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Regular Dilations on Krein Spaces

Dan Popovici

Abstract. For bounded operators on Krein spaces, isometric or unitary dilations always exist. We
prove that any minimal isometric or unitary dilation has a precise geometrical structure. Moreover, a
bounded operator 7T has a unique minimal unitary dilation if and only if 7" and 7™ have unique min-
imal isometric dilation if and only if T is either contractive or expansive and 7™ is either contractive
or expansive.

Passing to the bi-dimensional case, a minimal unitary extension (in short, mu.e) U = (U, U;) is
obtained for a pair V = (V}, V,) of commuting bounded isometries on a Krein space. There is a link
with the one-dimensional case: if U is a m.u.e. for V then U U, is a m.u.e. for V1 V,. Also, if (V1 V,)*
is either contractive or expansive, then V has a unique minimal unitary extension. Our results can be
naturally extended to arbitrarily finite families of commuting isometries.

A minimal regular isometric dilation is then obtained for a commuting pair T = (77, T>) of bounded
operators on a Krein space such that 77, T, are contractions and 7 is a bidisc contraction or 77, T
are expansions and 7 is a bidisc expansion. The existence of a minimal unitary extension is used
to provide a minimal regular unitary dilation for 7'. Discussions about uniqueness and geometric
structure conclude the paper.

1 Introduction

One of the most fruitful directions of research in order to develop a suitable spec-
tral theory for nonselfadjoint operators was opened by the theorem of Sz.-Nagy [58]
on the existence of a unitary dilation for every contraction operator on a Hilbert
space. The matrix construction for such dilations, proposed by Schiffer in [52], was
the starting point to obtain their precise geometrical structure (cf. [31], [57], [62]).

The problem of finding isometric or unitary dilations for families of commuting
contractions was proposed by Sz.-Nagy and solved in the case when the family in
discussion is double commuting (cf. [59], [60]). Ando [3] proved that every pair of
commuting contractions has isometric dilation. Unfortunately, Ando’s result cannot
be extended for arbitrary families of more that two contractions, according to the
example given by Parrot [46].

Later developments show that the problem of finding a unitary dilation for a family
T = (T,) weg of commuting contractions on a Hilbert space §) can be reduced, by the
Naimark theorem [45], to the possibility of extending the function

Ze53n - T" € B(H)

to a positive definite one on Z. It was the idea of Brehmer [9] to consider the regular
extension

72350 (T )'T" € B($H)

AMS subject classification: 47A20, 47B50, 47A13, 47A45, 46C20.
Keywords: Krein space, unitary extension, isometric dilation, regular dilation.
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and to obtain the so-called regular unitary dilations. Their systematic study was com-
pleted and simplified later by Sz.-Nagy [56] and Halperin [29], [30]. In the multi-
variable case, even supposing that the existence is assured, minimal isometric or
unitary dilations are, in general, not unique. However, the minimality condition
ensures the uniqueness of a regular isometric or unitary dilation. Regular dilation
results have been used to provide models for commuting multi-operators [13], [47],
[48], [63], in connection with intertwining liftings [26], von Neumann inequalities [6],
[24], operator moment problems [50], Markov processes [41], completely contractive
representations of product systems of correspondences [55], or in the context of right
LCK semigroups [37].

The large class of applications involving dilation theory, for example in operator
interpolation problems, optimization, control and systems theory (excellent refer-
ences are given by the survey of Shalit [53] or by the books of Foias-Frazho [22],
Foias-Frazho-Gohberg-Kaashoek [23] and Rosenblum-Rovnyak [51]), but also in
prediction theory ([35]) motivate our work.

It is natural to assume that such a theory on spaces with indefinite metric (in partic-
ular on Krein or Pontryagin spaces) will provide at least a similar set of applications.
We should mention in this context that operators on Krein have been used recently,
for example, in machine learning [39], [40] or frame theory [17], [34], [38].

The following section (Section 2) is devoted to some preliminary facts concerning
Krein spaces, their Krein subspaces and bounded operators on such objects. Basic facts
on the theory of Krein spaces and operators on them are given in [2],[8],[32],[36]; to
see also the excellent monograph [27].

One variable dilation theory on Krein spaces is the subject of Section 3. The indef-
inite case started with the theorem of Davis [14] proving that every bounded operator
on a Hilbert space ) has a unitary dilation on a Krein space & containing $) as a reg-
ular subspace. The result holds true even if we suppose that § is a (more general)
Krein space, as showed by Dijskma-Langer-Snoo [15] using Carathéodory type rep-
resentations for holomorphic operator functions, or by Constantinescu-Gheondea
[11] following a Schiffer type matrix construction. Geometric structure results are
obtained for any minimal isometric or unitary dilation (Theorem 3.1). In such a gen-
erality, a minimal isometric dilation of a bounded operator 7 is unique (up to a unitary
equivalence) if and only if T is either contractive or expansive ([28]). We prove that T
has a unique minimal unitary dilation if and only if 7 and 7™ have unique minimal
isometric dilations.

The main result of Section 4, the existence of a minimal unitary extension for every
commuting pair of bounded isometries on a Krein space, is based on a matrix con-
struction similar to the one given by the author in [49, Theorem 3.3.1]. The Hilbert
space case was obtained by It6 [33] (cf. also Brehmer [9], Douglas [18]). The problem of
finding conditions for the uniqueness of a minimal unitary extension reduces to the
unidimensional case by the observation in [7] (on Hilbert spaces), and extended here,
that U; U, is a minimal unitary extension for ViV, if U = (Uy, U,) is a minimal unitary
extension for V = (V1,V;).

Two variable dilation theory on Krein spaces have been also considered earlier.
The first result in this generalized context has been obtained by Azizov, Barsukov
and Dijksma in [4]. We should also remark that, in the Hilbert space case, the Ando’s
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theorem [3] was proved to be equivalent with the commutant lifting theorem given by
Sz.-Nagy and Foias [61]. In the indefinite case, several versions of this last mentioned
theorem have been obtained by Alpay [1], Baidiuk and Hassi [5], Constantinescu and
Gheondea [10], [11], Dritschel [19], Dritschel and Rovnyak [21] or Dijksma, Dritschel,
Marcantognini and de Snoo [16]. Some of these proofs could lead to different Ando
type dilations. An excellent survey on this topic is presented in the paper [20] of
Dritschel. There are attempts to a several (more than two) variable dilation theory on
Krein spaces (see, e.g., [42]). The theory of unitary extensions for pairs of Krein space
isometries has been initiated in the paper of Marcantognini and Moran [43].

