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Regular Dilations on Kreı̆n Spaces
Dan Popovici

Abstract. For bounded operators on Krĕın spaces, isometric or unitary dilations always exist. We
prove that any minimal isometric or unitary dilation has a precise geometrical structure. Moreover, a
bounded operator 𝑇 has a unique minimal unitary dilation if and only if 𝑇 and 𝑇∗ have unique min-
imal isometric dilation if and only if 𝑇 is either contractive or expansive and 𝑇∗ is either contractive
or expansive.
Passing to the bi-dimensional case, a minimal unitary extension (in short, m.u.e.) 𝑈 = (𝑈1,𝑈2 ) is
obtained for a pair 𝑉 = (𝑉1, 𝑉2 ) of commuting bounded isometries on a Krĕın space. There is a link
with the one-dimensional case: if𝑈 is a m.u.e. for 𝑉 then𝑈1𝑈2 is a m.u.e. for 𝑉1𝑉2. Also, if (𝑉1𝑉2 )∗
is either contractive or expansive, then 𝑉 has a unique minimal unitary extension. Our results can be
naturally extended to arbitrarily finite families of commuting isometries.
A minimal regular isometric dilation is then obtained for a commuting pair𝑇 = (𝑇1, 𝑇2 ) of bounded
operators on a Krĕın space such that 𝑇1, 𝑇2 are contractions and 𝑇 is a bidisc contraction or 𝑇1, 𝑇2
are expansions and 𝑇 is a bidisc expansion. The existence of a minimal unitary extension is used
to provide a minimal regular unitary dilation for 𝑇 . Discussions about uniqueness and geometric
structure conclude the paper.

1 Introduction

One of the most fruitful directions of research in order to develop a suitable spec-
tral theory for nonselfadjoint operators was opened by the theorem of Sz.-Nagy [58]
on the existence of a unitary dilation for every contraction operator on a Hilbert
space. The matrix construction for such dilations, proposed by Schäffer in [52], was
the starting point to obtain their precise geometrical structure (cf. [31], [57], [62]).

The problem of finding isometric or unitary dilations for families of commuting
contractions was proposed by Sz.-Nagy and solved in the case when the family in
discussion is double commuting (cf. [59], [60]). Ando [3] proved that every pair of
commuting contractions has isometric dilation. Unfortunately, Ando’s result cannot
be extended for arbitrary families of more that two contractions, according to the
example given by Parrot [46].

Later developments show that the problem of finding a unitary dilation for a family
𝑇 = (𝑇𝜔)𝜔∈Ω of commuting contractions on a Hilbert space ℌ can be reduced, by the
Naimark theorem [45], to the possibility of extending the function

ZΩ
+ ∋ 𝑛 ↦→ 𝑇𝑛 ∈ B(ℌ)

to a positive definite one on ZΩ. It was the idea of Brehmer [9] to consider the regular
extension

ZΩ ∋ 𝑛 ↦→ (𝑇𝑛− )∗𝑇𝑛+ ∈ B(ℌ)
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2 Dan Popovici

and to obtain the so-called regular unitary dilations. Their systematic study was com-
pleted and simplified later by Sz.-Nagy [56] and Halperin [29], [30]. In the multi-
variable case, even supposing that the existence is assured, minimal isometric or
unitary dilations are, in general, not unique. However, the minimality condition
ensures the uniqueness of a regular isometric or unitary dilation. Regular dilation
results have been used to provide models for commuting multi-operators [13], [47],
[48], [63], in connection with intertwining liftings [26], von Neumann inequalities [6],
[24], operator moment problems [50], Markov processes [41], completely contractive
representations of product systems of correspondences [55], or in the context of right
LCK semigroups [37].

The large class of applications involving dilation theory, for example in operator
interpolation problems, optimization, control and systems theory (excellent refer-
ences are given by the survey of Shalit [53] or by the books of Foiaş-Frazho [22],
Foiaş-Frazho-Gohberg-Kaashoek [23] and Rosenblum-Rovnyak [51]), but also in
prediction theory ([35]) motivate our work.

It is natural to assume that such a theory on spaces with indefinite metric (in partic-
ular on Kreı̆n or Pontryagin spaces) will provide at least a similar set of applications.
We should mention in this context that operators on Kreı̆n have been used recently,
for example, in machine learning [39], [40] or frame theory [17], [34], [38].

The following section (Section 2) is devoted to some preliminary facts concerning
Kreı̆n spaces, their Kreı̆n subspaces and bounded operators on such objects. Basic facts
on the theory of Kreı̆n spaces and operators on them are given in [2],[8],[32],[36]; to
see also the excellent monograph [27].

One variable dilation theory on Kreı̆n spaces is the subject of Section 3. The indef-
inite case started with the theorem of Davis [14] proving that every bounded operator
on a Hilbert space ℌ has a unitary dilation on a Kreı̆n space 𝔎 containing ℌ as a reg-
ular subspace. The result holds true even if we suppose that ℌ is a (more general)
Kreı̆n space, as showed by Dijskma-Langer-Snoo [15] using Carathéodory type rep-
resentations for holomorphic operator functions, or by Constantinescu-Gheondea
[11] following a Schäffer type matrix construction. Geometric structure results are
obtained for any minimal isometric or unitary dilation (Theorem 3.1). In such a gen-
erality, a minimal isometric dilation of a bounded operator𝑇 is unique (up to a unitary
equivalence) if and only if 𝑇 is either contractive or expansive ([28]). We prove that 𝑇
has a unique minimal unitary dilation if and only if 𝑇 and 𝑇∗ have unique minimal
isometric dilations.

The main result of Section 4, the existence of a minimal unitary extension for every
commuting pair of bounded isometries on a Kreı̆n space, is based on a matrix con-
struction similar to the one given by the author in [49, Theorem 3.3.1]. The Hilbert
space case was obtained by Itô [33] (cf. also Brehmer [9], Douglas [18]). The problem of
finding conditions for the uniqueness of a minimal unitary extension reduces to the
unidimensional case by the observation in [7] (on Hilbert spaces), and extended here,
that𝑈1𝑈2 is a minimal unitary extension for𝑉1𝑉2 if𝑈 = (𝑈1,𝑈2) is a minimal unitary
extension for𝑉 = (𝑉1, 𝑉2).

Two variable dilation theory on Kreı̆n spaces have been also considered earlier.
The first result in this generalized context has been obtained by Azizov, Barsukov
and Dijksma in [4]. We should also remark that, in the Hilbert space case, the Ando’s
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Regular Dilations on Kreı̆n Spaces 3

theorem [3] was proved to be equivalent with the commutant lifting theorem given by
Sz.-Nagy and Foiaş [61]. In the indefinite case, several versions of this last mentioned
theorem have been obtained by Alpay [1], Baidiuk and Hassi [5], Constantinescu and
Gheondea [10], [11], Dritschel [19], Dritschel and Rovnyak [21] or Dijksma, Dritschel,
Marcantognini and de Snoo [16]. Some of these proofs could lead to different Ando
type dilations. An excellent survey on this topic is presented in the paper [20] of
Dritschel. There are attempts to a several (more than two) variable dilation theory on
Kreı̆n spaces (see, e.g., [42]). The theory of unitary extensions for pairs of Kreı̆n space
isometries has been initiated in the paper of Marcantognini and Moran [43].

The last section contains structure results for the minimal (regular) isometric dila-
tion provided that such a dilation exists. The geometric structure given by Theorem 5.3
is the indefinite correspondent of some Hilbert space results appeared in [54] (for dou-
ble commuting contractions) or, more generally, in [25] (for commuting contractive
pairs having regular dilation). The most important result of the paper is the existence
of a minimal regular isometric dilation for every commuting pair 𝑇 = (𝑇1, 𝑇2) of
bounded operators on a Kreı̆n space such that𝑇1, 𝑇2 are contractions and𝑇 is a bidisc
contraction or 𝑇1, 𝑇2 are expansions and 𝑇 is a bidisc expansion (Theorem 5.7). If the
conditions above are satisfied, a minimal regular isometric dilation is unique up to a
unitary equivalence (Theorem 5.9). The unitary extension (obtained in Section 4) for a
regular isometric dilation provide a regular unitary dilation (Corollary 5.8).

We remark that similar results hold also true for finite families of more than two
commuting operators. These topics will be treated elsewhere.

2 Preliminaries on Kreı̆n spaces

2.1 Kreı̆n spaces, Regular subspaces, Operators

A Kreı̆n space is a complex linear space 𝔎 equipped with a hermitian sesquilinear form
⟨·, ·⟩𝔎 and having a decomposition

𝔎 = 𝔎+ ⊕ 𝔎− , (2.1)

where (𝔎±,±⟨·, ·⟩𝔎) are Hilbert spaces (“⊕” denotes an orthogonal direct sum).
Decomposition (2.1) is said to be a fundamental decomposition of the Kreı̆n space 𝔎 and,
in general, it is not unique. It induces on 𝔎 a Hilbert space structure: if 𝑃± are the
orthogonal projections onto 𝔎± and 𝐽 = 𝑃+ − 𝑃− (called a fundamental symmetry or
signature operator) then 𝔎 becomes a Hilbert space (denoted 𝔎𝐽 ) when equipped with
the inner product

𝔎𝐽 × 𝔎𝐽 ∋ (𝑥, 𝑦) ↦→ [𝑥, 𝑦]𝐽 := ⟨𝐽𝑥, 𝑦⟩𝔎 ∈ C.

The strong topology of this Hilbert space is independent of the choice of a funda-
mental decomposition and is usually called the Mackey topology of 𝔎. All topological
notions on a Kreı̆n space are to be understood with respect to this strong topology.

The cardinal numbers
𝜅± (𝔎) = dim𝑎𝑙𝑔 (𝔎±)

are the positive (respectively, negative) indices of𝔎 and are also independent of the choice
of a fundamental decomposition. The rank of indefiniteness of 𝔎 is 𝜅(𝔎) = min 𝜅± (𝔎).
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A subspace ℌ of a Kreı̆n space 𝔎 is a closed linear manifold of 𝔎. It is positive
(respectively, negative) if

⟨ℎ, ℎ⟩𝔎 ≥ 0 (respectively, ⟨ℎ, ℎ⟩𝔎 ≤ 0),

for every ℎ ∈ 𝔎. A positive (respectively, negative) subspace is said to be maximal
positive (respectively, maximal negative) if it is not contained in a larger positive (respec-
tively, negative) subspace. It is called uniformly positive (respectively, uniformly negative)
if, for a certain 𝛿𝐽 > 0,

⟨ℎ, ℎ⟩𝔎 ≥ 𝛿𝐽 ∥ℎ∥2
𝐽 (respectively, ⟨ℎ, ℎ⟩𝔎 ≤ −𝛿𝐽 ∥ℎ∥2

𝐽 ), ℎ ∈ ℌ.

Similarly, one defines maximal uniformly positive (respectively, maximal uniformly neg-
ative) subspaces.

The orthogonal subspace of ℌ is ℌ⊥ = {𝑘 ∈ 𝔎 | ⟨ℎ, 𝑘⟩ = 0, ℎ ∈ ℌ}. For each pair
(𝔐,𝔑) of subspaces in𝔎we use the notation𝔐⊥𝔑 if𝔐 ⊂ 𝔑⊥, and𝔐⊕𝔑 if the sum
𝔐 +𝔑 is closed, orthogonal and direct. ℌ is said to be regular (or ortho-complemented)
if 𝔎 = ℌ ⊕ ℌ⊥.

