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Abstract
In this study, a high-isolation multiple-input multiple-output (MIMO) microstrip patch
antenna (MPA), which utilizes an orthogonal mode cancellation method is proposed. This
method employs TM10 and TM01 modes, which are simultaneously excited in the rectangu-
lar passive MPA. Initially, a rectangular decoupling structure featuring polarization rotation
characteristics is designed. Further studies show that by loading the polarization conversion
parasitic structure (PCPS), the electric field of the spatial coupling wave can be transformed
from the x-polarized TM10 mode to the y-polarized TM01 mode. Therefore, TM10 and TM01
modes from the excited antenna and decoupling structure are concurrently coupled to the pas-
sive antenna, forming an evident weak-field region on the passive antenna. Placing the feeding
probe of the passive MPA within the weak-field region prevents signal reception at the port.
Consequently, this results in an extremely low mutual coupling of −49 dB at a resonant fre-
quency of 5.8 GHz. Finally, a prototype of the proposed antenna is fabricated and tested, and
themeasured results closely match the simulated results. Additionally, it is observed that PCPS
slightly influences the performance of the MIMO antenna.

Introduction

Wireless local area networks (WLANs) play a pivotal role in connecting wireless devices. Their
applications in the 5.8-GHz band have transformed connectivity by supporting more devices
and facilitating higher transmission rates [1].This is especially significant in the context of fifth-
and sixth-generation mobile communications. Specifically, the use of multiple-input multiple-
output (MIMO) antenna arrays plays a crucial role in enhancing transmission rates and channel
capacity, achieving this without the need for additional spectrum resources or increased trans-
mission power. However, this approach presents challenges in antenna design, especially when
dealing with co-frequency and co-polarization antennas that are closely situated within the
E- or H-plane.This scenario leads to strong mutual coupling between antenna elements, which
in turn can cause issues such as impedance mismatch, distortion in the radiation pattern, and a
decrease in realized gain [2, 3]. Therefore, enhancing isolation is a crucial aspect for designing
WLAN-MIMO antennas [4–8].

Recently, several scholars proposed various decoupling methods to address the problem
of strong mutual coupling between MIMO antenna elements. Based on the origin of the
coupling waves, the techniques for minimizing coupling can be categorized into two main
types: (i) direct suppression, which includes methods such as utilizing defected ground struc-
tures (DGSs) [9, 10], electromagnetic (EM) bandgap structures [11], and metasurfaces/meta-
materials [12, 13]. These are employed to mitigate the coupling of floor currents, surface
currents, and space waves, respectively; (ii) cancellation schemes, where the original cou-
pling field is counteracted by a field produced through a decoupling structure. Common
structures include the neutralization line [14], decoupling network [15, 16], polarization-
conversion isolator [17–19], and parasitic elements [20, 21]. Additionally, recently received
considerable attention, the self-decoupling method can be classified as a cancellation type.
Distinguished from other traditional decoupling methods, the self-decoupling method makes
use of the advantageous features of the antenna itself to reduce mutual coupling between
MIMO antenna elements, without the necessity for additional decoupling structures [22–25].
For example, Lin et al. [22] engineered a microstrip patch antenna (MPA) using an inset-
fed design. When the geometric parameters of the feeding structure are optimally configured,
the fields generated by the feeding structure and radiation patch counteract each other. This
creates a region of weak field on the ground plane. By positioning the antenna elements
within this weak-field area of the adjacent elements, high isolation between MIMO antenna
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elements is realized, eliminating the need for a separate decoupling
structure. A similar study, as reported in paper [23], involved
the simultaneous excitation of TM10 and TM02 modes in a patch
antenna. By fine-tuning the frequency of these two modes, the
electric fields (E-fields) coupled to an unexcited patch antenna
counteract each other, resulting in a distinct null-field region. As
highlighted in prior research,while traditional decoupling schemes
are effective in enhancing isolation to approximately 20 dB or
more, they exhibit several drawbacks, such as increased physical
profile [12, 13], complex antenna structure [17, 18], and com-
promised matching, and radiation performance. Simultaneously,
the self-decoupling scheme, despite attracting significant research
interest, presents its own challenges, for example, (i) the challenge
in exciting or introducing the required mode and (ii) different
arrangements of antenna elements and the method of weak-field
generation leading to limitations in practical applications.