The last section contains structure results for the minimal (regular) isometric dila-
tion provided that such a dilation exists. The geometric structure given by Theorem 5.3
is the indefinite correspondent of some Hilbert space results appeared in [54] (for dou-
ble commuting contractions) or, more generally, in [25] (for commuting contractive
pairs having regular dilation). The most important result of the paper is the existence
of a minimal regular isometric dilation for every commuting pair T = (71,73) of
bounded operators on a Krein space such that 77, 75 are contractions and 7 is a bidisc
contraction or 77, T, are expansions and T is a bidisc expansion (Theorem 5.7). If the
conditions above are satisfied, a minimal regular isometric dilation is unique up to a
unitary equivalence (Theorem 5.9). The unitary extension (obtained in Section 4) for a
regular isometric dilation provide a regular unitary dilation (Corollary 5.8).

We remark that similar results hold also true for finite families of more than two
commuting operators. These topics will be treated elsewhere.

2 Preliminaries on Krein spaces

2.1 Krein spaces, Regular subspaces, Operators

A Krein space is a complex linear space R equipped with a hermitian sesquilinear form
(-, )« and having a decomposition

K=K, 08_, 2.1)

where (K, +(:,)a) are Hilbert spaces (“®” denotes an orthogonal direct sum).
Decomposition (2.1) is said to be a fundamental decomposition of the Krein space & and,
in general, it is not unique. It induces on & a Hilbert space structure: if P, are the
orthogonal projections onto &, and J = P, — P_ (called a fundamental symmetry or
signature operator) then & becomes a Hilbert space (denoted & y) when equipped with
the inner product

K xRy 2 (x,y) > [x,y]7 = {x,y)g €C.

The strong topology of this Hilbert space is independent of the choice of a funda-
mental decomposition and is usually called the Mackey topology of K. All topological
notions on a Krein space are to be understood with respect to this strong topology.

The cardinal numbers

K* R) = dimalg (K1)
are the positive (respectively, negative) indices of & and are also independent of the choice
of a fundamental decomposition. The rank of indefiniteness of K is k() = min k*(8R).
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A subspace §) of a Krein space & is a closed linear manifold of K. It is positive
(respectively, negative) if

(h,h)q =0 (respectively, (h, h)g < 0),

for every h € K. A positive (respectively, negative) subspace is said to be maximal
positive (respectively, maximal negative) if it is not contained in a larger positive (respec-
tively, negative) subspace. It is called uniformly positive (respectively, uniformly negative)
if, for a certain §; > 0,

(h,hyg > 651|hll5  (respectively, (h, h)g < =6, |Al3), he$.

Similarly, one defines maximal uniformly positive (respectively, maximal uniformly neg-
ative) subspaces.

The orthogonal subspace of §is H+ = {k € & | (h, k) = 0, h € H}. For each pair
(M, N) of subspaces in | we use the notation M LN if M C N+, and MOR if the sum
P + N is closed, orthogonal and direct. §) is said to be regular (or ortho-complemented)

fR=9Ho9H".

Proposition 2.1  The following conditions are equivalent:
(i) 9 is regular.
(i) § is a Krein space in the inner product inherited from K.
(iii) there exists a fundamental symmetry J on K such that J$ C § (hence J = 9).

Condition (ii) justifies the use of the term Krein subspace for any regular subspace.

IfT : D(T) c ] — K, is a densely defined linear operator between Krein spaces
K1 and K; then its Krein adjoint T* : D(T*) € ]; — K is uniquely determined by
the relation

<-x’ T*y>R1 = <T-xv y>92’ X € CD(T)9 y € E(T*)

The Krein adjoint 7* and the Hilbert adjoint 7™ computed relative to fundamental
symmetries J; (on 81) and J; (on K,) are related by T* = JT*J,. If T belongs to
B(K1,8;) (the set of all bounded linear operators between ] and K;) then T* €
B(K2,8). Note that any fundamental symmetry J on a Krein space K belongs to
BR)andJ* =J < =J1=J.

A linear operator V : D(V) € & — K3 is isometric if (Vx,Vy)g, = (X, ¥)8,»
X,y € K. An isometric operator U between Krein spaces & and &, is said to be
unitary if D(U) = & and R(U) = K,.

An everywhere defined isometry is bounded if and only if its range is closed. Then
the range is a regular subspace. We deduce that any unitary operator is continu-
ous. However, a densely defined Krein space isometry may fail to have a continuous
extension.

Two subspaces M (of K1) and M, (of K,) are said to be isometrically isomorphic if
there exists a boundedly invertible isometric operator U : 9; — IN,. In this sit-
uation, IM; is regular if and only if M, is regular. Note that two regular subspaces
are isometrically isomorphic if and only if they have the same positive (respectively,
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negative) indices. Let us finally remark that definite Krein spaces (their rank of indef-
initeness is null) & can be characterized by the fact that every unitary operator U on
8 is power bounded (sup,, || U"|| < o).

2.2 Hardy-Type Krein Spaces and Operator Extensions

If My, My, ..., M, is a finite family of mutually orthogonal regular subspaces of a
Krein space &, then the subspace Mt; & M, & - - - M, is clearly regular. The result
remains no longer true if the family is infinite. For a finite or infinite family {&, },>0
of Krein spaces we can, however, compute their external orthogonal direct sum as the
set @nzo R, of all sequences k = {kj}ns0 with 3, 5ollknl|2 < oo (here, for each
n, the norm ||-||, is computed relative to a given fundamental decomposition of Kj,).
It becomes a Krein space relative to the indefinite inner product {({h,},, {kn}n) =
2ol kn)s, s {hntns {kntn € @nzo K,. If 8 is a Krein space, then the external
orthogonal direct sum of a family of identical copies of & can be obviously identified
with the Hardy-type Krein space HSZQ (T), of functions on the torus

2 f(2) = ) 2y with ) [knll? < .
n>0 n>0

If our family is doubly indexed we obtain similarly Hg (T?).

The following set of bounded operators will be frequently used in our construc-
tions.

Let &, 81, K, be given Krein spaces:

* the multiplication by the independent variable z on the Hardy-type space H é (T) :
(T.)@) = 2f(2), z€T, feHy(T),
has the adjoint 77} given by:
(T ) (@) =2(f(2) - f(0). z€T. f€H(T);

the pair (T,, T;,) of multiplications by coordinate functions z; and z, on H é (T?)
— defined similarly;
* any T € B(8R) can be extended to a bounded operator [T] on Hé (T) by

(IT1/)(2) =T(f(2)). z €T, feHg(T);
* any T € B(R,8,) can be extended to [T]y € B(Kq, Héz (T)) by

([T)ok1)(2) := °Tky, z €T, ki € Ky;
its adjoint is given by

[T1of = T*(£(0)), f € Hg (T);

* finally, any T € B(81, ),) can be extended to a bounded operator
[T1; € B (T), H2 (T%)) by

([T][f)(ZbZZ) = T(f(zl))7 Zi € T7 f € Hél (T)a i= 17 2!

