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We define the chain Sobolev space on a possibly non-complete metric measure space
in terms of chain upper gradients. In this context, ɛ-chains are finite collections of
points with distance at most ɛ between consecutive points. They play the role of
discrete curves. Chain upper gradients are defined accordingly and the chain Sobolev
space is defined by letting the size parameter ɛ going to zero. In the complete setting,
we prove that the chain Sobolev space is equal to the classical notions of Sobolev
spaces in terms of relaxation of upper gradients or of the local Lipschitz constant of
Lipschitz functions. The proof of this fact is inspired by a recent technique developed
by Eriksson-Bique in Eriksson-Bique (2023 Calc. Var. Partial Differential Equations
62 23). In the possible non-complete setting, we prove that the chain Sobolev space
is equal to the one defined via relaxation of the local Lipschitz constant of Lipschitz
functions, while in general they are different from the one defined via upper gradients
along curves. We apply the theory developed in the paper to prove equivalent
formulations of the Poincaré inequality in terms of pointwise estimates involving
ɛ-upper gradients, lower bounds on modulus of chains connecting points and size of
separating sets measured with the Minkowski content in the non-complete setting.
Along the way, we discuss the notion of weak ɛ-upper gradients and asymmetric
notions of integral along chains.

Keywords: chain upper gradients; metric measure spaces; Poincaré inequality;
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1. Introduction

A fundamental research direction in analysis on metric spaces is the development of
calculus with Sobolev functions and Lipschitz functions defined on metric measure
spaces (X, d,m). After a first approach due to Cheeger [14], Shanmuganlingam [31]
defined the Sobolev seminorm of a Borel function u : X → R as the infimum of
the Lp(X)-norms of all upper gradients of u, where a function g : X → [0,+∞] is
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2 E. Caputo and N. Cavallucci

an upper gradient of u if the following weak version of fundamental theorem of
calculus holds for every rectifiable curve γ : [0, 1] → X:

|u(γ1)− u(γ0)| ≤
∫ 1

0

g(γt)|γ̇t| dt.

We refer the reader to the classical textbook [22].
Another classical approach in the subject concerning the case p> 1 is based on a

relaxation procedure of appropriate functionals with respect to the Lp(X)-topology,
playing the role of the Dirichlet energy. In § 2.1, we will recall these relaxation
procedures in detail. On one side, Cheeger in [14] considered the relaxation of the
Lp(X)-norm of upper gradients. Here we denote the corresponding Banach space
by H1,p

curve(X). On the other hand, Ambrosio, Gigli and Savaré in [4, 5] studied
the relaxation of the Lp(X)-norm of the local Lipschitz constant lipu of Lipschitz
functions u. The corresponding Banach space is denoted by H1,p

AGS(X). For details
on these spaces we refer to § 3.

Other approaches are available, like the ones defined via integrations along test
plans [4, 5], but this approach will not be used in this work. We refer the reader to
the recent survey [6].

The main results of [4, 2, 18, 30] show that the spaces H1,p
curve(X) and H

1,p
AGS(X)

coincide for p ≥ 1, if the metric space (X, d) is complete. However, for non-complete
metric spaces they can be different, see example 3.4.

This work derives from the following question: is it possible to show thatH1,p
AGS(X)

is equal to a space obtained via relaxation in terms of a suitable notion of upper
gradients when the metric space (X, d) is not assumed to be complete?

The answer is affirmative and leads to an alternative definition of Sobolev or BV
spaces, expressed in terms of chains instead of curves. We recall that a ɛ-chain, for
ɛ> 0, is a finite collection of points c = {qi}Ni=0 such that d(qi, qi+1) ≤ ε for every
i = 0, . . . , N − 1.

The integration along rectifiable paths into Shanmugalingam’s definition is
replaced by integration along ɛ-chains. With this analogy in mind, a function g
is a ɛ-upper gradient of u provided that

|u(qN )− u(q0)| ≤
N−1∑
i=0

g(qi) + g(qi+1)

2
d(qi, qi+1) =:

∫
c

g,

for every ɛ-chain c = {qi}Ni=0. This can be seen as a discrete analogue of the integral
along a rectifiable path, see proposition 4.4 for a precise statement. The set of all
ɛ-upper gradients of u is denoted by UGε(u). The corresponding functional is

FC : Lp(X) → [0,+∞], u 7→ lim
ε→0

inf
{
‖g‖Lp(X) : g ∈ UGε(u)

}
.

