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1. Introduction

In this paper we study the existence and multiplicity of positive radial solutions for a class
of semilinear elliptic systems in bounded annular domains. In fact, given real numbers
0 < r1 < r2, we consider the system

−∆u = a2h(|x|, u, v) in r1 < |x| < r2,

−∆v = b2k(|x|, u, v) in r1 < |x| < r2,

(u, v) = (0, 0) on |x| = r1,

(u, v) = (a1, b1) on |x| = r2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(S)

where (a1, b1) ∈ [0, +∞)2 \ {(0, 0)}, (a2, b2) ∈ (0, +∞)2 and the nonlinearities h and k

satisfy the following hypotheses.

(H0) h, k : [r1, r2] × [0, +∞)2 → [0, +∞) are continuous functions such that there exist
continuous functions, which are non-decreasing in the last two variables h1 and k1,
satisfying

h1(r, u, v) � h(r, u, v) � chh1(r, u, v),

k1(r, u, v) � k(r, u, v) � ckk1(r, u, v),

}
(1.1)

365

https://doi.org/10.1017/S0013091503000944 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000944
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where ch and ck are positive constants. We recall that � is a non-decreasing function
in the last two variables if �(r, u1, v1) � �(r, u2, v2) whenever u1 � u2 and v2 � v2.

(H1) There exist σ1, σ2, ω1, ω2 ∈ (r1, r2) with σ1 < σ2 and ω1 < ω2 such that

h(r, u, v) > 0 for each (r, u, v) ∈ [σ1, σ2] × ([0, +∞)2 \ {(0, 0)}) (1.2)

or

k(r, u, v) > 0 for each (r, u, v) ∈ [ω1, ω2] × ([0, +∞)2 \ {(0, 0)}). (1.3)

Let us introduce the following notation:

�0 := lim
|(u,v)|→0

�(r, u, v)
|(u, v)| and �∞ := lim

|(u,v)|→+∞

�(r, u, v)
|(u, v)| .

(H2) h0 = k0 = 0, uniformly in [r1, r2] (superlinear at origin).

(H3) h∞ = k∞ = 0, uniformly in [r1, r2] (sublinear at infinity).

We now state our main result.

Theorem 1.1. Assume that h(r, u, v) and k(r, u, v) satisfy (H0)–(H3). Then the fol-
lowing hold.

(i) System (S) has at least one positive solution for all (a1, b1) ∈ [0, +∞)2 \ {(0, 0)}
and (a2, b2) ∈ (0, +∞)2.

(ii) There exists a positive constant Λ > 0 such that, for all (a2, b2) ∈ (0, +∞)2 with
min{a2, b2} > Λ, there exists δ > 0 such that (S) has at least three positive solutions
for all (a1, b1) ∈ [0, +∞)2 \ {(0, 0)} with 0 < |(a1, b1)| < δ.

Our approach to prove Theorem 1.1 relies on fixed-point index theory. The following
is a typical example of where our result may be applied:

−∆u = a2c1(|x|)ĥ(u, v) in r1 < |x| < r2,

−∆v = b2c2(|x|)k̂(u, v) in r1 < |x| < r2,

(u, v) = (0, 0) on |x| = r1,

(u, v) = (a1, b1) on |x| = r2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.4)

where ĥ and k̂ are continuous functions verifying ĥ0 = k̂0 = ĥ∞ = k̂∞ = 0 and c1, c2 are
non-negative and non-trivial functions. Moreover, we suppose the following two assump-
tions.

(i) ĥ, k̂ : [0, +∞)2 → [0, +∞) are continuous functions such that there exist non-
decreasing continuous functions h1 and k1 such that

h1(u, v) � ĥ(u, v) � ĉhh1(u, v),

k1(u, v) � k̂(u, v) � ĉkk1(u, v),

}
(1.5)

where ĉh and ĉk are positive constants.

(ii) ĥ(u, v) > 0 and k̂(u, v) > 0 for each (u, v) ∈ ([0, +∞)2 \ {(0, 0)}).
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Thus, according to the assumptions above on functions ĥ and k̂, it is not difficult to
verify hypotheses (H0)–(H3). Therefore, the conclusions of Theorem 1.1 are true.