2025/10/28 18:49

https://doi.org/10.4153/S0008414X25101752 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101752

6 Dan Popovici

Moreover,

([T1; () =T*(f(ze:)), z€T, feHg (T, i=1,2
(here e; := (1,0) and e; := (0, 1)).

Their joint properties are mentioned in the following:

Proposition 2.2 Let ], 81, K,, R; , 8, be given Krein spaces. Then
(i) The map
B(RK) > T [T] € B(HZ(T))

is a *-algebra homomorphism;
(i) The map

B(K1,82) 3T > [T]o € B(K1, Hy, (T))
is linear; moreover, for T € B(K1, K2), [S]oT = [ST]o (when S € B(K;,RK))),
[S15[TTo = ST (when S € B(K1, K2)) and
[S10[T15f = ST*(f(0)2°, f € Hg (T)

(when S € B(K,R8)));
(iif) The map

B(R1,82) 3T+ [T]; € B(Hg (T), Hg (T?))
is linear; moreover, for T € B(K1, K2), [S][T]; = [S*T] (when S € B(K1, K,)) and

([SLT1; £)(z1,22) = ST*(f (zien)),  z €T, f € Hy (T%), i=1,2

(when S € B(K1,K)));
(iv) LetT € B(K1,K,). Then

[TT, =T,[T] and T, [T]* = [T]*T, (when 81 = K],);
- [T]ZTZ =0;
— [TV, = T, [T];, TLIT); = [Ty and [TLTs, , =0, i = 1,2

(v) LetT € B(]1,R8;) and S € B(R’,R;). Then

[Tlo = [ST]o (when & = &) = K);

[T] = [ST]:, i = 1, 2(whenR1 K= 8
1Tl = [SI5[T]1 = [S*]o[T*]; (when &, = K);
1

- [S]
- [S]i
- [S]
[S]
[T

[Tlo = [S12[TTo (when K] Rz)
[S]()k] =z ZZTSkl, k1 ER], I = 1,2(whean = R;)

3 Isometric and Unitary Dilations for Bounded Operators

It is well known that any bounded selfadjoint operator A on a Krein space U can be
factorized into the form

A = BB",

for a certain operator B € B(B, A) with zero kernel on a Krein space B.
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By a defect operator for T € B(K1, K;), K and &, Krein spaces, we mean an oper-
ator Dy € B(Dr, K1) with zero kernel on a Krein space D7 (called its defect space)
such that

I-T°T = DyD%. (3.1)

Let T € B(9), $ Krein space. An isometric (respectively, unitary) dilation of T
is a bounded isometric (respectively, unitary) operator U on a Krein space & > §
satisfying

(T"h,h')g =U"h,h")g, h,h' €9, nelZ,. (3.2)
An isometric (respectively, unitary) dilation U € B(RK) of T € B(9) is said to be
minimal if ] = \/ ;50 U9 (respectively, ] = \/,—-_., U"D).

For bounded operators T € B($), minimal isometric (respectively, unitary) dila-
tions always exist ([11], [15]). A Schiffer-like matrix construction is still possible in
these generalized settings ([11]).

Define Ry = H @ H%T (T). Then an isometric dilation V of T on K is given by the

representation
T 0
V= . . (3.3)
( [DT] 0 TZ)
A minimal unitary dilation U of T on the Krein space & = H%T* MeHa HCZDT (T)
can be built in terms of a Julia operator or elementary rotation (to see [10],[12]) for T, i.e.,
a unitary operator of the form

T Dr
(D*T I3 )EB(SEBTDT*,QEBSDT).
More precisely,
T; 0 0
U= [DF. 15 T 0]. (3.4

[Llo[In. 15 [D7lo T
As regarding the geometry of minimal dilations we could mention:

Theorem 3.1 Let V. € B(K,) (respectively, U € B(RK)) be any minimal isometric
(respectively, unitary) dilation of T € B(9).

(a)
(i) & = (V -T)$9 is wandering for V (i.e. V'LV, n,m > 0, n # m), regular
and isometrically isomorphic with Dr;
(i) M (L) =V, 50 V"R is regular and
Ke=Ho M. (L) (3.5)
(b)

(i) =(U-T)9 and &* = (U* — T*)$ are wandering for U, regular and
isometrically isomorphic, respectively, with D7 and Drp+;
(i) Mi(R) =V, 50U and M_(*) = \/,,<o U"L* are regular and

KR=M_(2)09H oM (L). (3.6)
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Proof All the orthogonality properties involved here can be easily checked follow-
ing the definition of an isometric or unitary dilation and, therefore, we shall omit the
details.

Observe firstly that a successive application of the formula

Vh=Th+(V-T)h, he$

will lead to

n—1
Vi =T"h + Z VRV =T)T" % 'h, he$, neN. (3.7)
k=0

Hence (3.5) holds. Consequently M, (&) is regular and, since M. (8) = £ &
VM, (L), Lis also regular. Moreover,
(V=T)h,(V-T)h")g, = (h,h')g —(Th,Th')g
= ((I-T*T)h I')g
= (D}h,D3h ), hh €9
shows that the map
2>V -T)h— DrheDr

is well defined (Dr is a Krein space), isometric, densely defined and with dense range.
It is also injective (since L is regular) and, therefore, k= (£) = x*(Dr). Deduce that £
and Dy are isometrically isomorphic and the proof of (a) is complete.

To obtain (3.6), we apply (3.7) for (U, T) and then for (U*, T*) instead of (V,T).
Since M_ (") and M, (L) are regular we show, as before, that & and £* are regular.
A similar argument as for the minimal isometric dilation allows us to conclude that £
and £* are isometrically isomorphic, respectively, with D7 and Dr-. [

Corollary 3.2 Let U € B(K) be any minimal unitary dilation of T € B($). Then
K =\/U"$
nx0
is a regular subspace of &, invariant to U, and V. = Ulg, is a minimal isometric dilation of T .
Similarly,
K|_= \/ Ut
n<0

is a regular subspace of &, invariant to U*, and V_ = U”|g_ is a minimal isometric dilation
of T*.