The Banach space obtained by relaxation of FC is denoted by H1,p
C (X).

The first result shows the equivalence of the spaces introduced so far, if the metric
space is complete.
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Sobolev spaces via chains in metric measure spaces 3

Theorem 1.1. Let (X, d,m) be a metric measure space such that (X, d) is complete.
Then

H1,p
C (X) = H1,p

AGS(X) = H1,p
curve(X),

and

‖u‖H1,p
C (X) = ‖u‖H1,p

AGS(X) = ‖u‖H1,p
curve(X),

for every u ∈ Lp(X).

The second result, which answers the aforementioned question, establishes the
equality between H1,p

AGS(X) and H
1,p
C (X) also for non complete metric spaces. It is

obtained from theorem 1.1 and the fact that H1,p
AGS(X) = H1,p

AGS(X̄) and H
1,p
C (X) =

H1,p
C (X̄), where X̄ is the metric completion of X, see proposition 3.3 and theorem 6.9.

Theorem 1.2. Let (X, d,m) be a metric measure space, not necessarily complete.
Then

H1,p
C (X) = H1,p

AGS(X),

and

‖u‖H1,p
C (X) = ‖u‖H1,p

AGS(X),

for every u ∈ Lp(X).

Other possible notions of integral along chains are considered in the paper,
leading to the definition of the same space.

1.1. The proof of the main results

The proof of theorem 1.1 is inspired by the approximation method developed by
Eriksson-Bique in [18]. The relation between H1,p

C (X) and H1,p
curve(X) is not a priori

clear. Therefore we introduce an auxiliary space, that we denote as H1,p
C ,Lip(X) and

it is defined as the domain of finiteness of the lower semicontinuous envelop of the
following energy

FC ,Lip : L
p(X) → [0,+∞], u 7→


lim
ε→0

inf
{
‖g‖Lp(X) : if u ∈ Lip(X),

g ∈ UGε(u) ∩ Lip(X)}
+∞ otherwise.

The space is normed with the sum of the Lp-norm and the relaxation of the
energy functional above. The functions for which FC ,Lip is finite play the role of
regular functions, being Lipschitz and with Lipschitz upper gradients. They form
a regular class of functions for which one could hope to get density in energy in
H1,p

curve(X), in full generality.
On one side, one easily gets

H1,p
C ,Lip(X) ⊆ H1,p

curve(X) and H1,p
C ,Lip(X) ⊆ H1,p

C (X), (1)

and that the inclusions are 1-Lipschitz.
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4 E. Caputo and N. Cavallucci

The proof of theorem 1.1 is achieved into two steps, respectively proving that
the reverse inclusions in (1) hold and are 1-Lipschitz.

To do both, we follow the mentioned approximation scheme in [18], that we
briefly recall, in a simplified form, for reader’s convenience in the case of the proof
of the inclusion H1,p

curve(X) ⊆ H1,p
C ,Lip(X). For every given u ∈ Lp(X), proceed using

the following steps.

(Step 1) Reduce the proof to the case where u is bounded, with bounded support
and nonnegative.

(Step 2) For every upper gradient along curves g, define Lipschitz functions gj
that converge to g pointwise and in Lp(X).

(Step 3) Define the functions

uj(x) := inf

{
u(q0) +

∫
c

gj : c = {qi}Ni=0 is a
1

j
-chain such that

qN = x

}
.

Prove that uj is Lipschitz, has bounded support and it has gj as
1
j -upper

gradient.
(Step 4) Conclude the proof showing that uj converges to u in Lp(X) via a

contradiction argument. The contradiction is obtained by violating the
fact that g is an upper gradient of u.

So, in order to prove that H1,p
curve(X) ⊆ H1,p

C ,Lip(X) one could follow this scheme
with minor modifications. However, there are technical issues in adapting the proof
to show that H1,p

C (X) ⊆ H1,p
C ,Lip(X), that we present in a moment. That is why we

will give a different proof of H1,p
curve(X) ⊆ H1,p

C ,Lip(X) too, that can be easily adapted

to show H1,p
C (X) ⊆ H1,p

C ,Lip(X).
The main problem is related to the reduction in Step 1. As stated, this is a con-

sequence of the well-known locality property of the minimal p-weak upper gradient
along curves, which can be derived from a Leibniz rule. The same locality property
for p-weak ɛ-upper gradients does not hold, and it is also not clear if it is true in
a limit sense for ɛ going to zero (see remark 6.5). However, a weak Leibniz rule for
ɛ-chain upper gradients holds (see proposition 6.8). Using it we are able to reduce
the proof, also for H1,p

C (X), to bounded functions with bounded support, but not
necessarily nonnegative.