Furthermore, previous studies suggest that most decoupling
methods are suitable for narrowband MIMO antennas. Therefore,
the coupling suppression of broadband MIMO antennas has
attracted the attention of numerous researchers [26–28]. In MPA,
the methods commonly used to improve bandwidth include load-
ing parasitic elements [26, 29], multimode technology [27, 30],
and introducing metasurfaces [31]. Tran et al. [26] reported that
by introducing parasitic elements, the bandwidth of an MIMO
antenna was improved by approximately 4.8%, and the isolation
was improved to more than 30 dB. Yuan et al. [27] proposed
a planar inverted-F MIMO antenna that operates with a wide
bandwidth of 78% using the multimode technology.

In general, in a rectangular MPA array, the field distributions of
the excited antenna and coupled antenna element are in the TM10
mode. This study proposes a polarization conversion parasitic
structure (PCPS), which can convert the x-polarizedTM10mode of
the coupled E-field to the y-polarized TM01 mode. Consequently,
the coupled fields of the two orthogonal modes cancel each other
in the adjacent passive unexcitedMPA, resulting in a specificweak-
field region. The results show that when the feed probe of the
unexcitedMPA is intentionally placed in the weak-field region, the
unexcitedMPAcannot be excited effectively, and a lowmutual cou-
pling of approximately −49 dB can be obtained at 5.8 GHz. The
effect of the decoupling structure on antenna performance is small
and can thus be applied to multielement MIMO antenna arrays.

Design and analysis of polarization converter parasitic
structure

In this section, the design and analysis of the proposed rectangular-
ring PCPS are described. The structure of a PCPS is shown
in Fig. 1(a). A rectangular metallic ring, tilted at 45∘ with respect
to the x-axis, was mounted on top of an FR-4 substrate. This sub-
strate exhibited a relative permittivity of 4.3 and a thickness of
1.6 mm. Below it, a metallic ground plane was established as the
base layer.The simulation of this arrangementwas conducted using
CST Microwave Studio Software, setting up boundary conditions
in the Floquet port. To determine the characteristics of an infi-
nite periodic structure, its unit cells were simulated. The incident
E-field was aligned with the z-axis. The parameters of the unit cell,
set as Wd = 18 mm, Lr = 10 mm, and W r = 5 mm, were care-
fully selected to align the operating bandwidth of the proposed
rectangular-ring PCPS with that of the antenna.

Consider the normal incident y-polarized EM wave as an
example, denoted as Ei

y. The reflection coefficient and polariza-
tion conversion ratio (PCR) of the rectangular-ring PCPS are

illustrated in Fig. 1(b). The reflected EM wave comprises co-
polarized (ryy) and cross-polarized (rxy) reflections, defined as
ryy = ∣ ⃗Er

y∣ / ∣ ⃗Ei
y∣ and rxy = ∣ ⃗Er

x∣ / ∣ ⃗Ei
x∣, respectively. Given that the

rectangular ring is symmetrical in y- and x-directions, the simu-
lated results of x-polarized incident EMwaves are the same as those
of y-polarized EM waves. Figure 1(b) illustrates that ryy values are
less than −10 dB while those of rxy were approximately 0 dB in the
range of 5.6–6.3GHz. Furthermore, PCR indicates the polarization
conversion efficiency, which can be expressed as follows [32]:

PCR = ∣rxy∣
2/ (∣ryy∣

2 + ∣rxy∣
2) (1)

where ryy and rxy are obtained from Fig. 1(b). Meanwhile, effective
polarization conversion is realized, as shown in Fig. 1(b), due to the
PCR value, which is approximately 100% at 5.8 GHz.