Proposition 2.1 The following conditions are equivalent:
(i) ℌ is regular.
(ii) ℌ is a Kreı̆n space in the inner product inherited from 𝔎.
(iii) there exists a fundamental symmetry 𝐽 on 𝔎 such that 𝐽ℌ ⊂ ℌ (hence 𝐽ℌ = ℌ).

Condition (ii) justifies the use of the term Kreı̆n subspace for any regular subspace.
If 𝑇 : 𝔇(𝑇) ⊂ 𝔎1 → 𝔎2 is a densely defined linear operator between Kreı̆n spaces

𝔎1 and 𝔎2 then its Kreı̆n adjoint 𝑇∗ : 𝔇(𝑇∗) ⊂ 𝔎2 → 𝔎1 is uniquely determined by
the relation

⟨𝑥, 𝑇∗𝑦⟩𝔎1 = ⟨𝑇𝑥, 𝑦⟩𝔎2 , 𝑥 ∈ 𝔇(𝑇), 𝑦 ∈ 𝔇(𝑇∗).

The Kreı̆n adjoint 𝑇∗ and the Hilbert adjoint 𝑇× computed relative to fundamental
symmetries 𝐽1 (on 𝔎1) and 𝐽2 (on 𝔎2) are related by 𝑇∗ = 𝐽1𝑇

×𝐽2. If 𝑇 belongs to
B(𝔎1,𝔎2) (the set of all bounded linear operators between 𝔎1 and 𝔎2) then 𝑇∗ ∈
B(𝔎2,𝔎1). Note that any fundamental symmetry 𝐽 on a Kreı̆n space 𝔎 belongs to
B(𝔎) and 𝐽∗ = 𝐽× = 𝐽−1 = 𝐽.

A linear operator 𝑉 : 𝔇(𝑉) ⊂ 𝔎1 → 𝔎2 is isometric if ⟨𝑉𝑥,𝑉𝑦⟩𝔎2 = ⟨𝑥, 𝑦⟩𝔎1 ,

𝑥, 𝑦 ∈ 𝔎1. An isometric operator 𝑈 between Kreı̆n spaces 𝔎1 and 𝔎2 is said to be
unitary if 𝔇(𝑈) = 𝔎1 and ℜ(𝑈) = 𝔎2.

An everywhere defined isometry is bounded if and only if its range is closed. Then
the range is a regular subspace. We deduce that any unitary operator is continu-
ous. However, a densely defined Kreı̆n space isometry may fail to have a continuous
extension.

Two subspaces 𝔐1 (of 𝔎1) and 𝔐2 (of 𝔎2) are said to be isometrically isomorphic if
there exists a boundedly invertible isometric operator 𝑈 : 𝔐1 → 𝔐2. In this sit-
uation, 𝔐1 is regular if and only if 𝔐2 is regular. Note that two regular subspaces
are isometrically isomorphic if and only if they have the same positive (respectively,
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negative) indices. Let us finally remark that definite Kreı̆n spaces (their rank of indef-
initeness is null) 𝔎 can be characterized by the fact that every unitary operator 𝑈 on
𝔎 is power bounded (sup𝑛∥𝑈𝑛∥ < ∞).

2.2 Hardy-Type Kreı̆n Spaces and Operator Extensions

If 𝔐1,𝔐2, . . . ,𝔐𝑛 is a finite family of mutually orthogonal regular subspaces of a
Kreı̆n space 𝔎, then the subspace 𝔐1 ⊕ 𝔐2 ⊕ · · · ⊕ 𝔐𝑛 is clearly regular. The result
remains no longer true if the family is infinite. For a finite or infinite family {𝔎𝑛}𝑛≥0
of Kreı̆n spaces we can, however, compute their external orthogonal direct sum as the
set

⊕
𝑛≥0 𝔎𝑛 of all sequences 𝑘 = {𝑘𝑛}𝑛≥0 with

∑
𝑛≥0∥𝑘𝑛∥2

𝑛 < ∞ (here, for each
𝑛, the norm ∥·∥𝑛 is computed relative to a given fundamental decomposition of 𝔎𝑛).
It becomes a Kreı̆n space relative to the indefinite inner product ⟨{ℎ𝑛}𝑛, {𝑘𝑛}𝑛⟩ :=∑

𝑛≥0⟨ℎ𝑛, 𝑘𝑛⟩𝔎𝑛
, {ℎ𝑛}𝑛, {𝑘𝑛}𝑛 ∈

⊕
𝑛≥0 𝔎𝑛. If 𝔎 is a Kreı̆n space, then the external

orthogonal direct sum of a family of identical copies of 𝔎 can be obviously identified
with the Hardy-type Kreı̆n space 𝐻2

𝔎
(T), of functions on the torus

𝑧 ↦→ 𝑓 (𝑧) =
∑︁
𝑛≥0

𝑧𝑛𝑘𝑛, with
∑︁
𝑛≥0

∥𝑘𝑛∥2 < ∞.

If our family is doubly indexed we obtain similarly 𝐻2
𝔎
(T2).

The following set of bounded operators will be frequently used in our construc-
tions.

Let 𝔎,𝔎1,𝔎2 be given Kreı̆n spaces:

• the multiplication by the independent variable 𝑧 on the Hardy-type space 𝐻2
𝔎
(T) :

(𝑇𝑧 𝑓 ) (𝑧) := 𝑧 𝑓 (𝑧), 𝑧 ∈ T, 𝑓 ∈ 𝐻2
𝔎
(T),

has the adjoint 𝑇∗
𝑧 given by:

(𝑇∗
𝑧 𝑓 ) (𝑧) := 𝑧( 𝑓 (𝑧) − 𝑓 (0)), 𝑧 ∈ T, 𝑓 ∈ 𝐻2

𝔎
(T);

• the pair (𝑇𝑧1 , 𝑇𝑧2 ) of multiplications by coordinate functions 𝑧1 and 𝑧2 on 𝐻2
𝔎
(T2)

– defined similarly;
• any 𝑇 ∈ B(𝔎) can be extended to a bounded operator [𝑇] on 𝐻2

𝔎
(T) by

( [𝑇] 𝑓 ) (𝑧) := 𝑇 ( 𝑓 (𝑧)), 𝑧 ∈ T, 𝑓 ∈ 𝐻2
𝔎
(T);

• any 𝑇 ∈ B(𝔎1,𝔎2) can be extended to [𝑇]0 ∈ B(𝔎1, 𝐻
2
𝔎2
(T)) by

( [𝑇]0𝑘1) (𝑧) := 𝑧0𝑇𝑘1, 𝑧 ∈ T, 𝑘1 ∈ 𝔎1;

its adjoint is given by

[𝑇]∗0 𝑓 = 𝑇∗ ( 𝑓 (0)), 𝑓 ∈ 𝐻2
𝔎2
(T);

• finally, any 𝑇 ∈ B(𝔎1,𝔎2) can be extended to a bounded operator
[𝑇]𝑖 ∈ B(𝐻2

𝔎1
(T), 𝐻2

𝔎2
(T2)) by

( [𝑇]𝑖 𝑓 ) (𝑧1, 𝑧2) := 𝑇 ( 𝑓 (𝑧𝑖)), 𝑧𝑖 ∈ T, 𝑓 ∈ 𝐻2
𝔎1
(T), 𝑖 = 1, 2;
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Moreover,

( [𝑇]∗𝑖 𝑓 ) (𝑧) = 𝑇∗ ( 𝑓 (𝑧𝑒𝑖)), 𝑧 ∈ T, 𝑓 ∈ 𝐻2
𝔎2
(T2), 𝑖 = 1, 2

(here 𝑒1 := (1, 0) and 𝑒2 := (0, 1)).

Their joint properties are mentioned in the following:

Proposition 2.2 Let 𝔎,𝔎1,𝔎2,𝔎
′
1,𝔎

′
2 be given Kreı̆n spaces. Then

(𝑖) The map

B(𝔎) ∋ 𝑇 ↦→ [𝑇] ∈ B(𝐻2
𝔎
(T))

is a ∗-algebra homomorphism;
(𝑖𝑖) The map

B(𝔎1,𝔎2) ∋ 𝑇 ↦→ [𝑇]0 ∈ B(𝔎1, 𝐻
2
𝔎2
(T))

is linear; moreover, for 𝑇 ∈ B(𝔎1,𝔎2), [𝑆]0𝑇 = [𝑆𝑇]0 (when 𝑆 ∈ B(𝔎2,𝔎
′
2)),

[𝑆]∗0 [𝑇]0 = 𝑆∗𝑇 (when 𝑆 ∈ B(𝔎′
1,𝔎2)) and

[𝑆]0 [𝑇]∗0 𝑓 = 𝑆𝑇∗ ( 𝑓 (0))𝑧0, 𝑓 ∈ 𝐻2
𝔎2
(T)

(when 𝑆 ∈ B(𝔎1,𝔎
′
2));

(𝑖𝑖𝑖) The map

B(𝔎1,𝔎2) ∋ 𝑇 ↦→ [𝑇]𝑖 ∈ B(𝐻2
𝔎1
(T), 𝐻2

𝔎2
(T2))

is linear; moreover, for 𝑇 ∈ B(𝔎1,𝔎2), [𝑆]∗𝑖 [𝑇]𝑖 = [𝑆∗𝑇] (when 𝑆 ∈ B(𝔎1,𝔎2)) and

( [𝑆]𝑖 [𝑇]∗𝑖 𝑓 ) (𝑧1, 𝑧2) = 𝑆𝑇∗ ( 𝑓 (𝑧𝑖𝑒𝑖)), 𝑧𝑖 ∈ T, 𝑓 ∈ 𝐻2
𝔎2
(T2), 𝑖 = 1, 2

(when 𝑆 ∈ B(𝔎1,𝔎
′
2));

(𝑖𝑣) Let 𝑇 ∈ B(𝔎1,𝔎2). Then

– [𝑇]𝑇𝑧 = 𝑇𝑧 [𝑇] and 𝑇𝑧 [𝑇]∗ = [𝑇]∗𝑇𝑧 (when 𝔎1 = 𝔎2);
– [𝑇]∗0𝑇𝑧 = 0;
– [𝑇]𝑖𝑇𝑧 = 𝑇𝑧𝑖 [𝑇]𝑖 , 𝑇𝑧 [𝑇]∗𝑖 = [𝑇]∗

𝑖
𝑇𝑧𝑖 and [𝑇]∗

𝑖
𝑇𝑧3−𝑖 = 0, 𝑖 = 1, 2;

(𝑣) Let 𝑇 ∈ B(𝔎1,𝔎2) and 𝑆 ∈ B(𝔎′
1,𝔎

′
2). Then

– [𝑆] [𝑇]0 = [𝑆𝑇]0 (when 𝔎′
1 = 𝔎′

2 = 𝔎2);
– [𝑆]𝑖 [𝑇] = [𝑆𝑇]𝑖 , 𝑖 = 1, 2 (when 𝔎1 = 𝔎2 = 𝔎′

1);
– [𝑆]∗1 [𝑇]2 = [𝑆]∗2 [𝑇]1 = [𝑆∗]0 [𝑇∗]∗0 (when 𝔎′

2 = 𝔎2);
– [𝑆]1 [𝑇]0 = [𝑆]2 [𝑇]0 (when 𝔎′

1 = 𝔎2);
– [𝑇]𝑖 [𝑆]0𝑘1 = 𝑧0

1𝑧
0
2𝑇𝑆𝑘1, 𝑘1 ∈ 𝔎1, 𝑖 = 1, 2 (when 𝔎1 = 𝔎′

2).

