G and we denote the index of a subgroup B of
G by | G:B \ and its centraliser in G by C(B). If X is a non-empty subset of
K(G), Supp X denotes the subset of elements of G appearing with non-zero
coefficients in the representation of the elements of X as linear combinations of
the elements of G.
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2. Centralising conditions on subgroups
Throughout this section we assume that A is a subgroup of G, that H is a

normal subgroup of G and that G = HA (we do not assume HnA = {e}).
For convenience we make the following definition.

Definition. If B is a subgroup of G then a non-empty subset S of K{G) is
called B-invariant ifb~lSb = S for all beB.

Thus a subgroup S of G is 5-invariant if and only if S is normal in the
subgroup SB.

The next lemma is similar to Theorem 4.1 of (5).

Lemma 2.1. Let B be a subgroup of G and let S be a B-invariant subalgebra
ofK(G). Then SK{B) is a subalgebra of K(G) and

ISK(.B)Y = S»K(B) (p = 1, 2, ...).

Proof. Since S is ^-invariant we have SK(B) = K(B)S and this implies
the result.

Lemma 2.2. Let C be a subgroup of G centralising H and let \ A: AnC \
be finite. Let S be a finitely generated subalgebra of K(H) and let T be the
subalgebra of K{G) generated by {a~lsa: ae A, se S}. Then T is a finitely
generated A-invariant subalgebra of K{H).

Proof. T is clearly an ^-invariant subalgebra of K(H). Let

A = (AnC)al\j(AnC)a2\j...Kj(AnC)an

be a coset decomposition of AnC in A. Let S be generated by {su s2, •••, sr}.
Then we assert that T is generated by

{af1sJai: i = 1, 2, ..., n; j = 1, 2, .... r}.

We observe first that Tis certainly generated by {a~1sja: ae A,j = 1, 2,...,r}.
But for all ae A there exists k, 1 ^ k ^ n, and ce AnC such that a = cak.
Hence, as S c K(H),

a~1sJa = a^1c~1sJcak = ak~
1sJak

and this establishes the lemma.

Theorem 2.3. Let C be a subgroup of G centralising H and let \ A:AnC \
be finite. Let I be a locally nilpotent G-invariant ideal of K(H). Then IK(G)
is a locally nilpotent ideal of K(G).

Proof. Since / i s G-invariant, IK(G) is an ideal of K(G), and, since G = HA,
IK(G) = IK(A). Let ux, u2, ..., ur e IK(G) and let U be the subalgebra generated
by {wj, u2, . . , ur}. For suitable xu x2, ..., xs e A and

hXtleI(k = 1,2, ..., r; n= \, 2, ..., s)
we have

s
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Let S be the subalgebra generated by {hX/l: X = 1, 2, ..., r; \i = 1, 2, ..., s)
and let Tbe the subalgebra generated by {a~1sa: ae A,se S}. By Lemma 2.2,
T is a finitely generated ^4-invariant subalgebra of / and so T is nilpotent.
But U £ TK(A) and thus, by Lemma 2.1, U is nilpotent. The theorem is now
proved.

Remark. If, in the above theorem, \ A: AnC | is not finite then the theorem
is false. To see this we consider the example on p. 294 of (5). In this example
His a normal abelian/?-subgroup of G, A is an infinite cyclic subgroup generated
by an element g and C = {e}. JK(H) is locally nilpotent, yet, as is shown,
JK(H)K(G) $ JK(G). Indeed, we now know that JK(G) = {0}.

Theorem 2.4. Suppose that, for all non-trivial finitely generated subgroups
Ho and Ao, Ho c H, Ao s A respectively, \ Ao; C(H0)nA0 \ is finite. Let I
be a locally nilpotent G-invariant ideal ofK(H). Then IK(G) is a locally nilpotent
ideal of K(G).

Proof. Let U be the subalgebra of IK{G) generated by ult u2, ..., wr; as
in the previous theorem we require to show U is nilpotent. For suitable
xlt x2, ..., xre A and hX/1 e I (A = 1,2, ..., r; \i = 1, 2, ..., s) we have

Let W = S u p p ^ : A = 1, 2, ..., r ; n = 1, 2, ..., j}. Then

W = K w 2 wj, say.