This difference creates two additional difficulties in the scheme sketched above.
The first one is that the approximating functions uj do not necessarily have bounded
support. This requires an additional cutoff argument. The second difference involves
the core of the proof, namely the contradiction argument in Step 4. We need to
analyse separately three different cases, one of which is the only one that needed
to be considered in [18]. For more details we refer to Step 8 of the proof of
theorem 6.4.

Moreover, the adaptation of the proof to the inclusion H1,p
C (X) ⊆ H1,p

C ,Lip(X)
requires additional care in the contradiction argument in Step 4. This is due to
the fact that every ɛ-upper gradient, that takes extended values, satisfies the upper
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gradient inequality along many curves but not necessarily along all of them, see
proposition 4.4.

1.2. Application to characterizations of Poincaré inequality

A standard consequence of theorems like theorem 1.2 is the equivalence between a
priori different formulations of the Poincaré inequality. Tailoring such a discussion
in our case, we have the equivalence between the Poincaré inequality formulated
for couples (u, lipu) with u ∈ Lip(X) and (u, g) where u is Borel and g ∈ UGε(u)
for some ɛ> 0, see corollary 7.1. This result holds also in non-complete metric
spaces. While in the complete setting the conditions above are also equivalent to
the Poincaré inequality formulated for couples (u, g) where u is Borel and g is an
upper gradient of u, this is no more true if the metric measure space is not complete,
see remark 7.2.

The Poincaré inequality on complete and doubling metric measure spaces can
be characterized in at least three ways: Heinonen’s pointwise estimates in [21],
Keith’s modulus estimates in [24] and via energy of separating sets for p=1 in
[12]. We reinterpret these characterizations also for non-complete spaces in terms
of chains respectively in § 7.1–7.3. To treat the analogue of Keith’s estimate we
need to introduce the notion of modulus of a family of chains and to study its basic
properties. This is done in § 5.

Interestingly, the approach via chains allows to improve a result concerning upper
gradients along curves by relaxing the assumptions on the metric measure space.
Indeed in proposition 7.6 and remark 7.7 we prove the equivalence of the validity
of the following Heinonen’s pointwise estimates at a fixed couple of points x, y ∈ X:

|u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
(lipu)p dmL

x,y for all u ∈ Lip(X),

and

|u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
gp dmL

x,y for all u Borel and g

upper gradient of u.

Here mL
x,y is the measure that is absolutely continuous with respect to the reference

measure with density being the truncated Riesz potential with poles x and y (see
§ 7.1). This result was proved by the authors in [11, theorem A.3], under the addi-
tional assumption of local quasiconvexity of the metric space. The use of chains
allows to remove this additional assumption. Similar improvements can be found,
for example, in [20]. One motivation for this is explained in detail in remark 7.7. It
is likely that similar improvements can be performed in other situations.

1.3. Relations to previous literature

Although not extensively studied, the idea of using ɛ-upper gradients was present
in [25], building upon previous ideas in [27]. There, the authors prove in the com-
plete and doubling setting that the space satisfies the Poincaré inequality for the
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6 E. Caputo and N. Cavallucci

couple (u, lipu) with u Lipschitz if and only if it satisfies a one-parameter fam-
ily of Poincaré inequalities for the couple (u,Dεu) with locally integrable u, with
constants independent of ɛ. The function Dεu : X → [0,∞], defined as

Dεu(x) := sup
y∈Bε(x)\{x}

|u(y)− u(x)|
ε

,

is a variant of the slope of u at size ɛ, denoted as slεu (see § 2 for its definition). The
only if implication is proved by constructing, as in [27, lemma 4.6], an (ε, 1)-upper
gradient (in the sense of remark 4.1) of a suitable locally Lipschitz function and
proving it is an upper gradient. We refer the reader to lemma 4.3 and proposition
4.4 for statements in a similar spirit.