3 Isometric and Unitary Dilations for Bounded Operators

It is well known that any bounded selfadjoint operator 𝐴 on a Kreı̆n space 𝔄 can be
factorized into the form

𝐴 = 𝐵𝐵∗,

for a certain operator 𝐵 ∈ B(𝔅,𝔄) with zero kernel on a Kreı̆n space 𝔅.
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By a defect operator for 𝑇 ∈ B(𝔎1,𝔎2), 𝔎1 and 𝔎2 Kreı̆n spaces, we mean an oper-
ator 𝐷𝑇 ∈ B(𝔇𝑇 ,𝔎1) with zero kernel on a Kreı̆n space 𝔇𝑇 (called its defect space)
such that

𝐼 − 𝑇∗𝑇 = 𝐷𝑇𝐷
∗
𝑇 . (3.1)

Let 𝑇 ∈ B(ℌ), ℌ Kreı̆n space. An isometric (respectively, unitary) dilation of 𝑇
is a bounded isometric (respectively, unitary) operator 𝑈 on a Kreı̆n space 𝔎 ⊃ ℌ

satisfying
⟨𝑇𝑛ℎ, ℎ′⟩ℌ = ⟨𝑈𝑛ℎ, ℎ′⟩𝔎, ℎ, ℎ′ ∈ ℌ, 𝑛 ∈ Z+. (3.2)

An isometric (respectively, unitary) dilation 𝑈 ∈ B(𝔎) of 𝑇 ∈ B(ℌ) is said to be
minimal if 𝔎 =

∨
𝑛≥0 𝑈

𝑛ℌ (respectively, 𝔎 =
∨∞

𝑛=−∞𝑈𝑛ℌ).
For bounded operators 𝑇 ∈ B(ℌ), minimal isometric (respectively, unitary) dila-

tions always exist ([11], [15]). A Schäffer-like matrix construction is still possible in
these generalized settings ([11]).

Define 𝔎+ = ℌ ⊕ 𝐻2
𝔇𝑇

(T). Then an isometric dilation𝑉 of𝑇 on 𝔎+ is given by the
representation

𝑉 =

(
𝑇 0

[𝐷∗
𝑇
]0 𝑇𝑧

)
. (3.3)

A minimal unitary dilation 𝑈 of 𝑇 on the Kreı̆n space 𝔎 = 𝐻2
𝔇𝑇∗ (T) ⊕ ℌ ⊕ 𝐻2

𝔇𝑇
(T)

can be built in terms of a Julia operator or elementary rotation (to see [10],[12]) for 𝑇 , i.e.,
a unitary operator of the form(

𝑇 𝐷𝑇∗

𝐷∗
𝑇

𝐿

)
∈ B(ℌ ⊕ 𝔇𝑇∗ ,ℌ ⊕ 𝔇𝑇 ).

More precisely,

𝑈 =
©­«

𝑇∗
𝑧 0 0

[𝐷∗
𝑇∗ ]∗0 𝑇 0

[𝐿]0 [𝐼𝔇𝑇∗ ]∗0 [𝐷∗
𝑇
]0 𝑇𝑧

ª®¬ . (3.4)

As regarding the geometry of minimal dilations we could mention:

Theorem 3.1 Let 𝑉 ∈ B(𝔎+) (respectively, 𝑈 ∈ B(𝔎)) be any minimal isometric
(respectively, unitary) dilation of 𝑇 ∈ B(ℌ).

(a)

(i) 𝔏 = (𝑉 − 𝑇)ℌ is wandering for 𝑉 (i.e. 𝑉𝑛𝔏⊥𝑉𝑚𝔏, 𝑛, 𝑚 ≥ 0, 𝑛 ≠ 𝑚), regular
and isometrically isomorphic with 𝔇𝑇 ;

(ii) 𝑀+ (𝔏) =
∨

𝑛≥0 𝑉
𝑛𝔏 is regular and

𝔎+ = ℌ ⊕ 𝑀+ (𝔏); (3.5)

(b)

(i) 𝔏 = (𝑈 − 𝑇)ℌ and 𝔏∗ = (𝑈∗ − 𝑇∗)ℌ are wandering for 𝑈, regular and
isometrically isomorphic, respectively, with 𝔇𝑇 and 𝔇𝑇∗ ;

(ii) 𝑀+ (𝔏) =
∨

𝑛≥0 𝑈
𝑛𝔏 and 𝑀− (𝔏∗) = ∨

𝑛≤0 𝑈
𝑛𝔏∗ are regular and

𝔎 = 𝑀− (𝔏∗) ⊕ ℌ ⊕ 𝑀+ (𝔏). (3.6)
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8 Dan Popovici

Proof All the orthogonality properties involved here can be easily checked follow-
ing the definition of an isometric or unitary dilation and, therefore, we shall omit the
details.

Observe firstly that a successive application of the formula

𝑉ℎ = 𝑇ℎ + (𝑉 − 𝑇)ℎ, ℎ ∈ ℌ

will lead to

𝑉𝑛ℎ = 𝑇𝑛ℎ +
𝑛−1∑︁
𝑘=0

𝑉 𝑘 (𝑉 − 𝑇)𝑇𝑛−𝑘−1ℎ, ℎ ∈ ℌ, 𝑛 ∈ N. (3.7)

Hence (3.5) holds. Consequently 𝑀+ (𝔏) is regular and, since 𝑀+ (𝔏) = 𝔏 ⊕
𝑉𝑀+ (𝔏), 𝔏 is also regular. Moreover,

⟨(𝑉 − 𝑇)ℎ, (𝑉 − 𝑇)ℎ′⟩𝔎+ = ⟨ℎ, ℎ′⟩ℌ − ⟨𝑇ℎ, 𝑇ℎ′⟩ℌ
= ⟨(𝐼 − 𝑇∗𝑇)ℎ, ℎ′⟩ℌ
= ⟨𝐷∗

𝑇ℎ, 𝐷
∗
𝑇ℎ

′⟩𝔇𝑇
, ℎ, ℎ′ ∈ ℌ

shows that the map

𝔏 ∋ (𝑉 − 𝑇)ℎ ↦→ 𝐷∗
𝑇ℎ ∈ 𝔇𝑇

is well defined (𝔇𝑇 is a Kreı̆n space), isometric, densely defined and with dense range.
It is also injective (since 𝔏 is regular) and, therefore, 𝜅± (𝔏) = 𝜅± (𝔇𝑇 ). Deduce that 𝔏
and 𝔇𝑇 are isometrically isomorphic and the proof of (𝑎) is complete.

To obtain (3.6), we apply (3.7) for (𝑈,𝑇) and then for (𝑈∗, 𝑇∗) instead of (𝑉,𝑇).
Since 𝑀− (𝔏∗) and 𝑀+ (𝔏) are regular we show, as before, that 𝔏 and 𝔏∗ are regular.
A similar argument as for the minimal isometric dilation allows us to conclude that 𝔏
and 𝔏∗ are isometrically isomorphic, respectively, with 𝔇𝑇 and 𝔇𝑇∗ . ■

Corollary 3.2 Let 𝑈 ∈ B(𝔎) be any minimal unitary dilation of 𝑇 ∈ B(ℌ). Then

𝔎+ =
∨
𝑛≥0

𝑈𝑛ℌ

is a regular subspace of𝔎, invariant to𝑈, and𝑉+ = 𝑈 |𝔎+ is a minimal isometric dilation of𝑇.
Similarly,

𝔎− =
∨
𝑛≤0

𝑈𝑛ℌ

is a regular subspace of 𝔎, invariant to 𝑈∗, and 𝑉− = 𝑈∗ |𝔎− is a minimal isometric dilation
of 𝑇∗.

Remark 3.3 • Theorem above gives another condition, usually used as an axiom in
the isometric or unitary dilations definition: if𝑈 ∈ B(𝔎) is any minimal isometric or
unitary dilation of 𝑇 ∈ B(ℌ) then ℌ is a Kreı̆n subspace of 𝔎. Therefore, (3.2) can be
re-written as

𝑇𝑛 = 𝑃ℌ𝑈
𝑛 |ℌ, 𝑛 ≥ 0,

2025/10/28 18:49

https://doi.org/10.4153/S0008414X25101752 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101752


Regular Dilations on Kreı̆n Spaces 9

where 𝑃ℌ is the orthogonal projection onto ℌ. Another consequence of (3.2) is

𝑇∗𝑛 = 𝑃ℌ𝑈
∗𝑛 |ℌ, 𝑛 ≥ 0.

• Let 𝑉 ∈ B(𝔎+) be a minimal isometric dilation of 𝑇 ∈ B(ℌ). Then, for any
ℎ, ℎ′ ∈ ℌ and 𝑛 ≥ 0,

⟨𝑉∗ℎ − 𝑇∗ℎ, ℎ′⟩ = ⟨ℎ,𝑉ℎ′⟩ − ⟨ℎ, 𝑇ℎ′⟩ = 0

and

⟨𝑉∗ℎ − 𝑇∗ℎ,𝑉𝑛 (𝑉 − 𝑇)ℎ′⟩ = ⟨ℎ,𝑉𝑛+2ℎ′⟩ − ⟨ℎ,𝑉𝑛+1𝑇ℎ′⟩
−⟨𝑇∗ℎ,𝑉𝑛+1ℎ′⟩ + ⟨𝑇∗ℎ,𝑉𝑛𝑇ℎ′⟩ = 0.

By the geometrical structure of 𝔎+ given by (3.5) we deduce that ℌ is invariant to 𝑉∗

and𝑉∗ |ℌ = 𝑇∗.
• Let𝑈 ∈ B(𝔎) be a minimal unitary dilation of 𝑇 ∈ B(ℌ). It is clear that 𝑀+ (𝔏)

is invariant to 𝑈 and 𝑀− (𝔏∗) to 𝑈∗. Since 𝑀+ (𝔏) and 𝑀− (𝔏) are regular, 𝑈 |𝑀+ (𝔏)
and 𝑈 |𝑀− (𝔏∗ ) are unilateral shifts (according to the definition in [44]). ■

An operator 𝑇 ∈ B(ℌ,𝔎), ℌ,𝔎 Kreı̆n spaces, is a contraction (respectively,
expansion) if

⟨𝑇ℎ, 𝑇ℎ⟩𝔎 ≤ ⟨ℎ, ℎ⟩ℌ (respectively, ⟨𝑇ℎ, 𝑇ℎ⟩𝔎 ≥ ⟨ℎ, ℎ⟩ℌ), ℎ ∈ ℌ

or, equivalently,

𝐼 − 𝑇∗𝑇 ≥ 0 (respectively, 𝐼 − 𝑇∗𝑇 ≤ 0).

Contractions (respectively, expansions) can be characterized by the fact that their
defect spaces are Hilbert (respectively, anti-Hilbert) spaces.

Let 𝑈 ∈ B(𝔎), 𝑈′ ∈ B(𝔎′) be two minimal unitary dilations of 𝑇 ∈ B(ℌ) and
𝑉 = 𝑈 |𝔎+ , 𝑉

′ = 𝑈′ |𝔎′
+ , where 𝔎+ =

∨
𝑛≥0 𝑈

𝑛ℌ, 𝔎′
+ =

∨
𝑛≥0 𝑈

′𝑛ℌ the corresponding
minimal isometric dilations (according to Corollary 3.2).𝑉 ∈ B(𝔎+) and𝑉 ′ ∈ B(𝔎′

+)
are unitarily equivalent if there exists a unitary operator Φ : 𝔎+ → 𝔎′

+ which inter-
twines 𝑉 and 𝑉 ′ (i.e. Φ𝑉 = 𝑉 ′Φ) and Φ|ℌ = 𝐼ℌ. If, moreover, Φ can be extended to
a unitary operator on 𝔎 onto 𝔎′ which intertwines 𝑈 and 𝑈′, then 𝑈 ∈ B(𝔎) and
𝑈′ ∈ B(𝔎′) are said to be unitarily equivalent.