Remark 3.3 e Theorem above gives another condition, usually used as an axiom in
the isometric or unitary dilations definition: if U € 8(R) is any minimal isometric or
unitary dilation of 7 € B(9) then § is a Krein subspace of K. Therefore, (3.2) can be
re-written as

T":P$U”|$’ n=>0,
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where Pg is the orthogonal projection onto $). Another consequence of (3.2) is
T = PgU"|g, n>0.

o LetV € B(R;) be a minimal isometric dilation of T € B($). Then, for any
hhW e $Handn >0,

V*h=T*h, W'y =(h,VI'Y = (h,Th') =0
and

(Vh=T*h, V'V =T)W) = (h,V" 2}y — (b, V"I Th')
—(T*h, V"™ 1y + (T*h,V"Th') = 0.

By the geometrical structure of & given by (3.5) we deduce that $) is invariant to V*
and V*|g = T".

o Let U € B(K) be a minimal unitary dilation of T € B($)). [t is clear that M, (L)
is invariant to U and M_(£") to U*. Since M, (£) and M_ (&) are regular, Ulpy, (¢)
and U|p_(g+) are unilateral shifts (according to the definition in [44)). ]

An operator T € B(9H,R8), 9,8 Krein spaces, is a contraction (respectively,
expansion) if

(Th,Thyg < (h,h)g (respectively, (Th,Thyg > (h,h)g), he$H
or, equivalently,
I-T'T >0 (respectively,I —T*T <0).

Contractions (respectively, expansions) can be characterized by the fact that their
defect spaces are Hilbert (respectively, anti-Hilbert) spaces.

Let U € B(R), U’ € B(K’) be two minimal unitary dilations of T € B($) and
V =Ulg,,V' =U'lg,, where Ry = V50 U"H, K} = V150 U the corresponding
minimal isometric dilations (according to Corollary 3.2).V € B(RK;) and V' € B(K’)
are unitarily equivalent if there exists a unitary operator @ : &, — K which inter-
twines V and V’ (Le. ®V = V'®) and ®|g = Ig. If, moreover, ® can be extended to
a unitary operator on & onto & which intertwines U and U’, then U € B(R) and
U’ € B(R’) are said to be unitarily equivalent.

A result by Gheondea and Popescu shows that minimal isometric dilations are, in
general, not unique (up to a unitary equivalence):

Theorem 3.4  ([28]) A bounded operator T on a Krein space $) has a unique minimal isometric
dilation if and only if T is either contractive or expansive.

The same kind of conditions hold for minimal unitary dilations:

Theorem 3.5 T € B($) has a unique minimal unitary dilation if and only if T is either
contractive or expansive and T is either contractive or expansive.
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Proof Assume that, for example, T is contractive and T~ is expansive. Then D7 (and
hence also H%T (T)) is a Hilbert space and D7+ (and hence also H%T* (T)) is an anti-
Hilbert space.

Let U be the minimal unitary dilation of T given by (3.4) and acting on the Krein
space 8 = H:ZDT* MeoHe H:ZDT (T). If U" € B(K') is any other minimal unitary
dilation of T then, according to (3.6), & has an orthogonal decomposition of the form
K=M_(YoHeM (L) with® = U -T)Hand &* = (U* -T*)9.

Since, for arbitrary finite sequences {1, },, {gn}n of vectors in $), we have

O UMW =Ty, Y U™V = T)gmdsw

n20 m>0

= Y AU =)y, (U' = T)gn)sv
n>0

= DU =T"T)hn, guds
n>0

= <Z ZnD;"hny Z ZmD;"gm>H%T(T)9

n>0 m>0
the mapping

@4 ny*
M.(2) 5 Z U™NU" = T)hy, =5 Zz Diyhy € Hy (T)
n>0 n>0
is well defined, and the linear operator @, is isometric, densely defined and with dense
range. If can be uniquely extended to a unitary operator ®, € B(M, (L), H%T (T))
(since HtZDT (T)) is a Hilbert space). Similarly, we can define a unitary operator ®_ €
B(M-_(2"),Hy (T)).
Then ® = &_ @ Ig & O, € B(K',R) is unitary, ®|g = Ig and PU’ = UD.
Moreover, PR’ = K and, therefore, U and U’ are unitarily equivalent.
Conversely, suppose that, for example, T is neither contractive nor expansive or,
equivalently, the Krein space Dr is indefinite. If Z € B(Dr) is a unitary operator

with || Z7| 5 o, then the matrix

T 0 0
U'=| [Dy]g r 0
[Llollp,. 15 [D7lo  T:1Z]

defines a minimal unitary dilation of 7 on & = H%T* MesHe H%T (T). T
would have a unique minimal unitary dilation, then U’ and the minimal unitary
dilation U on K given by (3.4) would be unitarily equivalent via a unitary oper-
ator ® € B(K) which leaves invariant H%T (T). We get a contradiction since
limn—>w||(q)*|HéT(T)Tzq)|H§) (T))”H = hmn—mllq)*|H%T(T)T;¢|H§)T(T)|| < oo, while
limy, oo [|(TZ[Z])"]] = limy o [| Z"]] = oo. L

Corollary 3.6 T has a unique minimal unitary dilation if and only if T and T have unique
minimal isometric dilations.

2025/10/28 18:49

https://doi.org/10.4153/S0008414X25101752 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101752

Regular Dilations on Krein Spaces 11
4 Commuting Isometric Pairs and Their Unitary Extensions

Using dilation theory we can easily deduce that every bounded isometry V on a Krein
space ) has a unitary extension U on a Krein space & D § which is minimal in the sense
that
K] = \/ Uns.
nez

We just have to take the minimal isometric dilation of V* given by (3.3) and observe
that it is a unitary operator U* on & = § & Hﬁ (T). More precisely, the linear
operator given by the matrix

er V*

9 *
U = (V [PkerV*]O) (41)

is a minimal unitary extension of V.

Remark 4.1 e U € B(R) is a minimal unitary extension of V € B(9) if and only if
U* is a minimal isometric dilation of V*;

o If V € B(K,) is any minimal isometric dilation of T € B($) and U € B(R) is
any minimal unitary extension of V, then U is a minimal unitary dilation of T;

e Suppose that V is the minimal isometric dilation of T given by (3.3) on the Krein
space R = HD H%T (T). The minimal unitary extension U given by (4.1) on the Krein
space R = H P H%T (T)® Hﬁer v+ (T) is a minimal unitary dilation of 7" and its matrix
representation depends only on 7" and on its corresponding defect operators (does not
require the construction of a Julia operator or of an elementary rotation for 7). =

The following theorem explains the geometrical structure of minimal unitary
extensions:

Theorem 4.2 Let V be a bounded isometry on a Krein space § and U € B(R) be any
minimal unitary extension of V. Then

(i) & = (U* — V*)$ is wandering for U, regular and isometrically isomorphic with
ker V*;
(i) 9, M_(8") = V<o U" 8" are regular subspaces of } and

R=DeoM_(2);

(iit) M_(L") is invariant to U* and U*|p_(g+) is a unilateral shift.