Let /40 be the subgroup generated by {xu x2, ••-, xs] and let Ho be the subgroup
generated by W* where W* = {a'^wfi: aeA0; i = 1, 2, ..., / } . Then W*
is finite since | Ao: C{w^)nA0 \ is finite (i = 1, 2, ..., t). Thus /To is a finitely
generated ,40-inVariant subgroup of G and also

U £ \InK{H0)-\K(A0).

Let Go = H0A0. Then InK(H0) is a locally nilpotent G0-invariant ideal of
^T(G0). Hence, by Theorem 2.3, [ /n#(#o)]#04o) is locally nilpotent and so
U is nilpotent. This proves the theorem.

We now make some applications of the above theorems.

Theorem 2.5. Let G/C(H) be locally finite and let JK(H) be locally nilpotent.
Then JK{H)K(G) is locally nilpotent.

Proof. Let Ho and Ao be finitely generated subgroups of H and C7(= A)
respectively. Then C(H) c C(H0) and so

| Ao: C(H0)nA0 \ £ \ Ao: C(H)nA0 |.
But

A0/(C(H)nA0) s A0C(H)/C(H)
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which, being a finitely generated subgroup of G/C(H), is finite. Hence

| Ao: C(H0)nA0 |

is finite and the result now follows from Theorem 2.4.

Corollary. Let H and G/C(H) be locally finite. Then JK(H)K(G) is locally
nilpotent.

Proof. The local finiteness of H implies easily that JK(H) is locally nil-
potent.

Theorem 2.6. Let G/H be locally finite. Then

(i) JK(H)K(G) £ JK(G) and
(ii) JK{G)/JK(H)K(G) is locally nilpotent.
(Hi) If G/H has no non-trivial elements of order p then JK(H)K(G) = JK(G).

Proof (i) JK(H)K(G) is an ideal of K(G) and we therefore require to show
that all elements of JK(H)K(G) have quasi-inverses. Let x e JK(H)K(G). Then

where hteJK(H), gt e G (i = 1, 2, ..., r). Let Go be the subgroup generated
by H<j{g1, g2, ..., gr}. Then Go/H is finitely generated and so is finite. Hence
((4), Proposition 1.3) JK(H)K(G0) s JK(G0) and thus xeJK(G0). Thus x
has a quasi-inverse in K(G0) and so in K(G).

(ii) Let U be the subalgebra of JK(G) generated by {uu u2, ..., «„}. We
require to show that for some p > 0 U" s JK(H)K(G). Let Co be the subgroup
generated by / / u S u p p ^ , w2, ..., «„}. Then Go/H is finite and so ((4),
Proposition 1.3) there exists p > 0 such that [JK{GO)~\P s JK(H)K(G0). Now
C/ s JK(G)nK(G0) <= /A"(G0) and therefore [/" c JK(H)K(G0) c JK(H)K(G).

(iii) If (?/// has no non-trivial elements of order /> then <?/// belongs to a
/AT-class ((6), p. 54-55), which implies that JK(G) £ JK(H)K(G). This fact,
together with (i), proves (iii).

By combining Theorems 2.5 and 2.6 the following is immediate.

Theorem 2.7. Let G/H and G/C(H) be locally finite. Then JK/G is locally
nilpotent if and only if JK(H) is locally nilpotent.

This result is derivable by other means on observing that our group-
theoretical conditions are equivalent to the assertion that G/(Hr\C(H)) is locally
finite.

3. Polycyclic groups and restricted STV-groups
In (6) we were concerned with conditions under which JK(G) £ JK(H)K(G),

utilising the previously known result that if G/H is finite and has no non-trivial
elements of order/* then this relation holds. Our arguments on directed systems,

https://doi.org/10.1017/S0013091500009445 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009445


THE RADICAL OF THE GROUP ALGEBRA 169

etc., were essentially group-theoretical and require trifling modifications in
order to apply to twisted group algebras once Proposition 1.3 of (4) is known.
Thus we can, in particular, assert the following.

Lemma 3.1. Let G/H be a finitely generated abelian group with no non-trivial
elements of order p. Then JK'iG) £ JK'i^K'iG).

Combining this with Proposition 1.3 of (4) we obtain easily the next lemma.

Lemma 3.2. Let G/H be a finitely generated abelian group. Then there
exists p>0 such that

[//T(G)]P <= JK\H)K\G).
This result yields the following important lemma.

Lemma 3.3.f Let G/H be an abelian group and let G have no non-trivial
elements of order p. Then JK\H) = {0} implies that JK'iG) = {0}.