A result by Gheondea and Popescu shows that minimal isometric dilations are, in
general, not unique (up to a unitary equivalence):

Theorem 3.4 ([28]) A bounded operator𝑇 on a Kreı̆n spaceℌ has a unique minimal isometric
dilation if and only if 𝑇 is either contractive or expansive.

The same kind of conditions hold for minimal unitary dilations:

Theorem 3.5 𝑇 ∈ B(ℌ) has a unique minimal unitary dilation if and only if 𝑇 is either
contractive or expansive and 𝑇∗ is either contractive or expansive.
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10 Dan Popovici

Proof Assume that, for example, 𝑇 is contractive and 𝑇∗ is expansive. Then 𝔇𝑇 (and
hence also 𝐻2

𝔇𝑇
(T)) is a Hilbert space and 𝔇𝑇∗ (and hence also 𝐻2

𝔇𝑇∗ (T)) is an anti-
Hilbert space.

Let 𝑈 be the minimal unitary dilation of 𝑇 given by (3.4) and acting on the Kreı̆n
space 𝔎 = 𝐻2

𝔇𝑇∗ (T) ⊕ ℌ ⊕ 𝐻2
𝔇𝑇

(T). If 𝑈′ ∈ B(𝔎′) is any other minimal unitary
dilation of𝑇 then, according to (3.6), 𝔎′ has an orthogonal decomposition of the form
𝔎′ = 𝑀− (𝔏′∗) ⊕ ℌ ⊕ 𝑀+ (𝔏′), with 𝔏′ = (𝑈′ − 𝑇)ℌ and 𝔏′∗ = (𝑈′∗ − 𝑇∗)ℌ.

Since, for arbitrary finite sequences {ℎ𝑛}𝑛, {𝑔𝑛}𝑛 of vectors in ℌ, we have

⟨
∑︁
𝑛≥0

𝑈′𝑛 (𝑈′ − 𝑇)ℎ𝑛,
∑︁
𝑚≥0

𝑈′𝑚 (𝑈′ − 𝑇)𝑔𝑚⟩𝔎′

=
∑︁
𝑛≥0

⟨(𝑈′ − 𝑇)ℎ𝑛, (𝑈′ − 𝑇)𝑔𝑛⟩𝔎′

=
∑︁
𝑛≥0

⟨(𝐼 − 𝑇∗𝑇)ℎ𝑛, 𝑔𝑛⟩ℌ

= ⟨
∑︁
𝑛≥0

𝑧𝑛𝐷∗
𝑇ℎ𝑛,

∑︁
𝑚≥0

𝑧𝑚𝐷∗
𝑇𝑔𝑚⟩𝐻2

𝔇𝑇
(T) ,

the mapping

𝑀+ (𝔏′) ∋
∑︁
𝑛≥0

𝑈′𝑛 (𝑈′ − 𝑇)ℎ𝑛
Φ+↦−→

∑︁
𝑛≥0

𝑧𝑛𝐷∗
𝑇ℎ𝑛 ∈ 𝐻2

𝔇𝑇
(T)

is well defined, and the linear operatorΦ+ is isometric, densely defined and with dense
range. If can be uniquely extended to a unitary operator Φ+ ∈ B(𝑀+ (𝔏′), 𝐻2

𝔇𝑇
(T))

(since 𝐻2
𝔇𝑇

(T)) is a Hilbert space). Similarly, we can define a unitary operator Φ− ∈
B(𝑀− (𝔏′∗), 𝐻2

𝔇𝑇∗ (T)).
Then Φ = Φ− ⊕ 𝐼ℌ ⊕ Φ+ ∈ B(𝔎′,𝔎) is unitary, Φ|ℌ = 𝐼ℌ and Φ𝑈′ = 𝑈Φ.

Moreover, Φ𝔎′
+ = 𝔎+ and, therefore, 𝑈 and 𝑈′ are unitarily equivalent.

Conversely, suppose that, for example, 𝑇 is neither contractive nor expansive or,
equivalently, the Kreı̆n space 𝔇𝑇 is indefinite. If 𝑍 ∈ B(𝔇𝑇 ) is a unitary operator
with ∥𝑍𝑛∥ 𝑛−→ ∞, then the matrix

𝑈′ =
©­«

𝑇∗
𝑧 0 0

[𝐷∗
𝑇∗ ]∗0 𝑇 0

[𝐿]0 [𝐼𝔇𝑇∗ ]∗0 [𝐷∗
𝑇
]0 𝑇𝑧 [𝑍]

ª®¬
defines a minimal unitary dilation of 𝑇 on 𝔎 = 𝐻2

𝔇𝑇∗ (T) ⊕ ℌ ⊕ 𝐻2
𝔇𝑇

(T). If 𝑇
would have a unique minimal unitary dilation, then 𝑈′ and the minimal unitary
dilation 𝑈 on 𝔎 given by (3.4) would be unitarily equivalent via a unitary oper-
ator Φ ∈ B(𝔎) which leaves invariant 𝐻2

𝔇𝑇
(T). We get a contradiction since

lim𝑛→∞∥(Φ∗ |𝐻2
𝔇𝑇 (T)

𝑇𝑧Φ|𝐻2
𝔇𝑇 (T)

)𝑛∥ = lim𝑛→∞∥Φ∗ |𝐻2
𝔇𝑇 (T)

𝑇𝑛
𝑧 Φ|𝐻2

𝔇𝑇 (T)
∥ < ∞, while

lim𝑛→∞∥(𝑇𝑧 [𝑍])𝑛∥ = lim𝑛→∞∥𝑍𝑛∥ = ∞. ■

Corollary 3.6 𝑇 has a unique minimal unitary dilation if and only if 𝑇 and 𝑇∗ have unique
minimal isometric dilations.
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Regular Dilations on Kreı̆n Spaces 11

4 Commuting Isometric Pairs and Their Unitary Extensions

Using dilation theory we can easily deduce that every bounded isometry𝑉 on a Kreı̆n
space ℌ has a unitary extension𝑈 on a Kreı̆n space 𝔎 ⊃ ℌ which is minimal in the sense
that

𝔎 =
∨
𝑛∈Z

𝑈𝑛ℌ.

We just have to take the minimal isometric dilation of 𝑉∗ given by (3.3) and observe
that it is a unitary operator 𝑈∗ on 𝔎 = ℌ ⊕ 𝐻2

ker𝑉∗ (T). More precisely, the linear
operator given by the matrix

𝑈 =

(
𝑉 [𝑃ℌ

ker𝑉∗ ]∗0
0 𝑇∗

𝑧

)
(4.1)

is a minimal unitary extension of𝑉.

Remark 4.1 •𝑈 ∈ B(𝔎) is a minimal unitary extension of 𝑉 ∈ B(ℌ) if and only if
𝑈∗ is a minimal isometric dilation of𝑉∗;

• If 𝑉 ∈ B(𝔎+) is any minimal isometric dilation of 𝑇 ∈ B(ℌ) and 𝑈 ∈ B(𝔎) is
any minimal unitary extension of𝑉 , then 𝑈 is a minimal unitary dilation of 𝑇 ;

• Suppose that𝑉 is the minimal isometric dilation of 𝑇 given by (3.3) on the Kreı̆n
space𝔎+ = ℌ⊕𝐻2

𝔇𝑇
(T). The minimal unitary extension𝑈 given by (4.1) on the Kreı̆n

space 𝔎 = ℌ ⊕ 𝐻2
𝔇𝑇

(T) ⊕ 𝐻2
ker𝑉∗ (T) is a minimal unitary dilation of 𝑇 and its matrix

representation depends only on𝑇 and on its corresponding defect operators (does not
require the construction of a Julia operator or of an elementary rotation for 𝑇 ). ■

The following theorem explains the geometrical structure of minimal unitary
extensions:

Theorem 4.2 Let 𝑉 be a bounded isometry on a Kreı̆n space ℌ and 𝑈 ∈ B(𝔎) be any
minimal unitary extension of 𝑉. Then

(i) 𝔏∗ = (𝑈∗ −𝑉∗)ℌ is wandering for 𝑈, regular and isometrically isomorphic with
ker𝑉∗;

(ii) ℌ, 𝑀− (𝔏∗) = ∨
𝑛≤0 𝑈

𝑛𝔏∗ are regular subspaces of 𝔎 and

𝔎 = ℌ ⊕ 𝑀− (𝔏∗);

(iii) 𝑀− (𝔏∗) is invariant to 𝑈∗ and 𝑈∗ |𝑀− (𝔏∗ ) is a unilateral shift.

Proof The proof follows Theorem 3.1 (𝑎) with the observation that𝑈∗ is a minimal
isometric dilation of𝑉∗. ■

Following Remark 4.1 and Theorem 3.4 we can characterize the uniqueness of a
minimal unitary extension:

Theorem 4.3 Let 𝑉 ∈ B(ℌ), ℌ Kreı̆n space, be isometric. The following conditions are
equivalent:
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(𝑖) 𝑉 has a unique minimal unitary extension;
(𝑖𝑖) 𝑉∗ is either contractive or expansive;
(𝑖𝑖𝑖) ker𝑉∗ is either uniformly positive or uniformly negative;
(𝑖𝑣) ker𝑉∗ is either Hilbert or anti-Hilbert space.
If𝑈 ∈ B(𝔎) is a minimal unitary extension of𝑉 , then𝔎⊖ℌ is a Hilbert or an anti-Hilbert

space.

A pair 𝑇 = (𝑇1, 𝑇2) of bounded linear operators on a Kreı̆n space ℌ is said to be
commuting if 𝑇1𝑇2 = 𝑇2𝑇1. 𝑇 is called double commuting if 𝑇1 commutes not only with
𝑇2, but also with its adjoint𝑇∗

2 . By the end of this paper, any pair of bounded operators
acting on a Kreı̆n space will be considered a commutative pair. In case the components
𝑇1 and 𝑇2 are clear from the context or they are not needed in the corresponding dis-
cussion, in order to avoid repetitions, we simply use the notation 𝑇 ∈ B(ℌ)2 instead
of𝑇 = (𝑇1, 𝑇2) ∈ B(ℌ)2. If 𝑛 = (𝑛1, 𝑛2) ∈ Z2 and𝑇 = (𝑇1, 𝑇2) ∈ B(ℌ)2, the notation
𝑇𝑛 = 𝑇

𝑛1
1 𝑇

𝑛2
2 will be frequently used whenever the computations 𝑇𝑛1

1 and 𝑇
𝑛2
2 make

sense.

Definition 4.1 Let 𝑉 = (𝑉1, 𝑉2) be a pair of commuting isometries in B(ℌ), ℌ a
Kreı̆n space. A unitary extension of 𝑉 is a commuting pair 𝑈 = (𝑈1,𝑈2) of unitary
operators on a Kreı̆n space 𝔎 ⊃ ℌ such that 𝑈1,𝑈2 extend, respectively, 𝑉1, 𝑉2. 𝑈 is
said to be minimal if, in addition,

𝔎 =
∨
𝑛∈Z2

𝑈𝑛ℌ

Just to give an example, observe that the pair (𝑇𝑧1 , 𝑇𝑧2 ) of multiplications by coordi-
nate functions 𝑧1 and 𝑧2 on a certain Hardy-type Kreı̆n space 𝐻2

ℌ
(T2) can be extended

by the commuting unitary pair (𝑀𝑧1 , 𝑀𝑧2 ),

𝑓
𝑀𝑧𝑖↦−→ 𝑧𝑖 𝑓

on the 𝐿2-type Kreı̆n space 𝐿2
ℌ
(T2) introduced in an obvious manner. This unitary

extension is minimal.