Proof The proof follows Theorem 3.1 (a) with the observation that U* is a minimal
isometric dilation of V*. |

Following Remark 4.1 and Theorem 3.4 we can characterize the uniqueness of a
minimal unitary extension:

Theorem 4.3 Let V € B(S),  Krein space, be isometric. The following conditions are
equivalent:
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(8) V has a unique minimal unitary extension;

(if) V* is either contractive or expansive;

(iii) ker V* is either uniformly positive or uniformly negative;

(iv) ker V* is either Hilbert or anti-Hilbert space.

IfU € B(K) is a minimal unitary extension of V, then KOS is a Hilbert or an anti-Hilbert
space.

A pair T = (T1,T,) of bounded linear operators on a Krein space $) is said to be
commuting if 1T, = T,T;. T is called double commuting if T commutes not only with
T, but also with its adjoint 75. By the end of this paper, any pair of bounded operators
acting on a Krein space will be considered a commutative pair. In case the components
Ty and T, are clear from the context or they are not needed in the corresponding dis-
cussion, in order to avoid repetitions, we simply use the notation T € B($)? instead
of T = (T\,T3) € B(H)2.1fn = (ny,ny) € Z*and T = (T}, T3) € B($)?, the notation
T" = T,"T,” will be frequently used whenever the computations 7}"" and 7," make
sense.

Definition 4.1 Let V = (V1,V,) be a pair of commuting isometries in (%), $ a
Krein space. A unitary extension of V is a commuting pair U = (Uj, U;) of unitary
operators on a Krein space & D § such that U, U, extend, respectively, Vi, V,. U is
said to be minimal if, in addition,

| = VU"g

nez?

Just to give an example, observe that the pair (77, T;,) of multiplications by coordi-
nate functions z; and z; on a certain Hardy-type Krein space H % (T?) can be extended
by the commuting unitary pair (M,,, M,,),

M,
f—zuf
on the L?-type Krein space L% (T?) introduced in an obvious manner. This unitary
extension is minimal.

Theorem 4.4 Let V = (V,V,) be a commuting pair of isometric operators in B($)). Then
the pair U = (Uy, U,) given by the matrix representation

9 *
U, = Vi [PEer(VIVZ)*VZ|ker(V1V:)*]0 . (4.2)
0 Vil =VaV)lkee(viva)<] + [V5 lker(vivo)<1 T
and
V, [PD Vilker(vivy)+ 15
U2 = Iier(VIVZ)’F etV j 0 " (43)
0 [VaI =ViV)lkee(viva)<] + [V lker(vivo)<1 T

is a minimal unitary extension of V on the Krein space

_ 2
K =90 H vy, (T).
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Regular Dilations on Krein Spaces 13

Proof Standard computations with operator matrices (in view of Proposition 2.2)
show that, in fact, formulas (4.2) and (4.3) define commuting unitary operators on
KR=9H0 Hﬁer(vl Vo (T). Obviously, U is a unitary extension of V.
It remains to show the minimality. We will actually prove an apparently stronger
result, namely
K=\ (0it)"$.
n<0

To this end, let 4 € § and n € N be arbitrary. We see that

(W)™ [(UIUZ)* (S) : ((Vl‘(/f)*h)] - (anss ° h)

ker(V1V2)*
hence
vy (0 = {020 (4) = 010 (V") | h e 9> 0,
which proves our claim. [ ]

Remark 4.5 The conclusion of the previous theorem also holds for arbitrary finite
families V = (V,V,, ..., V,) of commuting bounded isometries on a Krein space $).
More precisely, the family U = (U;, Ua, . . ., U,) given by

9 *
Ui = ‘/l [Pker(Vl...Vn)*Wi|ker(vl---vn)*]0 ,
0 [Vill =WiW)lker(vi..v) ] + (Wi lker(vi...v,)* 1T
where W; = ]—Iﬁi Vi, i=1,2,...,n,isaminimal unitary extension of V on the Krein
space
R=9 Hﬁer(vl._.vn>*(T)~
For the Hilbert space case we refer to [49, Theorem 3.3.1]. ]

Proposition 4.6 If U = (Uy,U,) € B(K)? is a minimal unitary extension of the com-
muting isometric pair V = (V1,V,) € B(9)?, then U U, is a minimal unitary extension of
ViVa.

Proof It is clear that, under the given hypothesis, U U, is a unitary extension of
ViV;. Since, form < n <0, UT'ULH C (U1U,)"H we observe that

K = \/ UrULS C v (U U,)"$ C K,

m,n<0 m<0

hence & = V,,<o(U1U2)™$, and the minimality of the unitary extension U, U, is
proved. [ ]

In view of Theorem 4.2 we can deduce a geometrical structure for the minimal
unitary extension:

Corollary 4.7 Let U = (Uy,Uy) € B(K)? be any minimal unitary extension of the
commuting isometric pair V = (Vy,V3) € B($)%. Then
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(1) & = ((U1Uy)* — (1V2)*) 9 is wandering for U U,, regular and isometrically
isomorphic with ker(V;V,)*;
(if) . M_(£*) = V,,<o(U1U2)" 8" are regular subspaces of & and

KR=poM_(£); (4.4)

(i) M_ (L") is invariant to (U1U>)* and (U1U3)*|p_(g+) is a unilateral shift.

Let U = (Up,Uy) € B(R))2, U = (U, U)) € B(8’)? be two minimal unitary
extensions of the pair V = (V1, V) of commuting bounded isometries on §. U and U’
are said to be unitarily equivalent if there exists a unitary operator ® : & — K’ which
intertwines Uy and U7, respectively, U, and U and such that ®|g = I¢.

Theorem 4.8 LetV = (V1,V,) € B($)? be a commuting isometric pair such that (V1V,)*
is either contractive or expansive. Then V has a unique minimal unitary extension.

Proof Assume that, for example, (V1V,)* is contractive. Then ker(V;V,)* (and,
hence, also leer(Vl Vz)*) is a Hilbert space.