The study of (1.4) is, in part, motivated by several recent results for elliptic boundary-
value problems on annular domains. Among others, we mention [1,4–6,8–10] and the
references therein. We refer to [5, 6] for homogeneous Dirichlet boundary conditions
and [4], as well as [10], for non-homogeneous Dirichlet boundary conditions. In those
articles is proved the existence of at least one or two positive solutions, while in the
present paper we obtain multiplicity results that include the existence of at least three
positive solutions. We would like to mention that we may apply Theorem 1.1 to more
general classes of nonlinearities than those considered in (1.4). For example, we may
consider in (S) nonlinearities like

h(r, u, v) = (a(r)(up1 + vq1) + 1)Φ(b(r)(up2 + vq2)) and k(r, u, v) =
(u + v)p3

1 + (u + v)q3
,

where p1, q1 ∈ (0, 1), q2, p2 ∈ (1, +∞), q3 > p3 − 1 > 0, a, b : [r1, r2] → [0, +∞) are
continuous functions and Φ : [0, +∞) → [0, +∞) is a non-decreasing continuous function
satisfying

lim
u→0

Φ(u)
u

= 0 and lim
u→+∞

Φ(u)
u

= ĉ > 0.

We notice that the functions a, b may vanish in parts of the interval [r1, r2]. Finally,
we observe that hypothesis (H1) allows us to take nonlinearities h and k without the
monotonicity property.

The rest of this paper is organized as follows. Section 2 contains preliminary results
and § 3 is devoted to proving our main result, Theorem 1.1.

2. Preliminary results

We give some results which will be necessary to prove Theorem 1.1 in the next section.
The proof of Theorem 1.1 relies on fixed-point index theory in the frame of the ordinary-

differential-equation (ODE) technique. Since we are interested in the existence of radial
solutions, by applying consecutive changes of variables with r = |x| and

t = −η1r
2−N + η2, where η1 =

(r1r2)N−2

rN−2
2 − rN−2

1
and η2 =

rN−2
2

rN−2
2 − rN−2

1
,

we can transform (S) into the following system of second-order ODEs,

−u′′ = a2f(t, u, v, a1, b1) in (0, 1),

−v′′ = b2g(t, u, v, a1, b1) in (0, 1),

u(0) = u(1) = 0,

v(0) = v(1) = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(R)
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where here the nonlinearities f and g are given by

f(t, u, v, a1, b1) = d(t)h
((

η1

η2 − t

)1/(N−2)

, u + ta1, v + tb1

)
,

g(t, u, v, a1, b1) = d(t)k
((

η1

η2 − t

)1/(N−2)

, u + ta1, v + tb1

)
,

d(t) = (1 − N)2
η
2/(N−2)
1

(η2 − t)2(N−1)/(N−2) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Setting

f1(t, u, v, a1, b1) = d(t)h1

((
η1

η2 − t

)1/(N−2)

, u + ta1, v + tb1

)
,

g1(t, u, v, a1, b1) = d(t)k1

((
η1

η2 − t

)1/(N−2)

, u + ta1, v + tb1

)
,

we observe that, from (1.1) and (2.1),

f1(t, u, v, a1, b1) � f(t, u, v, a1, b1) � chf1(t, u, v, a1, b1),

g1(t, u, v, a1, b1) � k(t, u, v, a1, b1) � ckg1(t, u, v, a1, b1).

}
(2.2)

It is not difficult to show that if the pair (u, v) is a solution of (R), then, for all t ∈ [0, 1],

u(t) = a2

∫ 1

0
K(t, τ)f(τ, u(τ), v(τ), a1, b1) dτ,

v(t) = b2

∫ 1

0
K(t, τ)g(τ, u(τ), v(τ), a1, b1) dτ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

where K(t, τ) is Green’s function

K(t, s) :=

{
t(1 − s) if t � s,

s(1 − t) if t > s.
(2.4)

Let

A(u, v)(t) := a2

∫ 1

0
K(t, τ)f(τ, u(τ), v(τ), a1, b1) dτ,

B(u, v)(t) := b2

∫ 1

0
K(t, τ)g(τ, u(τ), v(τ), a1, b1) dτ,

F (u, v) := (A(u, v), B(u, v)).

Therefore, system (2.3) is equivalent to the fixed-point equation

F (u, v) = (u, v)
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in the usual Banach space

X = C([0, 1], R) × C([0, 1], R)

endowed with the norm ‖(u, v)‖ := ‖u‖∞ + ‖v‖∞, where ‖w‖∞ := supt∈[0,1]|w(t)|.
In order to verify the existence of positive solutions for (S), we introduce now the

following fixed-point theorem of cone expansion/compression type. We refer to [2,3,7]
for proofs and further discussion of the fixed-point theory.

Lemma 2.1. Let X be a Banach space with norm | · | and let C ⊂ X be a cone in X.
For R > 0, define CR = C ∩ B[0, R], where B[0, R] = {x ∈ X : |x| � R} denotes the
closed ball of radius R centred at origin X. Assume that F : CR → C is a compact map
and that there exists 0 < r < R such that

|Fx| � |x|, x ∈ ∂Cr and |Fx| � |x|, x ∈ ∂CR,

or

|Fx| � |x|, x ∈ ∂Cr and |Fx| � |x|, x ∈ ∂CR,

where ∂CR = {x ∈ C : |x| = R}. Then F has a fixed point u ∈ C with r < |u| < R.