Theorem 4.4 Let 𝑉 = (𝑉1, 𝑉2) be a commuting pair of isometric operators in B(ℌ). Then
the pair 𝑈 = (𝑈1,𝑈2) given by the matrix representation

𝑈1 =

(
𝑉1 [𝑃ℌ

ker(𝑉1𝑉2 )∗𝑉2 |ker(𝑉1𝑉2 )∗ ]∗0
0 [𝑉1 (𝐼 −𝑉2𝑉

∗
2 ) |ker(𝑉1𝑉2 )∗ ] + [𝑉∗

2 |ker(𝑉1𝑉2 )∗ ]𝑇∗
𝑧

)
(4.2)

and

𝑈2 =

(
𝑉2 [𝑃ℌ

ker(𝑉1𝑉2 )∗𝑉1 |ker(𝑉1𝑉2 )∗ ]∗0
0 [𝑉2 (𝐼 −𝑉1𝑉

∗
1 ) |ker(𝑉1𝑉2 )∗ ] + [𝑉∗

1 |ker(𝑉1𝑉2 )∗ ]𝑇∗
𝑧

)
(4.3)

is a minimal unitary extension of 𝑉 on the Kreı̆n space

𝔎 = ℌ ⊕ 𝐻2
ker(𝑉1𝑉2 )∗ (T).

2025/10/28 18:49

https://doi.org/10.4153/S0008414X25101752 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101752


Regular Dilations on Kreı̆n Spaces 13

Proof Standard computations with operator matrices (in view of Proposition 2.2)
show that, in fact, formulas (4.2) and (4.3) define commuting unitary operators on
𝔎 = ℌ ⊕ 𝐻2

ker(𝑉1𝑉2 )∗ (T). Obviously, 𝑈 is a unitary extension of𝑉.
It remains to show the minimality. We will actually prove an apparently stronger

result, namely

𝔎 =
∨
𝑛≤0

(𝑈1𝑈2)𝑛ℌ.

To this end, let ℎ ∈ ℌ and 𝑛 ∈ N be arbitrary. We see that

(𝑈1𝑈2)∗𝑛
[
(𝑈1𝑈2)∗

(
ℎ

0

)
−

(
(𝑉1𝑉2)∗ℎ

0

)]
=

(
0

𝑧𝑛𝑃
ℌ

ker(𝑉1𝑉2 )∗ℎ

)
,

hence

𝐻2
ker(𝑉1𝑉2 )∗ (T) =

∨{
(𝑈1𝑈2)∗(𝑛+1) (

ℎ
0
)
− (𝑈1𝑈2)∗𝑛

(
(𝑉1𝑉2 )∗ℎ

0

)
| ℎ ∈ ℌ, 𝑛 ≥ 0

}
,

which proves our claim. ■

Remark 4.5 The conclusion of the previous theorem also holds for arbitrary finite
families 𝑉 = (𝑉1, 𝑉2, . . . , 𝑉𝑛) of commuting bounded isometries on a Kreı̆n space ℌ.
More precisely, the family 𝑈 = (𝑈1,𝑈2, . . . ,𝑈𝑛) given by

𝑈𝑖 =

(
𝑉𝑖 [𝑃ℌ

ker(𝑉1...𝑉𝑛 )∗𝑊𝑖 |ker(𝑉1...𝑉𝑛 )∗ ]∗0
0 [𝑉𝑖 (𝐼 −𝑊𝑖𝑊

∗
𝑖
) |ker(𝑉1...𝑉𝑛 )∗ ] + [𝑊∗

𝑖
|ker(𝑉1...𝑉𝑛 )∗ ]𝑇∗

𝑧

)
,

where𝑊𝑖 =
∏

𝑗≠𝑖 𝑉 𝑗 , 𝑖 = 1, 2, . . . , 𝑛, is a minimal unitary extension of𝑉 on the Kreı̆n
space

𝔎 = ℌ ⊕ 𝐻2
ker(𝑉1...𝑉𝑛 )∗ (T).

For the Hilbert space case we refer to [49, Theorem 3.3.1]. ■

Proposition 4.6 If 𝑈 = (𝑈1,𝑈2) ∈ B(𝔎)2 is a minimal unitary extension of the com-
muting isometric pair 𝑉 = (𝑉1, 𝑉2) ∈ B(ℌ)2, then 𝑈1𝑈2 is a minimal unitary extension of
𝑉1𝑉2.

Proof It is clear that, under the given hypothesis, 𝑈1𝑈2 is a unitary extension of
𝑉1𝑉2. Since, for 𝑚 ≤ 𝑛 ≤ 0, 𝑈𝑚

1 𝑈𝑛
2 ℌ ⊂ (𝑈1𝑈2)𝑚ℌ we observe that

𝔎 =
∨

𝑚,𝑛≤0

𝑈𝑚
1 𝑈𝑛

2 ℌ ⊂
∨
𝑚≤0

(𝑈1𝑈2)𝑚ℌ ⊂ 𝔎,

hence 𝔎 =
∨

𝑚≤0 (𝑈1𝑈2)𝑚ℌ, and the minimality of the unitary extension 𝑈1𝑈2 is
proved. ■

In view of Theorem 4.2 we can deduce a geometrical structure for the minimal
unitary extension:

Corollary 4.7 Let 𝑈 = (𝑈1,𝑈2) ∈ B(𝔎)2 be any minimal unitary extension of the
commuting isometric pair 𝑉 = (𝑉1, 𝑉2) ∈ B(ℌ)2. Then
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14 Dan Popovici

(𝑖) 𝔏∗ = ((𝑈1𝑈2)∗ − (𝑉1𝑉2)∗)ℌ is wandering for 𝑈1𝑈2, regular and isometrically
isomorphic with ker(𝑉1𝑉2)∗;

(𝑖𝑖) ℌ, 𝑀− (𝔏∗) = ∨
𝑛≤0 (𝑈1𝑈2)𝑛𝔏∗ are regular subspaces of 𝔎 and

𝔎 = ℌ ⊕ 𝑀− (𝔏∗); (4.4)

(𝑖𝑖𝑖) 𝑀− (𝔏∗) is invariant to (𝑈1𝑈2)∗ and (𝑈1𝑈2)∗ |𝑀− (𝔏∗ ) is a unilateral shift.

Let 𝑈 = (𝑈1,𝑈2) ∈ B(𝔎)2, 𝑈′ = (𝑈′
1,𝑈

′
2) ∈ B(𝔎′)2 be two minimal unitary

extensions of the pair𝑉 = (𝑉1, 𝑉2) of commuting bounded isometries on ℌ.𝑈 and𝑈′

are said to be unitarily equivalent if there exists a unitary operator Φ : 𝔎 → 𝔎′ which
intertwines 𝑈1 and 𝑈′

1, respectively, 𝑈2 and 𝑈′
2 and such that Φ|ℌ = 𝐼ℌ.

Theorem 4.8 Let𝑉 = (𝑉1, 𝑉2) ∈ B(ℌ)2 be a commuting isometric pair such that (𝑉1𝑉2)∗
is either contractive or expansive. Then 𝑉 has a unique minimal unitary extension.

Proof Assume that, for example, (𝑉1𝑉2)∗ is contractive. Then ker(𝑉1𝑉2)∗ (and,
hence, also 𝐻2

ker(𝑉1𝑉2 )∗ ) is a Hilbert space.
Let𝑈 = (𝑈1,𝑈2) be the minimal unitary extension of𝑉 given by (4.2) and (4.3) and

acting on the Kreı̆n space 𝔎 = ℌ ⊕ 𝐻2
ker(𝑉1𝑉2 )∗ (T). If 𝑈′ = (𝑈′

1,𝑈
′
2) ∈ B(𝔎′)2 is any

other minimal unitary extension of 𝑉 , then, according to (4.4), 𝔎′ has an orthogonal
decomposition of the form 𝔎′ = ℌ ⊕ 𝑀− (𝔏′∗), with 𝔏′∗ = ((𝑈′

1𝑈
′
2)∗ − (𝑉1𝑉2)∗)ℌ.

Since, for arbitrary finite sequences {ℎ𝑛}𝑛, {𝑔𝑛}𝑛 of vectors in ℌ, we have

⟨
∑︁
𝑛≥0

(𝑈′
1𝑈

′
2)∗𝑛 ((𝑈′

1𝑈
′
2)∗ − (𝑉1𝑉2)∗)ℎ𝑛,

∑︁
𝑚≥0

(𝑈′
1𝑈

′
2)∗𝑚 ((𝑈′

1𝑈
′
2)∗ − (𝑉1𝑉2)∗)𝑔𝑚⟩𝔎′

= ⟨
∑︁
𝑛≥0

𝑧𝑛 (𝐼 −𝑉1𝑉2 (𝑉1𝑉2)∗)ℎ𝑛,
∑︁
𝑚≥0

𝑧𝑚 (𝐼 −𝑉1𝑉2 (𝑉1𝑉2)∗)𝑔𝑚⟩𝐻2
ker(𝑉1𝑉2 )∗

(T) ,

the mapping

𝑀− (𝔏′∗) ∋
∑︁
𝑛≥0

(𝑈′
1𝑈

′
2)∗𝑛 ((𝑈′

1𝑈
′
2)∗ − (𝑉1𝑉2)∗)ℎ𝑛

𝜙+↦−→∑︁
𝑛≥0

𝑧𝑛 (𝐼 −𝑉1𝑉2 (𝑉1𝑉2)∗)ℎ𝑛 ∈ 𝐻2
ker(𝑉1𝑉2 )∗ (T)

is well defined, and the linear operator Φ is isometric, densely defined and
with dense range. It can be uniquely extended to a unitary operator Φ ∈
B(𝑀− (𝔏

′∗), 𝐻2
ker(𝑉1𝑉2 )∗ (T)) (since 𝐻2

ker(𝑉1𝑉2 )∗ (T) is a Hilbert space).
Then Φ = 𝐼ℌ ⊕Φ+ ∈ B(𝔎′,𝔎) is unitary and Φ|ℌ = 𝐼ℌ. Moreover, for any ℎ ∈ ℌ,

Φ𝑈′
1ℎ = Φ𝑉1ℎ = 𝑉1ℎ = 𝑉1Φℎ = 𝑈1Φℎ,
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Φ𝑈′
1 ((𝑈′

1𝑈
′
2)∗ − (𝑉 ′

1𝑉
′
2)∗)ℎ

= Φ[(𝐼 −𝑉1𝑉
∗
1 )𝑉∗

2 ℎ + ((𝑈′
1𝑈

′
2)∗ − (𝑉1𝑉2)∗)𝑉1 (𝐼 −𝑉2𝑉

∗
2 )ℎ]

= 𝑧0 (𝐼 −𝑉1𝑉
∗
1 )𝑉∗

2 ℎ + 𝑧𝑉1 (𝐼 −𝑉2𝑉
∗
2 )ℎ

= 𝑈1 (𝑧0 (𝐼 −𝑉1𝑉2𝑉
∗
1𝑉

∗
2 )ℎ)

= 𝑈1Φ((𝑈′
1𝑈

′
2)∗ − (𝑉1𝑉2)∗)ℎ,

and, by a similar argument,

Φ𝑈′
1 (𝑈′

1𝑈
′
2)∗𝑛 ((𝑈′

1𝑈
′
2)∗ − (𝑉1𝑉2)∗)ℎ = 𝑈1Φ(𝑈′

1𝑈
′
2)∗𝑛 ((𝑈′

1𝑈
′
2)∗ − (𝑉1𝑉2)∗)ℎ,

for any positive integer 𝑛. Conclude that Φ𝑈′
1 = 𝑈1Φ since they are continuous and

coincide on a dense subset. By symmetry, we also obtain Φ𝑈′
2 = 𝑈2Φ and, therefore,

𝑈 and 𝑈′ are unitarily equivalent. ■

Corollary 4.9 Let 𝑉 = (𝑉1, 𝑉2) be a commuting isometric pair in B(ℌ)2. If 𝑉1𝑉2 has a
unique minimal unitary extension, then 𝑉 has a unique minimal unitary extension.