To understand the operating principle of the rectangular metal
ring, the induced current distributions of the rectangular ring ele-
ment when the normal incident wave is y-polarized are shown
in Fig. 2(a). The opposite induced current was excited on the
rectangular metal ring and floor, indicating that the magnetic res-
onance was generated at 5.8 GHz. Furthermore, Fig. 2(b) shows
that the induced magnetic field ⃗Hr along the lower right direction
decomposes into two orthogonal components ⃗Hr

x and ⃗Hr
y along x-

and y-axes, respectively.The component ⃗Hr
x is perpendicular to the

incident E-field ⃗Ei
y, with no cross-coupling between the induced

magnetic field and induced E-field. Thus, component ⃗Hr
x does not

contribute to the polarization conversion. Conversely, component
⃗Hr
y is parallel to the incident electric E-field ⃗Ei

y, which induces an
E-field perpendicular to ⃗Ei

y. Consequently, the strong cross-
coupling between the induced magnetic field and E-field is gener-
ated by ⃗Hr

y , thereby, converting the incident wave from y-polarized
to that of the reflection wave in x-polarized. Specifically, the mag-
netic field component parallel to the incident E-field causes the
polarization conversion effect. The proposed rectangular ring can
be regarded as a polarization converter in the desired operating
bandwidth. Regarding the mechanism for reducing mutual cou-
pling, the directional state of the coupling current is a critical factor
in enhancing isolation between antenna elements. Consequently,
the properties of PCPS can be leveraged to improve isolation due
to their capability to alter the direction of the surface coupling
current.

Design and analysis of two-element decoupling MPA

In this section, the configuration of a 1 × 2 MIMO MPA array is
introduced first. Then, the decoupling mechanism is analyzed in
detail.

Design and analysis of the proposed antenna

Figure 3 illustrates the two-element decoupled MIMOMPA struc-
ture constructed on an FR-4 substrate with a dielectric constant of
4.3 and an overall size of 41 × 41 × 1.6mm3. BothMPAswere coax-
ially fed. The edge-to-edge and center-to-center distances between
the two patches were d = 12 mm (0.23𝜆0) and d1 = 22 mm
(0.42𝜆0), respectively, where 𝜆0 denotes the wavelength in free
space at a resonant frequency of 5.8GHz.The proposed decoupling
structure comprises three rectangular ring PCPSs arranged along
the y-axis. According to the analysis described in the previous sec-
tion, the decoupling structure can convert the polarization mode
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Figure 1. Structures and simulated results of rectangular ring PCPS. (a) Top and side view. (b) Co- and cross-polarization coefficients and PCR.

Figure 2. Induced current distribution of rectangular ring PCPS at 5.8 GHz and its decomposition diagram.

of the coupled E-field from the x-polarized TM10 mode to the y-
polarized TM01 mode.Thus,mode cancellation was realized on the
coupled antenna. Detailed parameters of the decoupling structure
are as follows: Wg = Lg = 41 mm, W = 10 mm, W1 = 2.7 mm,
L = 13 mm, L1 = 6.5 mm, L2 = 4 mm, d = 12 mm, and h = 1.6
mm.

The aforementioned MIMO antenna is simulated and opti-
mized using CST software to evaluate its radiation and isolation
performance, with the simulated S-parameters displayed in Fig. 4.
The reference antenna (without PCPS) demonstrated good match-
ing, with the reflection coefficient surpassing 10 dB. In comparison,
the isolation at 5.8 GHz was only approximately 12 dB. Upon
introducing rectangular-ring PCPSs vertically between the anten-
nas, the simulation results indicated that the PCPSs significantly
contribute to suppressing mutual coupling in the MIMO antenna
system. The highest isolation achieved was 49 dB at 5.8 GHz,
while S11 was at −24 dB. Additionally, there was a slight reduction

in the operating bandwidth of the antenna. This occurs because
the decoupling structure closely resembles the reference anten-
nas, and they all share the same substrate. EM radiation from the
antenna can easily couple within the substrate, leading to a balance
between the radiation performance and isolation performance of
the antenna.

Decoupling mechanism

The operating mechanism of the decoupling effect due to the
rectangular-ring PCPS can be presented by observing the sur-
face current and E-field distributions of the proposed antenna at
5.8 GHz. In the following analysis, only Ant_1 was excited whereas
Ant_2 was connected to a 50-Ω matched load.