Williams in [32] characterized the Sobolev space for p> 1 in terms of a sequence
of energies defined via moduli of families of paths. More precisely, u : X → R belongs
to H1,p

curve(X) if and only if

lim
ε→0

Eε(u) <∞, where

Eε(u) := εp Modp({γ ∈ C([0, 1],X) : |u(γ(1))− u(γ(0))| > ε}),

and in this case the limit inferior is a limit and equals ‖gu‖pLp . For a fixed ɛ> 0, the
energy Eε(u) is not related to the infimum of the Lp-norms of ɛ-upper gradients
of u. For instance, an oscillating function u : [0, 1] → [0, ε2 ] has Eε(u) = 0, while
the infimum of the Lp-norms of its ɛ-upper gradients can be non-zero. Williams’
characterization uses properties of the image of u, while ours uses a discretization
in the base space. Moreover, we cover also the case p=1.

The authors in [23] introduced the notion of local Hajłasz gradient. Namely, a
function g : X → [0,+∞] is a local Hajłasz gradient of u : X → R if for every x ∈ X
there exists a neighbourhood Ux such that for every y, z ∈ Ux it holds that

|u(z)− u(y)| ≤ d(y, z)(g(y) + g(z)).

This is a non-quantified version of ɛ-upper gradients. Indeed, if g is a ɛ-upper
gradient then g/2 is a local Hajłasz gradient, by remark 4.2. They prove that for
every local Hajłasz gradient g, 4g is an upper gradient along curves with endpoints
in {g < +∞}. Our proposition 4.4 proves a similar, sharp statement for ɛ-upper
gradients. We notice that their proof can be modified in order to get that for every
Hajłasz upper gradient g, 2g is an upper gradient. This is the sharp constant.

Our proof of proposition 4.4 is substantially different from theirs. They apply
McShane extension theorem to the sublevel sets of local Hajłasz gradients, while
we use the fact that, in a suitable sense, the Lebesgue integral in dimension one
can be seen as limits of Riemann sums.

They also relate Lp-integrable functions with Lp-integrable local Hajłasz gradi-
ents to the p-Newtonian Sobolev space. Under the additional assumption that the
space satisfies a p-Poincaré inequality, they prove that the two normed spaces
are equivalent. The p-Poincaré inequality in their proof is crucial, since they
use the pointwise estimates for the maximal function in order to define a local
Hajłasz gradient starting from an upper gradient. Instead, we work without the
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assumption that the space satisfies a p-Poincaré inequality. In order to do that,
we use and modify the techniques in [18]. Theorem 1.1 shows that, for complete
metric measure spaces, the Newtonian Sobolev space is isometric, and not only
equivalent, to H1,p

C (X). As a by-product we also get the density of Lipschitz func-
tions with Lipschitz upper gradients in the Sobolev space, a result of independent
interest.

The main idea of [18] of exploiting chains in the approximation scheme, as we
recalled in § 1.1, has found applications in other problems in analysis on metric
spaces. Similar tools have been used, because of the lack of standing connectivity
assumptions on the space, by Eriksson-Bique and Poggi-Corradini in [19, 20]. The
motivations are always the same: either approximating Sobolev functions with more
regular functions (Lipschitz or continuous) or extending functions from a subset to
the whole space.

This idea is used in [19] to prove the sharp modulus duality lower bound in
metric spaces (this problem has a long history starting from classical works of
Ahlfors and Beurling in the Euclidean plane [1]). In [20], the approximation scheme
is used to prove that continuous functions are dense in norm in the Sobolev space
for locally complete and separable metric measure spaces. They also show that
the condenser capacity can be equivalently defined with classes of functions with
different regularity. For a more general account of the theory and the relations of
Eriksson-Bique’s result in [18] to the metric theory of Sobolev spaces, we refer the
reader to [6, section 6].

We conclude the history of the subject around chains, by mentioning that the
idea of using objects that are more flexible than curves in metric measure geome-
try dates back to the concept of curve fragments. They are biLipschitz images of
compact subsets of the real line into the metric space. The concept was introduced
by Bate to define Alberti representations of measures [7] and study Lipschitz dif-
ferentiability spaces (see also [9] and [17]). A chain may be thought as a degenerate
curve fragment, where the compact set is a finite union of points in the real line.
Bate and Li defined the concept of ∗-upper gradient in [9] (extensively studied in
[8]) to study differentiability spaces. The ∗-upper gradient condition asks a suitable
upper gradient inequality along curve fragments. In particular, when restricted to
the case of chains, as special cases of fragments, this is a different condition with
respect to our notion of ɛ-upper gradient.