5 Regular Dilations for Commuting Pairs

Definition 5.1 Let𝑇 = (𝑇1, 𝑇2) be a commuting pair of bounded operators on a Kreı̆n
space ℌ.

• An isometric (respectively, unitary) dilation of 𝑇 is a pair𝑈 = (𝑈1,𝑈2) of bounded
commuting isometric (respectively, unitary) operators on a Kreı̆n space 𝔎 containing
ℌ as a Kreı̆n subspace and satisfying

𝑇𝑛 = 𝑃ℌ𝑈
𝑛 |ℌ, 𝑛 ∈ Z2

+; (5.1)

•An isometric or unitary dilation𝑈 = (𝑈1,𝑈2) ∈ B(𝔎)2 of𝑇 = (𝑇1, 𝑇2) ∈ B(ℌ)2

is said to be regular if

(𝑇𝑛− )∗𝑇𝑛+ = 𝑃ℌ (𝑈𝑛− )∗𝑈𝑛+ |ℌ, 𝑛 ∈ Z2. (5.2)

Here, for 𝑛 = (𝑛1, 𝑛2) ∈ Z2, the usual notations 𝑛+ := (max{𝑛1, 0},max{𝑛2, 0})
and 𝑛− := (−min{𝑛1, 0},−min{𝑛2, 0}) are used. Formula (5.2) is consistent with the
dilation definition (5.1) which can be obtained for 𝑛 ∈ Z2

+ (in this case 𝑛− = (0, 0) and
𝑛+ = 𝑛). If (5.1) holds true, then (5.2) is actually equivalent with

𝑇∗𝑚
1 𝑇𝑛

2 = 𝑃ℌ𝑈
∗𝑚
1 𝑈𝑛

2 |ℌ, 𝑚, 𝑛 ≥ 0;

• An isometric (respectively, unitary) dilation 𝑈 ∈ B(𝔎)2 of 𝑇 ∈ B(ℌ)2 is called
minimal if 𝔎 =

∨
𝑛∈Z2

+
𝑈𝑛ℌ (respectively, 𝔎 =

∨
𝑛∈Z2 𝑈𝑛ℌ).

Remark 5.1 Suppose that the commuting pair 𝑇 ∈ B(ℌ)2 has a minimal isometric
(respectively, minimal regular isometric) dilation𝑉 ∈ B(𝔎+)2. Let𝑈 ∈ B(𝔎)2 be the
minimal unitary extension of 𝑉 ∈ B(𝔎+)2 as constructed in Theorem 4.4. Then 𝑈 is
a minimal unitary (respectively, minimal regular unitary) dilation of 𝑇 . ■

As in the one-dimensional case a minimal isometric dilation for a commuting pair
𝑇 ensures the existence of a co-isometric extension for 𝑇∗:
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Proposition 5.2 Let 𝑉 = (𝑉1, 𝑉2) ∈ B(𝔎+)2 be a minimal isometric dilation of the
commuting pair 𝑇 = (𝑇1, 𝑇2) ∈ B(ℌ)2. Then ℌ is invariant to 𝑉∗ = (𝑉∗

1 , 𝑉
∗
2 ),

𝑇𝑛𝑃ℌ = 𝑃ℌ𝑉
𝑛, 𝑛 ∈ Z2

+ and 𝑇∗ = 𝑉∗ |ℌ.

Proof For every 𝑚, 𝑛 ∈ Z2
+ and ℎ ∈ ℌ, the dilation definition shows that

𝑇𝑛𝑃ℌ (𝑉𝑚ℎ) = 𝑇𝑛+𝑚ℎ = 𝑃ℌ𝑉
𝑛+𝑚ℎ = 𝑃ℌ𝑉

𝑛 (𝑉𝑚ℎ).

Since {𝑉𝑚ℎ | 𝑚 ∈ Z2
+, ℎ ∈ ℌ} is dense in 𝔎+ and 𝑃ℌ, 𝑇,𝑉 are bounded we actually

deduce that

𝑇𝑛𝑃ℌ = 𝑃ℌ𝑉
𝑛.

We will prove that 𝑉𝑛∗ℎ = 𝑇𝑛∗ℎ, for every 𝑛 ∈ Z2
+ and ℎ ∈ ℌ. To this end, let

𝑚 ∈ Z2
+ and ℎ′ ∈ ℌ. Then

⟨𝑉𝑛∗ℎ − 𝑇𝑛∗ℎ,𝑉𝑚ℎ′⟩𝔎+ = ⟨ℎ,𝑉𝑛+𝑚ℎ′⟩𝔎+ − ⟨𝑇𝑛∗ℎ, 𝑇𝑚ℎ′⟩ = 0.

Use again the minimality of 𝑉 to obtain that 𝑉𝑛∗ℎ = 𝑇𝑛∗ℎ. Consequently, ℌ is
invariant to𝑉∗ and 𝑇∗ = 𝑉∗ |ℌ. ■

Let 𝑇 = (𝑇1, 𝑇2) be a pair of commuting bounded operators on a Kreı̆n space ℌ.

By a defect operator for 𝑇 we mean an operator 𝐷𝑇 ∈ B(𝔇𝑇 ,ℌ) with zero kernel on a
Kreı̆n space 𝔇𝑇 (called its defect space) such that

𝐼 − 𝑇∗
1𝑇1 − 𝑇∗

2𝑇2 + 𝑇∗
1𝑇

∗
2𝑇1𝑇2 = 𝐷𝑇𝐷

∗
𝑇 .

𝑇 is said to be a bidisc contraction, respectively, bidisc expansion if

⟨𝑇1ℎ, 𝑇1ℎ⟩ℌ + ⟨𝑇2ℎ, 𝑇2ℎ⟩ℌ ≤ ⟨ℎ, ℎ⟩ℌ + ⟨𝑇1𝑇2ℎ, 𝑇1𝑇2ℎ⟩ℌ, ℎ ∈ ℌ,

respectively,

⟨𝑇1ℎ, 𝑇1ℎ⟩ℌ + ⟨𝑇2ℎ, 𝑇2ℎ⟩ℌ ≥ ⟨ℎ, ℎ⟩ℌ + ⟨𝑇1𝑇2ℎ, 𝑇1𝑇2ℎ⟩ℌ, ℎ ∈ ℌ

or, equivalently, the defect space of 𝑇 is a Hilbert, respectively, an anti-Hilbert space.
In what follows we shall use the notations 𝐷1 = 𝐷𝑇1 , 𝐷2 = 𝐷𝑇2 , 𝐷 = 𝐷𝑇 for the

defect operators and 𝔇1 = 𝔇𝑇1 ,𝔇2 = 𝔇𝑇2 ,𝔇 = 𝔇𝑇 for the corresponding defect
spaces.

As in the one-dimensional case, recall that a subspace 𝔏 is said to be wandering for
a commuting isometric pair𝑉 if𝑉𝑛𝔏⊥𝑉𝑚𝔏 for all 𝑛, 𝑚 ∈ Z2

+, 𝑛 ≠ 𝑚.
Regarding the geometrical structure of a minimal regular isometric dilation we

could mention:

Theorem 5.3 Let 𝑉 = (𝑉1, 𝑉2) ∈ B(𝔎+)2 be a minimal regular isometric dilation of a
commuting pair 𝑇 = (𝑇1, 𝑇2) ∈ B(ℌ)2. Then

(𝑖) 𝔏1 = (𝑉1 − 𝑇1)ℌ,𝔏2 = (𝑉2 − 𝑇2)ℌ,𝔏 = (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℌ are
regular, wandering, respectively, for𝑉1, 𝑉2, 𝑉 and isometrically isomorphic, respectively, with
𝔇1,𝔇2,𝔇;
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(𝑖𝑖) 𝑀1
+ (𝔏1) =

∨
𝑚≥0 𝑉

𝑚
1 𝔏1, 𝑀

2
+ (𝔏2) =

∨
𝑛≥0 𝑉

𝑛
2 𝔏2, 𝑀+ (𝔏) =

∨
𝑝∈Z2

+
𝑉 𝑝𝔏 are

regular and

𝔎+ = ℌ ⊕ 𝑀+ (𝔏) ⊕ 𝑀1
+ (𝔏1) ⊕ 𝑀2

+ (𝔏2); (5.3)

(𝑖𝑖𝑖) 𝑀 𝑖
+ (𝔏𝑖) is invariant to 𝑉𝑖 and 𝑉𝑖 |𝑀𝑖

+ (𝔏𝑖 ) is a unilateral shift, 𝑖 = 1, 2;
(𝑖𝑣) 𝑀+ (𝔏) is invariant to𝑉 and𝑉 |𝑀+ (𝔏) is a pair of double commuting unilateral shifts.

Proof As in the Hilbert space case ([25]), it is not hard to check that 𝔏1,𝔏2,𝔏 are
wandering, respectively, for 𝑉1, 𝑉2, 𝑉 and ℌ, 𝑀1

+ (𝔏1), 𝑀2
+ (𝔏2), 𝑀+ (𝔏) are pairwise

orthogonal. Therefore, we prefer to omit the details.
Proceed similarly as in the proof of Theorem 3.1 to obtain

𝑉𝑚
1 ℎ = 𝑇𝑚

1 ℎ +
𝑚−1∑︁
𝑘=0

𝑉 𝑘
1 (𝑉1 − 𝑇1)𝑇𝑚−𝑘−1

1 ℎ, ℎ ∈ ℌ, 𝑚 ≥ 1. (5.4)

We use (5.4) in conjunction with the formulas

𝑉2ℎ = 𝑇2ℎ + (𝑉2 − 𝑇2)ℎ, ℎ ∈ ℌ (5.5)

and

𝑉2 (𝑉1 − 𝑇1)ℎ = (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℎ + (𝑉1 − 𝑇1)𝑇2ℎ, ℎ ∈ ℌ, (5.6)

applied successively, to finally get

𝑉𝑚
1 𝑉𝑛

2 ℎ = 𝑇𝑚
1 𝑇𝑛

2 ℎ

+
∑︁

0≤𝑝≤(𝑚−1,𝑛−1)
𝑉 𝑝 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)𝑇 (𝑚−1,𝑛−1)−𝑝ℎ

+
𝑚−1∑︁
𝑖=0

𝑉 𝑖
1 (𝑉1 − 𝑇1)𝑇𝑚−1−𝑖

1 𝑇𝑛
2 ℎ +

𝑛−1∑︁
𝑗=0

𝑉
𝑗

2 (𝑉2 − 𝑇2)𝑇𝑚
1 𝑇

𝑛−1− 𝑗

2 ℎ,

ℎ ∈ ℌ, 𝑚, 𝑛 ∈ N∗.