LetU = (Uy, U;) be the minimal unitary extension of V given by (4.2) and (4.3) and
acting on the Krein space & = @ Hﬁer(vl Vy)- (T).ItU" = (U, U)) € B(K)?% is any
other minimal unitary extension of V, then, according to (4.4), ! has an orthogonal
decomposition of the form & = $ & M_ (L"), with 8 = (UU))* - (V1V2)*)$.

Since, for arbitrary finite sequences {4, },, {gn}n of vectors in $), we have

O ULU™ (UIU5)* = (ViVa) Vi, Y (UTUS) ™ ((UFU3)* = (ViVa) ) gmdsy

n>0 m>0
= (O U= ViVa(ViVa) Y, D 2"(1 = VsV gmde o
n>0 m>0
the mapping

M_(87) 5 3 (UIU3) ™ (U3 U3)" = (ViV2) Yy ¥

n>0

D= ViVa(ViVa) Yy € Hi v, (T)

n>0

is well defined, and the linear operator @ is isometric, densely defined and
with dense range. It can be uniquely extended to a unitary operator ® €
B(M_(L7), leer(Vl vy (T)) (since leer(Vl vy (T) is a Hilbert space).

Then ® = I @D, € B(K', K) is unitary and ®|g = Ig. Moreover, forany h € $,

®OUh = ®Vih = Vih =V, Oh = U, ®h,
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Regular Dilations on Krein Spaces 15
QU ((UUy)" = (VIV)))h
= ®[(I =ViV))Vsh + (UU3)" = (ViVa)")Vi(l = V2V5)h]
=21 - ViVHVsh + 2Vi(I - VaVi)h
= U, (2°(1 - ViVaV;V;)h)
= U, @((U1Uy)" = (ViVa)")h,
and, by a similar argument,
QU (UUY)™ ((UTUy)" = (ViV)")h = U @(UUL) ™" ((ULU3)" = (ViVa)*)h,

for any positive integer n. Conclude that ®U] = U, ® since they are continuous and
coincide on a dense subset. By symmetry, we also obtain ®U = U,® and, therefore,
U and U’ are unitarily equivalent. [ ]

Corollary 4.9 Let V = (V1,V3) be a commuting isometric pair in B(H)>. If V1V, has a
unique minimal unitary extension, then V has a unique minimal unitary extension.

5 Regular Dilations for Commuting Pairs

Definition 5.1 LetT = (T}, T>) be acommuting pair of bounded operators on a Krein
space 9.

o An isometric (respectively, unitary) dilation of T is a pair U = (Uj, U,) of bounded
commuting isometric (respectively, unitary) operators on a Krein space & containing
$ as a Krein subspace and satisfying

T" = PgU"|g, n€Z%; (5.1)

e Anisometric or unitary dilation U = (Uy, U,) € B(R)?of T = (T, T») € B(H)?
is said to be regular if

(T )'T" = Pg(U" )'U" |, neZ’ (5.2)
Here, for n = (n1,n,) € Z?, the usual notations n* := (max{n;, 0}, max{n,,0})
and n~ := (- min{n;, 0}, — min{n;, 0}) are used. Formula (5.2) is consistent with the

dilation definition (5.1) which can be obtained for n € Z2 (in this case n~ = (0, 0) and
n* = n).If (5.1) holds true, then (5.2) is actually equivalent with

T = PgU{™UY g, m,n>0;
e An isometric (respectively, unitary) dilation U € 8B (R)?of T € B($H)? is called
minimal if & = \/, 52 U9 (respectively, & = \/,,cz2 U"H).

Remark 5.1 Suppose that the commuting pair 7 € B($)? has a minimal isometric
(respectively, minimal regular isometric) dilation V € B(&,)%. Let U € B(8K)? be the
minimal unitary extension of V € B(8,)? as constructed in Theorem 4.4. Then U is
a minimal unitary (respectively, minimal regular unitary) dilation of 7. [ ]

As in the one-dimensional case a minimal isometric dilation for a commuting pair
T ensures the existence of a co-isometric extension for 7*:
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Proposition 52 Let V. = (V1,V,) € B(K,)? be a minimal isometric dilation of the
commuting pair T = (Ty, T,) € B(9H)?. Then $ is invariant to V* = (V7, 298

T"Pg = PgV", ne€Z: and T =V*|s.
Proof Foreverym,n € Zi and h € §), the dilation definition shows that
T"Pg(V"h) =T"""h = PgV"™"™"h = PgV"(V™h).

Since {V""h | m € Zi, h € $} is dense in K and Pg, T,V are bounded we actually
deduce that

T"Pg = PgV".

We will prove that V**h = T"*h, for every n € Z2 and h € $. To this end, let
m € Z2 and i’ € §. Then

(VR =T h, V"™ g, = (b, V"W )g, — (T h, T" ) = 0.

Use again the minimality of V to obtain that V**h = T""h. Consequently, § is
invariant to V* and T* = V*|g. [ |

Let T = (T1,T3) be a pair of commuting bounded operators on a Krein space $).
By a defect operator for T we mean an operator D7 € B(Dr, $) with zero kernel on a
Krein space Dy (called its defect space) such that

I-T{T\ - T,T, + I;T;T\T, = Dy D7.
T is said to be a bidisc contraction, respectively, bidisc expansion if
(T\h,Tih)g + (Toh, Toh)g < (h, h)g + (TiT>h, TiTyh)g, he,
respectively,
(T1h,Tih)g + (Toh, Trh)g > (h, hyg + (T1T2h, TiT2h)g, he$H

or, equivalently, the defect space of T is a Hilbert, respectively, an anti-Hilbert space.

In what follows we shall use the notations D; = D7, Dy = D7,, D = Dr for the
defect operators and D; = D7, D, = D, © = Dr for the corresponding defect
spaces.

As in the one-dimensional case, recall that a subspace £ is said to be wandering for
a commuting isometric pair V if V*81V™ & for alln,m € Zi, n#m.

Regarding the geometrical structure of a minimal regular isometric dilation we
could mention:

Theorem 5.3 Let V = (V1,V;) € B(Ky)? be a minimal regular isometric dilation of a
commuting pair T = (T1,T,) € B(9)?. Then

@8 =Vi-T)9, 8 = (V,-11)9,.8 = ViV, -ViT, -WV,T1 + T\T3)$ are
regular, wandering, respectively, for V1, V,, V and isometrically isomorphic, respectively, with

D1, 0.,
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(1) ML) = Voo VI8 MA(£2) = Vyyno VI L2 M (2) = V ez VP L are

regular and
Ri =90 M (L) ® ML(L1) © MI(L,); (5.3)

(iit) ML(R;) is invariant to V; and ViIMi(ﬁi) is a unilateral shift, i = 1, 2;
(iv) M (L) is invariant to V and V| py, () is a pair of double commuting unilateral shifts.