Figure 5(a) shows the surface current distributions of the pro-
posed antenna at 5.8 GHz, prior to the integration of rectangular-
ring PCPSs. When Ant_1 was activated, it induced a coupling
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Figure 3. Structures of the proposed MIMO antenna.

Figure 4. Simulated S-parameters of the proposed MIMO antenna.

current in Ant_2, moving in the same direction along the x-axis.
Conversely, Fig. 5(b) shows that after adding PCPSs to the MIMO
antenna, the coupling current Ant_2 adopts an orthogonal direc-
tion when compared to its initial distribution. This change shifts
the reciprocating movement of the coupling current from the x-
axis to the y-axis for Ant_2, significantly reducing the coupling
current it receives. Furthermore, while various types of coupling,
such as surfacewave, near-field, and far-field coupling exist inMPA
arrays, surface wave coupling is the predominant form when the
substrate’s electrical thickness meets certain criteria [33]:

h
𝜆0

⩾ 0.3
2𝜋√𝜀r

(2)

where h and 𝜀r denote the thickness and relative permittivity of the
substrate, respectively; 𝜆0 denotes the wavelength in free space.

Figure 6 further illustrates the E-field distribution of the
antenna at 5.8 GHz, reinforcing the effectiveness of the proposed
decoupling structure. In Fig. 6(a), the reference MIMO antenna
shows strong E-fields on the left and right sides, but these fields
are considerably weaker in the center. This pattern indicates that
Ant_1 is functioning in the TM10 mode. A similar E-field dis-
tribution is observed in the coupled, passive Ant_2. However,
in Fig. 6(b), with the inclusion of the PCPS decoupling structure,
the structure’s capacity to transform the coupling E-field from x-
polarization TM10 mode to y-polarization TM01 mode becomes
apparent. Hence, Ant_2 receives simultaneous coupling from the
TM10 mode of Ant_1 and TM01 mode of the decoupling struc-
ture.This coupling leads to the E-fields of the twomodes in passive
Ant_2 neutralizing each other, thereby creating an area of weak
field. Consequently, when the feed position of passive Ant_2 is
located in this weak-field area, it is less effectively excited due to
reduced port energy, resulting in a significant decrease in mutual
coupling to −49 dB.

Figures 6(c–g) depict the development of a weak-field region
in MPA-2, a key aspect of the proposed self-decoupling method.
Figure 6(e) illustrates that, when operating exclusively in the TM10
mode, the E-fields on the left and right sides of the patch antenna
are in opposing directions. Similarly, Fig. 6(f) demonstrates that
when functioning solely in the TM10 mode, the E-fields at the top
and bottom of the patch are also opposite. In the designed MIMO
antenna, both TM10 and TM01 modes are simultaneously coupled
to Ant_2. Figure 6(g) shows that the intersection of these oppos-
ing fields leads to a significant weakening of the field intensity in
certain areas, resulting in the formation of a weak-field region.

Fabrication and measured results

In this section, to verify the feasibility, a prototype of the proposed
1 × 2 MIMOMPA array is fabricated and measured. In the follow-
ing subsections, analysis and discussions on the key parameters are
presented.

S-parameters

A photograph of the prototype MIMO antenna, together with the
simulated and measured S-parameter results, is shown in Fig. 7.
As expected, the S-parameter simulation shown in Fig. 7(a) is con-
sistent with the measured results, and the center frequency of the
MIMO antenna approximately corresponds to 5.8 GHz. The oper-
ating bandwidth is |S11| <- 10 dB in the range of 5.65–5.9 GHz.
Simultaneously, the isolation was greater than 15 dB in the oper-
ating bandwidth, and the maximum port isolation at the resonant
frequency was 49 dB. Additionally, the frequency deviation was
primarily due to the inaccurate dielectric constant of the substrate.