More precisely, we firstly apply𝑉2 to (5.4) and then use (5.5) for 𝑇𝑚
1 ℎ and (5.6) for

𝑇𝑚−𝑘−1
1 ℎ, 𝑘 ∈ {0, 1, . . . , 𝑚 − 1}, instead of ℎ. We obtain that

𝑉𝑚
1 𝑉2ℎ = 𝑇𝑚

1 𝑇2ℎ + (𝑉2 − 𝑇2)𝑇𝑚
1 ℎ +

𝑚−1∑︁
𝑘=0

𝑉 𝑘
1 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)𝑇𝑚−𝑘−1

1 ℎ

+
𝑚−1∑︁
𝑘=0

𝑉 𝑘
1 (𝑉1 − 𝑇1)𝑇𝑚−𝑘−1

1 𝑇2ℎ.

Following again (5.5) and (5.6) for the computation of the vectors 𝑉2𝑇2𝑇
𝑚
1 ℎ and,

respectively, 𝑉2 (𝑉1 − 𝑇1)𝑇𝑚−𝑘−1
1 𝑇2ℎ, 𝑘 ∈ {0, 1, . . . , 𝑚 − 1}, another application of
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18 Dan Popovici

𝑉2 shows that

𝑉𝑚
1 𝑉2

2 ℎ = 𝑇𝑚
1 𝑇2

2 ℎ + (𝑉2 − 𝑇2)𝑇𝑚
1 𝑇2ℎ +𝑉2 (𝑉2 − 𝑇2)𝑇𝑚

1 ℎ

+
𝑚−1∑︁
𝑘=0

𝑉 𝑘
1 𝑉2 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)𝑇𝑚−𝑘−1

1 ℎ

+
𝑚−1∑︁
𝑘=0

𝑉 𝑘
1 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)𝑇𝑚−𝑘−1

1 𝑇2ℎ

+
𝑚−1∑︁
𝑘=0

𝑉 𝑘
1 (𝑉1 − 𝑇1)𝑇𝑚−𝑘−1

1 𝑇2
2 ℎ.

This iterative procedure is repeated 𝑛 times.
Since, obviously, 𝔎+ contains ℌ, 𝑀+ (𝔏), 𝑀1

+ (𝔏1) and 𝑀2
+ (𝔏2), we deduce that

𝔎+ = ℌ ∨ 𝑀+ (𝔏) ∨ 𝑀1
+ (𝔏1) ∨ 𝑀2

+ (𝔏2)

and, by orthogonality, (5.3) also holds.
It is then clear that ℌ, 𝑀+ (𝔏), 𝑀1

+ (𝔏1), 𝑀2
+ (𝔏2) are all regular and, since 𝑀+ (𝔏)

= 𝔏 ⊕ 𝑉1𝑉2𝑀+ (𝔏) ⊕ 𝑉1 (𝑉2𝑀+ (𝔏))⊥ ⊕ 𝑉2 (𝑉1𝑀+ (𝔏))⊥, 𝑀1
+ (𝔏1) = 𝔏1 ⊕ 𝑉1𝑀

1
+ (𝔏1),

𝑀2
+ (𝔏2) = 𝔏2 ⊕ 𝑉2𝑀

2
+ (𝔏2) we obtain that 𝔏,𝔏1,𝔏2 are also regular.

By a similar argument as in the proof of Theorem 3.1 we can deduce that 𝔏1,𝔏2,𝔏

are isometrically isomorphic, respectively, with 𝔇1,𝔇2,𝔇.

It is obvious that 𝑀+ (𝔏), 𝑀1
+ (𝔏1), 𝑀2

+ (𝔏2) are invariant to𝑉1,𝑉2 and, respectively,
𝑉 and that 𝑉1 |𝑀1

+ (𝔏1 ) , 𝑉2 |𝑀2
+ (𝔏2 ) are unilateral shifts. Since 𝑀+ (𝔏) = 𝑀1

+ (𝑀2
+ (𝔏)) =

𝑀2
+ (𝑀1

+ (𝔏)) we obtain that 𝑉 |𝑀+ (𝔏) is a pair of commuting unilateral shifts which,
moreover, doubly commute.

To this aim, we firstly note that it is only necessary to prove that (𝑉1 |𝑀+ (𝔏) )∗ and
𝑉2 |𝑀+ (𝔏) commute on the set {𝑉𝑚

1 𝑉𝑛
2 𝑙 | 𝑚, 𝑛 ≥ 0, 𝑙 ∈ 𝔏} which generates 𝑀+ (𝔏).

Indeed, for 𝑛 ≥ 0,(
(𝑉1 |𝑀+ (𝔏) )∗𝑉2

)
𝑉𝑛

2 𝑙 = (𝑉1 |𝑀+ (𝔏) )∗𝑉𝑛+1
2 𝑙 = 0 =

(
𝑉2 (𝑉1 |𝑀+ (𝔏) )∗

)
𝑉𝑛

2 𝑙,

since 𝑉𝑛
2 𝑙 ∈ 𝑀2

+ (𝔏) = ker(𝑉1 |𝑀+ (𝔏) )∗. Also, in view of the fact that 𝑉1 |𝑀+ (𝔏) is
isometric (i.e., (𝑉1 |𝑀+ (𝔏) )∗𝑉1 |𝑀+ (𝔏) = 𝐼𝑀+ (𝔏) ), the following equalities(

(𝑉1 |𝑀+ (𝔏) )∗𝑉2
)
𝑉𝑚

1 𝑉𝑛
2 𝑙 = (𝑉1 |𝑀+ (𝔏) )∗𝑉1𝑉

𝑚−1
1 𝑉𝑛+1

2 𝑙 = 𝑉𝑚−1
1 𝑉𝑛+1

2 𝑙

and (
𝑉2 (𝑉1 |𝑀+ (𝔏) )∗

)
𝑉𝑚

1 𝑉𝑛
2 𝑙 = 𝑉2 (𝑉1 |𝑀+ (𝔏) )∗𝑉1𝑉

𝑚−1
1 𝑉𝑛

2 𝑙 = 𝑉𝑚−1
1 𝑉𝑛+1

2 𝑙

hold true for every 𝑚 > 0 and 𝑛 ≥ 0. ■

Remark 5.4 The definition of a minimal regular isometric dilation 𝑉 ∈ B(𝔎+)2 of
any pair 𝑇 of commuting bounded operators on ℌ can be simplified: the condition
that ℌ is a regular subspace of 𝔎+ is a direct consequence of (5.3). ■

Corollary 5.5 Let 𝑉 = (𝑉1, 𝑉2) ∈ B(𝔎)2 be a minimal regular isometric dilation of the
commuting pair 𝑇 = (𝑇1, 𝑇2) ∈ B(ℌ)2. The following conditions are equivalent:
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(𝑖) 𝑀1
+ (𝔏1) is invariant to 𝑉2;

(𝑖𝑖) 𝑀2
+ (𝔏2) is invariant to 𝑉1;

(𝑖𝑖𝑖) 𝑇 is a bidisc isometry (i.e., 𝐼 − 𝑇∗
1𝑇1 − 𝑇∗

2𝑇2 + 𝑇∗
1𝑇

∗
2𝑇1𝑇2 = 0).

Proof The conclusion follows from the geometrical structure of 𝔎+ given by the
theorem above since

𝑉3−𝑖𝑉
𝑛
𝑖 (𝑉𝑖 − 𝑇𝑖)ℎ = 𝑉𝑛

𝑖 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℎ +𝑉𝑛
𝑖 (𝑉𝑖 − 𝑇𝑖)𝑇3−𝑖ℎ,

ℎ ∈ ℌ, 𝑖 = 1, 2, 𝑛 ∈ N

and (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℎ = 0, for all ℎ ∈ ℌ, if and only if 𝐼 − 𝑇∗
1𝑇1 − 𝑇∗

2𝑇2 +
𝑇∗

1𝑇
∗
2𝑇1𝑇2 = 0.

For the Hilbert space case we refer to [25]. ■

For the rest of the paper we shall suppose that 𝑇 = (𝑇1, 𝑇2) is a pair of commuting
bounded operators on a Kreı̆n space ℌ such that 𝑇1, 𝑇2 are both contractive and 𝑇 is
a bidisc contraction or 𝑇1, 𝑇2 are both expansive and 𝑇 is a bidisc expansion. Equiva-
lently, the defect spaces𝔇1,𝔇2 and𝔇 are either Hilbert or anti-Hilbert spaces. Denote
by ∥·∥1, ∥·∥2, ∥·∥ the Hilbert space norms, respectively, on 𝔇1,𝔇2,𝔇.

Remark 5.6 (i) Observe firstly that

𝐼 − 𝑇∗
1𝑇1 − 𝑇∗

2𝑇2 + 𝑇∗
1𝑇

∗
2𝑇1𝑇2

= 𝐷1𝐷
∗
1 − 𝑇∗

2 (𝐼 − 𝑇∗
1𝑇1)𝑇2

= 𝐷1𝐷
∗
1 − (𝑇∗

2 𝐷1) (𝑇∗
2 𝐷1)∗

= 𝐷2𝐷
∗
2 − (𝑇∗

1 𝐷2) (𝑇∗
1 𝐷2)∗. (5.7)

Use the inequality

∥𝐷∗
1𝑇2ℎ∥1 ≤ ∥𝐷∗

1ℎ∥1 (respectively, ∥𝐷∗
2𝑇1ℎ∥2 ≤ ∥𝐷∗

2ℎ∥2), ℎ ∈ ℌ

to introduce a densely defined Hilbert space contraction on 𝔇1 (respectively, 𝔇2) by

𝑅2𝐷
∗
1ℎ = 𝐷∗

1𝑇2ℎ (respectively, 𝑅1𝐷
∗
2ℎ = 𝐷∗

2𝑇1ℎ), ℎ ∈ ℌ (5.8)

which can be extended, by continuity, to the whole space. In fact, the maps above
are (under our Kreı̆n space terminology) contractions if 𝑇 is a bidisc contraction,
respectively, expansions if 𝑇 is a bidisc expansion.

(ii) Taking into account the operators 𝑅1 and 𝑅2 (defined by (5.8)), formulas (5.7)
can be re-written as

𝐷𝐷∗ = (𝐷1𝐷𝑅2 ) (𝐷1𝐷𝑅2 )∗ = (𝐷2𝐷𝑅1 ) (𝐷2𝐷𝑅1 )∗

or, equivalently, as

∥𝐷∗ℎ∥ = ∥𝐷∗
𝑅2
𝐷∗

1ℎ∥𝔇𝑅2
= ∥𝐷∗

𝑅1
𝐷∗

2ℎ∥𝔇𝑅1
, ℎ ∈ ℌ.

Hence, the linear operators 𝑈1 : 𝔇 → 𝔇𝑅1 and 𝑈2 : 𝔇 → 𝔇𝑅2 given by

𝑈1𝐷
∗ℎ = 𝐷∗

𝑅1
𝐷∗

2ℎ and 𝑈2𝐷
∗ℎ = 𝐷∗

𝑅2
𝐷∗

1ℎ, ℎ ∈ ℌ (5.9)
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are well defined unitary operators. ■

The next construction of a regular isometric dilation is the main result of this
section.

Theorem 5.7 Let 𝑇 = (𝑇1, 𝑇2) be a pair of commuting bounded operators on a Kreı̆n space
ℌ such that 𝑇1, 𝑇2 are both contractive and 𝑇 is a bidisc contraction or 𝑇1, 𝑇2 are both expan-
sive and 𝑇 is a bidisc expansion. The pair 𝑉 = (𝑉1, 𝑉2) ∈ B(𝔎+)2 given by the matrix
representation

𝑉1 =

©­­­«
𝑇1 0 0 0
0 𝑇𝑧1 0 [𝑈∗

1𝐷
∗
𝑅1
]2

[𝐷∗
1]0 0 𝑇𝑧 0

0 0 0 [𝑅1]

ª®®®¬ (5.10)

and

𝑉2 =

©­­­«
𝑇2 0 0 0
0 𝑇𝑧2 [𝑈∗

2𝐷
∗
𝑅2
]1 0

0 0 [𝑅2] 0
[𝐷∗

2]0 0 0 𝑇𝑧

ª®®®¬ (5.11)

is a minimal regular isometric dilation of 𝑇 on the Kreı̆n space

𝔎+ = ℌ ⊕ 𝐻2
𝔇 (T

2) ⊕ 𝐻2
𝔇1

(T) ⊕ 𝐻2
𝔇2

(T).