Let us consider the cone C in X defined by

C = {(u, v) ∈ X : (u, v)(0) = (u, v)(1) = 0 and u, v are concave functions}.

Using the concavity of the functions u(t) and v(t), we may easily prove the following
elementary result.

Lemma 2.2. For each (u, v) ∈ C and (α, β) ⊂ (0, 1), we have

inf
t∈[α,β]

(u(t) + v(t)) � α(1 − β)‖(u, v)‖.

Lemma 2.3. F : X → X is completely continuous and F (C) ⊂ C.

Proof. We only give the main ideas of the proof. The Arzela–Ascoli theorem implies
that A and B are concave functions and therefore F : X → X is completely continuous. It
is easy to see that A and B (the coordinates functions of F (u, v)) are twice differentiable
on (0, 1) with A′′ � 0 and B′′ � 0. This implies that A and B are concave functions and
therefore F (C) ⊂ C. �

3. Proof of Theorem 1.1

3.1. The existence of the first positive solution

Using the fact that f , g satisfy assumptions (H0), (H1) and (H3), we apply Lemma 2.1
to prove the existence of a first positive solution for (S). Let (a1, b1) ∈ [0, +∞)2 \{(0, 0)}
and (a2, b2) ∈ (0, +∞)2 be fixed.
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Lemma 3.1. Assume that conditions (H0) and (H1) hold. Then there exists R1 > 0
such that, for all R ∈ (0, R1], we have

‖F (u, v)‖ � ‖(u, v)‖ for each (u, v) ∈ ∂CR.

Proof. From (H0), we have

f(t, u, v, a1, b1) = d(t)h
((

η1

η2 − t

)1/(N−2)

, u + ta1, v + tb1

)

� d(t)h1

((
η1

η2 − t

)1/(N−2)

, ta1, tb1

)
.

Thus, assuming (1.2), we obtain that there exist constants 0 < α1 < β1 < 1 such that

f0 = lim
|(u,v)|→0

f(t, u, v, a1, b1)
|(u, v)| = +∞ uniformly for t ∈ [α1, β1]. (3.1)

Now, using (3.1), for each M > 0, there exists R1 > 0 such that

f(t, u, v, a1, b1) � M |(u, v)| for all (u, v) ∈ [0, R1]2.

Therefore, for all (u, v) ∈ CR1 ,

‖F (u, v)‖ � ‖A(u, v)‖∞

� a2

∫ 1

0
K( 1

2 , τ)f(τ, u(τ), v(τ), a1, b1) dτ

� a2M

∫ β1

α1

K( 1
2 , τ)[u(τ) + v(τ)] dτ

� a2α1(1 − β1)M‖(u, v)‖
∫ β1

α1

K( 1
2 , τ) dτ.

Finally, taking M > 0 sufficiently large, we conclude the proof of Lemma 3.1. �

Lemma 3.2. Assume hypotheses (H0) and (H3). Then there exists R2 > R1 such
that, for all R � R2, we have

‖F (u, v)‖ � ‖(u, v)‖ for each (u, v) ∈ ∂CR.

Proof. From assumptions (H0) and (H3), it is not difficult to see that

lim
|(u,v)|→+∞

f1(r, u, v, a1, b1)
|(u, v)| = lim

|(u,v)|→+∞

g1(r, u, v, a1, b1)
|(u, v)| = 0.

Thus, given δ > 0, there exists R2 > R1 such that, for all τ ∈ [0, 1] and |(u, v)| � R2,

f1(τ, u, v, a1, b1) � δ|(u, v)| and g1(τ, u, v, a1, b1) � δ|(u, v)|.
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Thus, using (2.2), for all (u, v) ∈ CR2 ,

‖A(u, v)‖∞ = a2

∫ 1

0
K(t, τ)f(τ, u(τ), v(τ), a1, b1) dτ

� a2ch

∫ 1

0
K(t, τ)f1(τ, u(τ), v(τ), a1, b1) dτ

� a2ch

∫ 1

0
K(t, τ)f1(τ, ‖u‖∞, ‖v‖∞, a1, b1) dτ

� a2chδ‖(u, v)‖
∫ 1

0
K(t, τ) dτ.

Similarly, we may prove that

‖B(u, v)‖∞ � a2chδ‖(u, v)‖
∫ 1

0
K(t, τ) dτ.

Hence, taking δ > 0 small enough, we have

‖F (u, v)‖ = ‖A(u, v)‖∞ + ‖B(u, v)‖∞ � R2 = ‖(u, v)‖.

�

In view of Lemmas 3.1 and 3.2, as a direct consequence of Lemma 2.1, since R1 < R2,
the proof of the first part of Theorem 1.1 is now complete.