Proof. Suppose x e JK'iG), x # 0. Let N be generated by 7/uSupp (x).
Then x e JK'(N) and N/H is a finitely generated abelian group. By Lemma 3.1
there exists p>0 such that

IJK'(N)Y c JIC(H)KXN) = {0}.

But N has no non-trivial elements of order p and so fCiN) has no proper nil-
potent ideals ((4), Theorem 3.2). Thus we derive a contradiction if x ^ 0.

We apply these results first to polycyclic groups.

Theorem 3.4. Let G be a polycyclic group. Let M be the subgroup generated
by those elements of G, of orders a power of p, having at most a finite number
of conjugates. Then M is a finite normal subgroup of G and JK'iG) coincides
with the nilpotent ideal JK\M)K'{G).

Proof. By Dietzmann's Lemma ((3), p. 154) M is locally finite and normal.
Since G is polycyclic, M is finitely generated and thus M is finite. Consequently
JK'(M)K'(G) is nilpotent ((4), Lemma 1.2; cf. Lemma 2.1).

We now establish, by induction on the length of the derived series, that
JK'iG) is nilpotent. This assertion is true for finitely generated abelian groups.
Let now G' be the derived group of G. Then JK'iG') is nilpotent and hence
JK'iG')K%G) is nilpotent ((4) Lemma 1.2; cf. Lemma 2.1). By Lemma 3.2
there exists p>0 such that

\JK?{G)Y c JKiOKiG)

and therefore JK'iG) is nilpotent. It follows now that JK'iG) = JK'iM)lCiG)
((4), Theorem 3.7).

We wish now to establish semi-simplicity of K\G) in the case of a particular
generalisation of a soluble group.

t Results similar to Lemma 3.3 and also Theorem 3.5 below have been obtained indepen-
dently by D. S. Passman in a preprint entitled "On the Semisimplicity of Twisted Group
Algebras ".
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Definition. Let G be a non-trivial group and let T be an ordinal. Let G have,
for each ordinal 0,0^1, a pair of subgroups Ua, Va such that

(i) Ua is a normal subgroup of Va and VJUa is abelian;
(ii) p<a implies that Vp c Ua;

(iii) U0 = {e}, K t = Gand
(iv) (J (Y.W = G\{e}.

0 §<T § t

Then we call G a restricted SN-group.

Our definition is motivated by that of Kurosh for SN-groups ((3), p. 171
and p. 182) but we have made the assumption, additional to the usual definition
of STV-groups, that the total ordering, under inclusion, of the subgroups of the
family is also a well-ordering.

Theorem 3.5. Let G be a restricted SN-group as above and let G have no
non-trivial elements of order p, then JK'(G) = {0}.

Proof. If T = 1 then G = V1 and G is abelian, hence, in this case,

JK\G) = {0}.

We therefore argue by transfinite induction and assume that the result is true
for all subgroups Vp, p<.o (say) and we then prove that the result for Vc.

We begin by showing that JK'(Ua) = {0}. Suppose therefore that

xeJlC(U.),x*0.

Then x = £ k^i where X}e K, 8j e Ua(j = 1, 2, . . . , « ) . By (iv) of the
i = 1

definition there exists pj such that

gjBVPJ\UPj ( j = l , 2 , . . . , « ) .

Now PJ<(T for a # p} and a<pj implies that Va c Up cz Vpj from which we
would derive a contradiction (J = 1, 2, ..., n). Let p = max {pl5 p2, ..., pn],
then p<o and furthermore ((4), Lemma 1.9).

xeJK\G)nK\Vp) c JK\VP).

But JK'(Vp) = {0} and so we cannot have x ^ 0. Hence we have shown that
JK'(Ua) = {0}. By Lemma 3.3, JK\Va) = {0} and this completes the transfinite
induction argument. Consequently we can assert that JK'(G) = {0}.

Remarks. It is worth observing that if G is polycyclic then K'(G) has ascend-
ing chain condition on left and right ideals ((2), p. 429). [Strictly this is proved
for K(G) but the same arguments work for K'(G).~\ Therefore, by Levitzki's
Theorem ((1), p. 51) every nil or locally nilpotent ideal of K'(G) is nilpotent.
This suggests that if G is soluble perhaps JK'iG) is nil or locally nilpotent.

We have assumed that/?>0 throughout this paper. There is a long-standing
conjecture that if p = O then JK(G) = {0} for any group G; a proof of this
for an STV-group has been given by Villamayor ((7), p. 31).
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