Radiation characteristic

Figure 8 illustrates the simulated and measured radiation patterns
of the proposed MIMO antenna at 5.8 GHz in E/H-plane, both
with and without the PCPS. The measured results align well with
the simulated outcomes, indicating that the PCP decoupling struc-
ture does not significantly impact the antenna’s radiation pattern.
At 5.8 GHz, the realized gain of the MIMO antenna was observed
to be 5.17 dBi. Additionally, the antenna’s cross-polarization was
significantly reduced following the decoupling process.

The simulated and measured boresight gains of the proposed
1 × 2 MIMO antenna array are illustrated in Fig. 9, showing
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Figure 5. Simulated surface current distributions of the proposed MIMO antenna at 5.8 GHz. (a) Without and (b) with PCPS.

Figure 6. Simulated E-field distribution of the reference and proposed MIMO MPA array at 5.8 GHz. (a) Without PCPS. (b) With PCPS. (c) TM10 mode. (d) TM10 mode.
(e) TM10 mode. (f) TM01 mode. (g) TM10 and TM10 modes.

Figure 7. Simulated and measured results of the proposed MIMO MPA array. (a) S-parameters results, (b) S-parameter measurement photos, and (c) photos of the
fabricated antenna.
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Figure 8. Radiation patterns of the proposed antenna at 5.8 GHz. (a) E-plane and (b) H-plane.

Figure 9. Simulated and measured boresight gains.

that their curves exhibit nearly the same trend in the operat-
ing frequency band. Within the operating frequency band of
5.65–5.9 GHz, the measured boresight gain varied between 3.81
and 5.31 dBi, and the maximum and average gain were 5.31 and
4.52 dBi, respectively.

MIMO-related performance

The envelope correlation coefficient (ECC) is an important index
of an MIMO antenna, and it can be calculated using Equation (3)
[34, 35] as follows:

ECC =
∣∫2𝜋
0

∫𝜋
0

(XPR ⋅ E𝜃i ⋅ E*
𝜃j ⋅ P𝜃 + E𝜙i ⋅ E*

𝜙j ⋅ P𝜑) dΩ∣
2

∫2𝜋
0

∫𝜋
0

(XPR ⋅ E𝜃i ⋅ E*
𝜃i ⋅ P𝜃 + E𝜙i ⋅ E*

𝜙i ⋅ P𝜙) dΩ
× ∫2𝜋

0
∫𝜋
0

(XPR ⋅ E𝜃j ⋅ E*
𝜃j ⋅ P𝜃 + E𝜙j ⋅ E*

𝜙j ⋅ P𝜙) dΩ

.

(3)

XPR(dB) = 10 ⋅ log10
PV
PH

(4)

where i and j denote the numbers of ports, XPR denotes the cross-
polarization ratio, E denotes the incident electric field, and P𝜃 and
P𝜙 denote the 𝜃 and𝜑 components of the angular density functions
of the incoming wave, respectively, and Ω denotes the solid angle
of the spherical coordinate.

Figure 10. Simulated and measured ECC of the proposed MIMO antenna.

Within the impedance bandwidth of 5.65–5.9 GHz, the ECC
of the proposed MIMO antenna was less than 0.025 after load-
ing PCPS, which was much lower than that of the original MIMO
antenna (Fig. 10).

Comparison

Table 1 provides a comparative analysis of the decoupling
approaches proposed in this study with those previously reported.
Previous studies [17–19] have documented structures capable of
generating polarized rotational effects for decoupling purposes.
The PCP isolator design in paper [17] was noted for its com-
plexity, requiring multiple optimizations in its connection form.
Additionally, the MPA array in paper [17] necessitated the inclu-
sion of circular slots to mitigate the cross-polarized field. Similarly,
the implementation of L-shaped stubs was essential in the MPA
array of paper [19] for reducing the cross-polarized field. In paper
[18], the spacing between array elements in anMIMO antenna was
approximately 0.53𝜆0 greater than half thewavelength. Conversely,
this study introduces a rectangular-ring polarization–rotation
decoupling structure that is not only simpler but also demonstrates
a clear decoupling effect without compromising the antenna’s per-
formance.
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Table 1. Comparison of performance with previously reported antennas

Ref./Year
Decoupling
method

Antenna
size (𝜆0

2)
(mm2)