3.2. The proof of the second part of Theorem 1.1

Lemma 3.3. Assume that conditions (H0) and (H1) hold. Given R̄ > 0, there exists
Λ > 0 such that, for all (a1, b1) ∈ [0, +∞)2 and (a2, b2) ∈ (0, +∞)2 with min{a2, b2} � Λ,
we have

‖F (u, v)‖ � ‖(u, v)‖ for each (u, v) ∈ ∂CR̄, (3.2)

where the constant Λ is independent of the parameters a1 and b1.

Proof. We assume that (1.2) holds. Let α1, β1 ∈ (0, 1), as in the proof of Lemma 3.1,
R̄ > 0 and (u, v) ∈ CR̄. According to assumption (H0) and Lemma 2.2, we have

‖A(u, v)‖∞ � a2

∫ β1

α1

K( 1
2 , τ)f(τ, u(τ), v(τ), a1, b1) dτ

� a2

∫ β1

α1

K( 1
2 , τ)f1(τ, u(τ), v(τ), a1, b1) dτ

� a2

∫ β1

α1

K( 1
2 , τ)f1(τ, α1(1 − β1)‖u‖∞, α1(1 − β1)‖v‖∞, 0, 0) dτ.

According to assumption (1.2), we see that

C̄ := min{f1(τ, α1(1 − β1)u, α1(1 − β1)v, 0, 0) : τ ∈ [α1, β1], u + v = R̄} > 0.
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Thus we obtain that there exists a constant ã > 0 such that

‖A(u, v)‖∞ � a2ã. (3.3)

From (3.3), we get

‖F (u, v)‖ � a2ã � a2
ã

R̄
R̄.

Hence there exists a positive constant Λ such that, for all (a1, b1) ∈ [0, +∞)2 and
(a2, b2) ∈ (0, +∞)2 with min{a2, b2} � Λ, we have

‖F (u, v)‖ � ‖(u, v)‖ for each (u, v) ∈ ∂CR̄. (3.4)

We notice that Λ does not depend on the parameters a1, b1. �

Lemma 3.4. Assume that (H0) and (H2) hold. Given (a2, b2) ∈ (0, +∞)2 with
min{a2, b2} � Λ, there exists R2 ∈ (0, R̄) and δ1 > 0 such that, for all (a1, b1) ∈ [0, +∞)2,
with a1 + b1 < δ1, we have

‖F (u, v)‖ � ‖(u, v)‖ for each (u, v) ∈ ∂CR2 . (3.5)

Proof. Using assumptions (H0)–(H2), we have

lim
|(u,v,a1,b1)|→0

f(t, u, v, a1, b1)
|(u, v, a1, b1)|

= 0.

Thus, given ε > 0, there exists R2 ∈ (0, R̄) such that, for all (u, v, a1, b1) with u+v � R2

and a1 + b1 � R2, we get

f(t, u, v, a1, b1) � ε|(u, v, a1, b1)|.

Let (u, v) ∈ CR2 and a1 + b1 � R2. From the above estimate, we have

A(u, v)(t) = a2

∫ 1

0
K(t, τ)f(τ, u(τ), v(τ)) dτ

� cha2

∫ 1

0
K(t, τ)f1(τ, u(τ), v(τ)) dτ

� εcha2(‖(u, v)‖ + a1 + b1)
∫ 1

0
K(t, τ) dτ

� εcha22R2

∫ 1

0
K(t, τ) dτ.

Taking ε > 0 sufficiently small, we have

‖A(u, v)‖∞ � 1
2‖(u, v)‖ for each (u, v) ∈ ∂CR2 .

We can now proceed analogously to prove that

‖B(u, v)‖∞ � 1
2‖(u, v)‖ for each (u, v) ∈ ∂CR2 .

These two estimates together prove (3.5). �
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Finally, by considering R̄ > R2 given in Lemmas 3.3 and 3.4, respectively, we apply
once again Lemmas 3.1 and 3.2 to obtain R3 and R4, with 0 < R3 < R2 < R̄ < R4, such
that

‖F (u, v)‖ � ‖(u, v)‖, (u, v) ∈ ∂CR3 ,

‖F (u, v)‖ � ‖(u, v)‖, (u, v) ∈ ∂CR2 ,

‖F (u, v)‖ � ‖(u, v)‖, (u, v) ∈ ∂CR̄,

‖F (u, v)‖ � ‖(u, v)‖, (u, v) ∈ ∂CR4 .

Therefore, we can apply Lemma 2.1 to get three fixed points of F in C satisfying

R3 < ‖(u1, v1)‖ < R2 < ‖(u2, v2)‖ < R̄ < ‖(u3, v3)‖ < R4,

and the proof is complete.
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