Proof Direct computations with matrices show that, for 𝑖 = 1, 2, 𝑉𝑖 is an isometric
operator on 𝔎+ if and only if [𝐷∗

𝑖
]∗0𝑇𝑧 = 0, [𝑈∗

𝑖
𝐷∗

𝑅𝑖
]∗3−𝑖𝑇𝑧𝑖 = 0, 𝑇∗

𝑖
𝑇𝑖 + [𝐷∗

𝑖
]∗0 [𝐷∗

𝑖
]0 =

𝐼ℌ and [𝑈∗
𝑖
𝐷∗

𝑅𝑖
]∗3−𝑖 [𝑈∗

𝑖
𝐷∗

𝑅𝑖
]3−𝑖 + [𝑅𝑖]∗ [𝑅𝑖] = 𝐼𝐻2

𝔇3−𝑖
(T) .

While the first two equalities hold true by Proposition 2.2 (iv), the last two are
consequences of the conditions (ii), respectively (iii) of the same proposition. Indeed,
[𝐷∗

𝑖
]∗0 [𝐷∗

𝑖
]0 = 𝐷𝑖𝐷

∗
𝑖

and, hence, 𝑇∗
𝑖
𝑇𝑖 + 𝐷𝑖𝐷

∗
𝑖
= 𝐼ℌ, by (3.1). Also,

[𝑈∗
𝑖 𝐷

∗
𝑅𝑖
]∗3−𝑖 [𝑈∗

𝑖 𝐷
∗
𝑅𝑖
]3−𝑖 + [𝑅𝑖]∗ [𝑅𝑖]

= [(𝑈∗
𝑖 𝐷

∗
𝑅𝑖
)∗𝑈∗

𝑖 𝐷
∗
𝑅𝑖

+ 𝑅∗
𝑖 𝑅𝑖] (by Proposition 2.2 (i), (ii))

= [𝐷𝑅𝑖
𝐷∗

𝑅𝑖
+ 𝑅∗

𝑖 𝑅𝑖] (since 𝑈𝑖 is unitary)
= [𝐼𝔇3−𝑖 ] = 𝐼𝐻2

𝔇3−𝑖
(T) . (by (3.1))

Similarly, 𝑉1𝑉2 = 𝑉2𝑉1 if and only if [𝑈∗
1𝐷

∗
𝑅1
]2 [𝐷∗

2]0 = [𝑈∗
2𝐷

∗
𝑅2
]1 [𝐷∗

1]0,
[𝑈∗

𝑖
𝐷∗

𝑅𝑖
]3−𝑖𝑇𝑧 = 𝑇𝑧3−𝑖 [𝑈∗

𝑖
𝐷∗

𝑅𝑖
]2, 𝑇𝑧 [𝑅𝑖] = [𝑅𝑖]𝑇𝑧 and [𝐷∗

𝑖
]0𝑇3−𝑖 = [𝑅3−𝑖] [𝐷∗

𝑖
]0,

𝑖 = 1, 2. The first condition follows by Proposition 2.2 (v) and (5.9):

[𝑈∗
𝑖 𝐷

∗
𝑅𝑖
]3−𝑖 [𝐷∗

3−𝑖]0ℎ = 𝑧0
1𝑧

0
2𝑈

∗
𝑖 𝐷

∗
𝑅𝑖
𝐷∗

3−𝑖ℎ = 𝑧0
1𝑧

0
2𝐷

∗ℎ, ℎ ∈ ℌ, 𝑖 = 1, 2.

The following two conditions are consequences of Proposition 2.2 (iv). The last
equality uses Proposition 2.2 (v) and formula (5.8):

[𝐷∗
𝑖 ]0𝑇3−𝑖 = [𝐷∗

𝑖𝑇3−𝑖]0 = [𝑅3−𝑖𝐷
∗
𝑖 ]0 = [𝑅3−𝑖] [𝐷∗

𝑖 ]0.
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Moreover, by an inductive method,𝑉∗𝑛
2 𝑉𝑚

1 has the form

𝑉∗𝑛
2 𝑉𝑚

1 =

©­­­«
𝑇∗𝑛

2 𝑇𝑚
1 0 0 ∗

0 (𝑇𝑧2 )∗𝑛 (𝑇𝑧1 )𝑚 0 ∗
∗ ∗ [𝑅∗𝑛

2 ] (𝑇𝑧)𝑚 ∗
0 0 0 (𝑇𝑧)∗𝑛 [𝑅𝑚

1 ]

ª®®®¬
which proves that

𝑇∗𝑛
2 𝑇𝑚

1 = 𝑃ℌ𝑉
∗𝑛
2 𝑉𝑚

1 |ℌ, 𝑚, 𝑛 ≥ 0.

We can also obtain, by a similar argument, that

𝑇𝑚
1 𝑇𝑛

2 = 𝑃ℌ𝑉
𝑚
1 𝑉𝑛

2 |ℌ, 𝑚, 𝑛 ≥ 0.

Hence𝑉 is a regular isometric dilation of 𝑇.
It remains to prove the minimality. To this end, take ℎ ∈ ℌ and observe that

(𝑉1 − 𝑇1)ℎ = (0, 0, [𝐷∗
1]0ℎ, 0).

Proceed inductively to show that

𝑉𝑚
1 (𝑉1 − 𝑇1)ℎ = (0, 0, (𝑇𝑧)𝑛 [𝐷∗

1]0ℎ, 0), 𝑚 ≥ 0,

that is

𝐻2
𝔇1

(T) =
∨
𝑚≥0

𝑉𝑚
1 (𝑉1 − 𝑇1)ℌ. (5.12)

By symmetry, it also holds

𝐻2
𝔇2

(T) =
∨
𝑛≥0

𝑉𝑛
2 (𝑉2 − 𝑇2)ℌ. (5.13)

Now, the relation

(𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℎ = (0, 𝑧0
1𝑧

0
2𝐷

∗ℎ, 0, 0)

applied successively gives

𝑉𝑚
1 𝑉𝑛

2 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℎ = (0, 𝑧𝑚1 𝑧𝑛2𝐷
∗ℎ, 0, 0), 𝑚, 𝑛 ≥ 0,

that is,

𝐻2
𝔇 (T

2) =
∨
𝑛∈Z2

+

𝑉𝑛 (𝑉1𝑉2 −𝑉1𝑇2 −𝑉2𝑇1 + 𝑇1𝑇2)ℌ. (5.14)

(5.12), (5.13) and (5.14) show that the regular isometric dilation given by (5.10) and
(5.11) is minimal. ■

Use Theorem 4.4, Remark 5.1 and Theorem 5.7 to obtain:

Corollary 5.8 Let 𝑇 ∈ B(ℌ)2 be as in Theorem 5.7 and 𝑉 ∈ B(𝔎+)2 be the minimal
regular isometric dilation of𝑇 given by (5.10) and (5.11). Then𝑇 has a minimal regular unitary
dilation 𝑈 ∈ B(𝔎)2 given by (4.2) and (4.3) on the Kreı̆n space

𝔎 = ℌ ⊕ 𝐻2
𝔇 (T

2) ⊕ 𝐻2
𝔇1

(T) ⊕ 𝐻2
𝔇2

(T) ⊕ 𝐻2
ker(𝑉1𝑉2 )∗ (T).
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Let 𝑉 = (𝑉1, 𝑉2) ∈ B(𝔎+)2 and 𝑉 ′ = (𝑉 ′
1, 𝑉

′
2) ∈ B(𝔎′

+)2 be two minimal regular
isometric dilations of 𝑇 ∈ B(ℌ)2. 𝑉 and 𝑉 ′ are said to be unitarily equivalent if there
exists a unitary operator Φ : 𝔎+ → 𝔎′

+ which intertwines 𝑉1 and 𝑉 ′
1 , respectively, 𝑉2

and𝑉 ′
2 and such that Φ|ℌ = 𝐼ℌ.

Theorem 5.9 Let𝑇 = (𝑇1, 𝑇2) be a pair of commuting bounded operators on a Kreı̆n spaceℌ
such that 𝑇1, 𝑇2 are both contractive and 𝑇 is a bidisc contraction or 𝑇1, 𝑇2 are both expansive
and 𝑇 is a bidisc expansion. Then 𝑇 has a unique minimal regular isometric dilation (up to a
unitary equivalence).

Proof Let 𝑉 ∈ B(𝔎+)2 be the minimal regular isometric dilation of 𝑇 ∈ B(ℌ)2

given by (5.10) and (5.11) on𝔎+ = ℌ⊕𝐻2
𝔇
(T2)⊕𝐻2

𝔇1
(T)⊕𝐻2

𝔇2
(T). If𝑉 ′ = (𝑉 ′

1, 𝑉
′
2) ∈

B(𝔎′
+)2 is any other minimal regular isometric dilation of 𝑇 then, according to (5.3),

𝔎′ has an orthogonal decomposition of the form

𝔎′
+ = ℌ ⊕ 𝑀+ (𝔏′) ⊕ 𝑀1

+ (𝔏′
1) ⊕ 𝑀2

+ (𝔏′
2),

with 𝔏′ = (𝑉 ′
1𝑉

′
2 −𝑉 ′

1𝑇2 −𝑉 ′
2𝑇1 + 𝑇1𝑇2)ℌ and 𝔏′

𝑖
= (𝑉 ′

𝑖
− 𝑇𝑖)ℌ, 𝑖 = 1, 2.

The maps

𝑀+ (𝔏′) ∋ 𝑉
′𝑚
1 𝑉

′𝑛
2 (𝑉 ′

1𝑉
′
2 −𝑉 ′

1𝑇2 −𝑉 ′
2𝑇1 + 𝑇1𝑇2)ℎ

Φ↦−→ 𝑧𝑚1 𝑧𝑛2𝐷
∗ℎ ∈ 𝐻2

𝔇 (T
2),

𝑀+ (𝔏′
1) ∋ 𝑉

′𝑚
1 (𝑉 ′

1 − 𝑇1)ℎ
Φ1↦−→ 𝑧𝑚𝐷∗

1ℎ ∈ 𝐻2
𝔇1

(T)
and

𝑀+ (𝔏′
2) ∋ 𝑉

′𝑛
2 (𝑉 ′

1 − 𝑇2)ℎ
Φ2↦−→ 𝑧𝑛𝐷∗

2ℎ ∈ 𝐻2
𝔇2

(T)
are well defined and can be extended by linearity to densely defined isometries with
dense ranges. Since 𝐻2

𝔇
(T2), 𝐻2

𝔇1
(T) and 𝐻2

𝔇2
(T) are either Hilbert or anti-Hilbert

spaces, the applications above can be extended to unitary operators.
A routine check shows that 𝐼ℌ⊕Φ⊕Φ1⊕Φ2 : 𝔎′

+ → 𝔎+ is unitary and intertwines
𝑉1 and𝑉 ′

1 , respectively,𝑉2 and𝑉 ′
2 . Hence𝑉 and𝑉 ′ are unitarily equivalent. ■
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