Operating
bandwidth

(GHz)

Resonant
frequency
(GHz)

Center-
to-center
spacing

Isolation
enhancement

Design
complexity

Additional
structure

[9]/2020 DGS 1.01 × 0.51
(240 × 120)

1.258–1.278
(20 MHz)

1.268 0.50𝜆0 16→47 dB High No

[12]/2019 Metasurface 1.15 × 0.81
(99 × 70)

3.52–3.57
(50 MHz)

3.5 0.40𝜆0 8.4→50 dB High No

[17]/2017 Polarization-
conversion
isolator

NG 5.68–5.9
(220 MHz)

5.8 0.39𝜆0 12.5→34.8 dB High Yes

[18]/2017 Polarization
transformation
DGS

NG 2.245–2.3
(55 MHz)

2.27 0.53𝜆0 15→30 dB High Yes

[19]/2023 U-Shaped
polarization
converter

1.17 × 0.83
(70 × 50)

4.93–5.15
(220 MHz)

5 0.325𝜆0 20→34 dB High Yes

[22]/2020 Weak-field-based 1.2 × 0.7
(105 × 60)

3.43–3.56
(130 MHz)

5.8 0.50𝜆0 24→61 dB Low No

[24]/2023 Higher-order
modes

NG 5.0–5.5
(500 MHz)

5.25 0.50𝜆0 15→45 dB High Yes

This work PCPS 0.47 × 0.47
(41 × 41)

5.65–5.9
(250 MHz)

5.8 0.42𝜆0 12→49 dB Low No

Notes: 𝜆0: free-space wavelength at the center frequency. 16→47 indicates that the isolation between the antennas is improved from 16 to 47 dB. NG = not given.

In the case of previous studies [9, 12, 22, 24], although the
MIMO arrays realized self-decoupling without using any addi-
tional decoupling structure [22, 24], the method primarily relied
on the characteristics of the radiator. Additionally, several defects
were observed in these designs. For example, the self-decoupled
MPA array reported in paper [22] is limited to the specific in-
set feed scheme. In contrast, the DRA array reported in paper
[24] employs the higher-order mode of DRA, which considerably
increases the height (volume) of antenna elements. Meanwhile, the
self-decoupling MIMO antenna exhibits the disadvantage of large
array element spacing. A metasurface structure is typically placed
above the antenna or inserted in the middle of the antenna ele-
ments in the loading method. Given that the distance between
the metasurface structure and the antenna element significantly
affects the isolation performance, the profile height of the antenna
increases substantially [12].

Conclusions

In this study, a systematic approach is proposed to enhance the
isolation between coupled MPA using a rectangular-ring PCP
decoupling structure. First, the unit cell of the rectangular-ring
PCPS was designed and analyzed independently, and its operat-
ing bandwidth was adjusted to match the operating frequency of
the referenceMIMOantenna.The simulation results demonstrated
that the rectangular-ring PCPS efficiently converts the x-polarized
E-field into orthogonal y-polarization. Based on this character-
istic, a rectangular-ring PCPS was loaded onto a two-element
MIMO MPA. Furthermore, TM10 mode from the excited antenna
(Ant_1) and TM01 mode from the decoupling structure were con-
currently coupled to the passive antenna (Ant_2), forming an
evident weak-field region on the passive Ant_2. Therefore, when
the feeding position of passive Ant_2 was located in the weak-field
region, Ant_2 could not be effectively excited. Hence, extremely
low mutual coupling was obtained. Furthermore, the decoupling

principle was described in detail based on the distributions of the
E-field and surface current before and after antenna decoupling.
Finally, the antenna’s performance was measured and compared
with those reported in the literature. The comparison shows that
the decoupling structure proposed in this study exhibits the advan-
tages of a simple structure, low profile, and no requirements to
introduce additional structures to improve the cross-polarization
of the antenna. Notably, the concept of polarization conversion
is often applied to methods such as radar cross-section reduction
and circularly polarized antenna design. This study systematically
applied it to the suppression ofMIMO antenna array coupling, and
thereby, further expanding its application range.
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