Proof As in the Hilbert space case ([25]), it is not hard to check that £, £,, & are
wandering, respectively, for Vi, V5,V and §, ML(81), M2(L,), M, (L) are pairwise
orthogonal. Therefore, we prefer to omit the details.

Proceed similarly as in the proof of Theorem 3.1 to obtain

Vh=T"h + mz_l VEWV =TT h, he$, m>1. (5.4)
k=0
We use (5.4) in conjunction with the formulas
Voh=Toh+ (Vo —Ty)h, he$ (5.5)
and
Vo(Vi—-Ty)h= W1V, -ViT, -VoT1 + T1T,)h + (Vi —=T1)Thh, he$, (56)
applied successively, to finally get
V'V h =T{"T}'h

+ Z VP(V1V2 -V, - V,T) + Tsz)T(m_l’n_l)_ph
0<p<(m-1,n—-1)

m—1 n—1
+ Z Vi(Vy =TT "I + Z VI (Vy = )T T,
i=0 =0

he$, mneN,

More precisely, we firstly apply V; to (5.4) and then use (5.5) for 77" h and (5.6) for
Tlm_k_lh, k € {0,1,...,m — 1}, instead of h. We obtain that

m-—1

VI"Vah = T"T2h + (V, = T)T"h + Z VEVIV2 =ViTh = VoTy + V)T % h
k=0
m—1
+ > ViV =TT T,
k=0

Following again (5.5) and (5.6) for the computation of the vectors V,T>T]"h and,
respectively, V,(V; — Tl)Tl’"’k’szh, k € {0,1,...,m — 1}, another application of
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V, shows that

VI'Vih = T" T3 h+ (Vo = T)T"Tah + Vo (Vo = To)T{"h

m-—1
+ > VIiVa =Ty =Ty + )T
k=0
m-—1
+ Y VWV =Ty = VaTy + i) T T
k=0
m—1
+ Y VEV =TT T
k=0

This iterative procedure is repeated n times.
Since, obviously, &, contains $, M, (L), M1(L;) and M2(8,), we deduce that

Re = HV ML)V ML) v MA(L,)

and, by orthogonality, (5.3) also holds.

It is then clear that §, M, (2), ML1(8), M2(L,) are all regular and, since M, ()
=L VIVaM, (L) @ Vi (VoM. (8) @ Va(VIM, ()L, ML(2)) = & & ViML(2),
M2(8;) = 8, ® V,M2(L,) we obtain that £, £;, £, are also regular.

By a similar argument as in the proof of Theorem 3.1 we can deduce that £, £,, £
are isometrically isomorphic, respectively, with D¢, D,, D.

Itis obvious that M, (), M}r (L), Mf (&,) areinvariant to Vi, V; and, respectively,
V and that Vi|p1(g,), V2lp2(g,) are unilateral shifts. Since M, (8) = ML (M2(R)) =
M?2(ML(L)) we obtain that V|, ( ) is a pair of commuting unilateral shifts which,
moreover, doubly commute.

To this aim, we firstly note that it is only necessary to prove that (V1| (g))* and
Valm, (¢) commute on the set {V{*V}'l | m,n > 0,1 € 8} which generates M, (£).

Indeed, for n > 0,

((Vilag, @) Va) Vol = (il (9) Vo 1 = 0 = (Va(Vil, (2)) Vil

since VJ'l € M2(8) = ker(V; |, (2))". Also, in view of the fact that Vi|py, (¢) is
isometric (i.e., (Vilar, 2)) " Vilm, (2) = Im, (2)), the following equalities

((Vilago () Va)VI'V3L = (Vi) ViV V3 = vttt
and

(V2(Vilar @) WVIV3L = Va(Vilag ) ViV~ V3 L= vty
hold true for every m > O and n > 0. [ ]
Remark 5.4 The definition of a minimal regular isometric dilation V € B(8,)? of

any pair T of commuting bounded operators on $) can be simplified: the condition
that §) is a regular subspace of & is a direct consequence of (5.3). [ ]

Corollary 5.5 LetV = (V1,V,) € B(K)? be a minimal regular isometric dilation of the
commuting pair T = (T, T>) € B(H)?. The following conditions are equivalent:
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(i) ML(8y) is invariant to Vy;
(ii) M2(8,) is invariant to Vy;
(iii) T is a bidisc isometry (i.e, I =TTy = T;T, + Ty T, T\T; = 0).

Proof The conclusion follows from the geometrical structure of &, given by the
theorem above since
Vi VI (Vi =Ti)h = VI (ViVa = ViTo = VoIt + i) h + V] (V; = T;)T5_h,
he®, i=1,2,neN

and (ViV, = ViT, =VoT1 + T1T)h = O, for all h € §,ifand only if I - 77T, - T;T; +
T:T;TyT; = 0.
For the Hilbert space case we refer to [25]. ]

For the rest of the paper we shall suppose that T = (T3, T3) is a pair of commuting
bounded operators on a Krein space $§ such that 71, T, are both contractive and 7T is
a bidisc contraction or Ty, T are both expansive and 7 is a bidisc expansion. Equiva-
lently, the defect spaces D1, D, and D are either Hilbert or anti-Hilbert spaces. Denote
by ||-Il1, |I-l2, ||-]| the Hilbert space norms, respectively, on D, D,, D.

Remark 5.6 (i) Observe firstly that

I - TI*T] _TZ*TZ + Tl*Tz*TlTZ
=D\D} -T;(I-T;T)T,
= DD\ - (I, D1)(T;D1)*
= DD — (TFDy) (T} Dy)". (5.7)
Use the inequality
IDITahlly < |Dhllr  (respectively, |[D3Tihllz < ||D3All2), heD
to introduce a densely defined Hilbert space contraction on D (respectively, D,) by
RyD1h = DiThh  (respectively, RiD5h = D5Tih), he$ (5.8)

which can be extended, by continuity, to the whole space. In fact, the maps above
are (under our Krein space terminology) contractions if T is a bidisc contraction,
respectively, expansions if 7 is a bidisc expansion.

(ii) Taking into account the operators R and R, (defined by (5.8)), formulas (5.7)
can be re-written as

DD" = (D1DRg,)(D1DRg,)" = (D2DR,)(D2DRg,)"
or, equivalently, as
ID*h|l = 1Dk, Dihllog, = 1Dk, D3hllvg, . heD.
Hence, the linear operators U; : ® — Dpg, and U, : ® — Dp, given by
U\D"h =Dy D3h and U,D*h =Dy Dih, he$ (5.9)

2025/10/28 18:49

https://doi.org/10.4153/S0008414X25101752 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101752

20 Dan Popovici

are well defined unitary operators. [ ]

The next construction of a regular isometric dilation is the main result of this
section.

Theorem 5.7 Let T = (T1,T) be a pair of commuting bounded operators on a Krein space
9 such that Ty, T are both contractive and T is a bidisc contraction or Ty, T, are both expan-
sive and T is a bidisc expansion. The pair V. = (V,V;) € B(K,)? given by the matrix

representation
Ty 0 0 0
0 T, 0 [UiD3 12
Vi = ) z1 1¥'R, 5.10
"lpile 0 T 0 (5.10)
0 0 0 [R1]
and
T, 0 0 0
| o T (DRl 0
V) = 0 0 [R,] 0 (5.11)
[D3lo O 0 T,

is a minimal regular isometric dilation of T on the Krein space
K¢ = 9@ HZ(T*) @ Hy (T) ® Hy (T).

Proof Direct computations with matrices show that, for i = 1,2, V; is an isometric
operator on R if and only if [D}]5T, = 0, [U?D;e,«];iTZf =0,T'T; +[D;]5[D;]o =
Igand [U; Dy 15, (U Dy 13- + [Ri]*[Ri] = IHéH (T)-

While the first two equalities hold true by Proposition 2.2 (iv), the last two are
consequences of the conditions (ii), respectively (iii) of the same proposition. Indeed,

[D;15[D}lo = D;D} and, hence, T;'T; + D; D} = Ig, by (3.1). Also,
[U; D, 15-;[U; D, 13-i + [Ri]"[Ri]
= [(U; Dg,)"U; D, + R{Ri] (by Proposition 2.2 (i), (ii))
= [Dg,Dy, + RiRi] (since U; is unitary)
= [Ip,,] = Iz (r). (by (3.1))
3-i

Similarly, V1V2 = VzV] if and only if [UTD;l]Z[D;]O = [U;DZZ]I[DT]O’
[UiDg 15-iT; = T, [U;Dyg 12, T:[Ri] = [Ri]T; and [D}]oT5-; = [R3—i][D}lo,

i

i = 1, 2. The first condition follows by Proposition 2.2 (v) and (5.9):
(U Dy 15-i[D3_jloh = 2325U; Dy, Dy _;h = 2023D*h, he€ $,i=1,2.

i

The following two conditions are consequences of Proposition 2.2 (iv). The last
equality uses Proposition 2.2 (v) and formula (5.8):

[DiloTs-i = [D;Ts-ilo = [R3-iD;]o = [R3-i][D;lo.
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Moreover, by an inductive method, V" V[ has the form

T 0 0 *
*nyYym __ 0 (Tzz)*n(Tm)m 0 *
W= % * [R;"] (T,)™ *
0 0 0 (T2)"[RY"]
which proves that

LT = PgVy" Vg, m,n=0.
We can also obtain, by a similar argument, that
T"Ty = PgV{"Vilg, m,n>0.

Hence V is a regular isometric dilation of 7.
It remains to prove the minimality. To this end, take & € $ and observe that

(Vi =T1)h = (0,0, [D]]oh, 0).
Proceed inductively to show that

Vi"(Vi =Ti)h = (0,0, (T;)"[D7]oh,0), m >0,

that is
H2 (T) = v VIV —T1)$. (5.12)
m>0
By symmetry, it also holds
H3 (T) = v VI(Va - T2)$. (5.13)
n>0

Now, the relation
(ViVa = ViTy = VoTy + TiT2)h = (0,2923D* 1, 0,0)
applied successively gives

V{”VZ"(V1V2 -1, - V,T1 + T1T>)h = (0, ZTZ;D*I’I, 0,0), m,n >0,

that is,
H(T?) = v VI(V\Vy = Vi Th = VoTy + TiT2)$. (5.14)
nez?
(5.12), (5.13) and (5.14) show that the regular isometric dilation given by (5.10) and
(5.11) is minimal. ]

Use Theorem 4.4, Remark 5.1 and Theorem 5.7 to obtain:

Corollary 5.8 Let T € B($)? be as in Theorem 5.7 and V € B(Ky)? be the minimal
regular isometric dilation of T given by (5.10) and (5.11). Then T has a minimal regular unitary
dilation U € B(8K)? given by (4.2) and (4.3) on the Krein space

K = 9@ Hy(T?) @ Hy (T) ® Hy (T) ® Hy oy, (T)-
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LetV = (V;,V,) € B(K;)2and V'’ = (V/, V)) € B(K’,)? be two minimal regular
isometric dilations of T € B($)2. V and V' are said to be unitarily equivalent if there
exists a unitary operator ® : &, — K, which intertwines V| and V], respectively, V»
and V] and such that ®|g = I§.

Theorem 5.9 LetT = (T1,T>) be a pair of commuting bounded operators on a Krein space $
such that Ty, T, are both contractive and T is a bidisc contraction or T1, T, are both expansive
and T is a bidisc expansion. Then T has a unique minimal regular isometric dilation (up to a
unitary equivalence).

Proof LetV € B(8,)? be the minimal regular isometric dilation of T € B($)?
givenby (5.10)and (5.11)on K, = ss@H%(Tz)eaH%l (T)@H:ZDZ (T).IfV' = (V],V}) €
B(K%)? is any other minimal regular isometric dilation of 7' then, according to (5.3),
8’ has an orthogonal decomposition of the form

K, =90 M. () © ML(L)) & M2(L)),

with & = (V[V] = VT, = V,T1 + T1T2)H and 8] = (V! = T;)9,i = 1,2.
The maps

M (&) 3 V"M (VIV} = VITy = ViTy + TiTy)h v 20D h € HA(T2),

Mo () 3 V"(V] = T\)h = 2"D}h € H, (T)
and
, D
M, (£5) 3 V," (V] = Ty)h —> 2"D3h € Hy (T)

are well defined and can be extended by linearity to densely defined isometries with
dense ranges. Since HZD(TZ), H2©1 (T) and HZDZ(T) are either Hilbert or anti-Hilbert
spaces, the applications above can be extended to unitary operators.

Aroutine check shows that I @D @D D, : R, — K, isunitary and intertwines
Vi and V], respectively, V; and V;. Hence V and V" are unitarily equivalent. [ ]
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