1.4. Structure of the paper

Section 2 contains general facts about measure theory, curves and chains on
metric spaces. In § 3 we recall the definition of Sobolev spaces via a relaxation
approach. In § 4 we define chain upper gradients and we derive basic properties
and relations with the classical upper gradients along curves. Section 5 introduces
the notions of modulus of a family of chains and of weak chain upper gradient.
Similarities and differences with the theory of weak upper gradients along curves
are shown. In § 6 we define the Sobolev spaces via chain upper gradients. In § 6.1
we prove the main results, theorems 1.1 and 1.2. Section 7 contains equivalent for-
mulations of Poincaré inequality in the possibly non-complete setting in terms of
chains.
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2. Preliminaries

Let (X, d,m) be a metric measure space. With this term, we mean that (X, d) is
a separable metric space which is not necessarily complete and m is a non-trivial
outer measure which is Radon and finite on bounded sets. If (X, d,m) is a metric
measure space in the sense of [22, p.62], i.e it is a triple such that (X, d) is complete
and separable and m is a non-trivial outer measure which is Borel regular and finite
on bounded sets, then m is Radon by [22, proposition 3.3.44], and so (X, d,m) is
a metric measure space in the sense above. This is false if (X, d) is not complete.
If a triple (X, d,m) is such (X, d) is separable and m is a non-trivial outer measure
which is finite on bounded sets, then m is Radon if and only if the space (X̄, d̄, m̄)
is again a metric measure space as defined above (cp. [22, proposition 3.3.46]: the
proof still works with our assumption of finiteness on bounded set in place of local
finiteness), where (X̄, d̄) denotes the completion of (X, d) and m̄ is the outer measure
m̄(E) := m(E ∩ X) for every E ⊆ X̄. As a consequence of [22, proposition 3.3.46],
under our assumptions

X = B ∪N where B is Borel in X̄ and m(N) = 0. (2)

A metric measure space (X, d,m) is said to be doubling if there exists CD ≥ 1
such that

m(B2r(x)) ≤ CDm(Br(x)) for all x ∈ X, r > 0.

If (X, d,m) is doubling and (X, d) is complete, then (X, d) is a proper metric
space, i.e. every closed bounded set is compact.

We denote by Lp(X) the space of functions u : X → R such that
∫
|u|p dm <

∞, and by Lp(X) its quotient by the equivalence relation that identifies
two functions if they agree m-almost everywhere. The Lp(X) norm will be
denoted by ‖ · ‖Lp(X). The class of Lipschitz functions on X is denoted by
Lip(X).

A function u : X → R is bounded if there exists M ≥ 0 such that |u| ≤ M . It
has bounded support if there exists a bounded subset B ⊆ X such that u ≡ 0 on
X \B. The slope of u : X → R at size ɛ> 0 is defined as

slεu(x) := sup
y∈Bε(x)\{x}

|u(y)− u(x)|
d(y, x)

.

If ε′ < ε then slε′u ≤ slεu. The local Lipschitz constant of u is defined as

lipu(x) := lim
ε→0

slεu(x) = inf
ε>0

slεu(x).

The local Lipschitz constant is sometimes denoted by Lip (as for instance in
[14]). However, we prefer the notation lipu, more consistent to modern works.

2.1. Relaxation of functionals

Let 1 ≤ p <∞ and let F: Lp(X) → [0,+∞] be a functional such that
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(a) F(0) = 0,
(b) F(u+ v) ≤ F(u) + F(v),
(c) F(λu) = |λ|F(u)

for every u, v ∈ Lp(X) and λ ∈ R. By definition, the relaxation of F is the biggest
functional F̃ : Lp(X) → [0,+∞] which is lower semicontinuous with respect to the
Lp(X)-norm and such that F̃ ≤ F. A concrete description of F̃ is given by

F̃(u) = inf

{
lim

j→+∞
F(uj) : uj −→

Lp(X)
u

}
.

By the definition above, F̃ induces a functional on Lp(X) which is lower semicon-
tinuous and satisfies properties (a), (b) and (c) above. Therefore one can define the
space

H1,p
F (X) :=

{
u ∈ Lp(X) : F̃(u) < +∞

}
, (3)

endowed with the norm

‖u‖p
H1,p

F (X)
:= ‖u‖pLp(X) + F̃(u)p.

The normed space (H1,p
F (X), ‖ · ‖H1,p

F (X)) is a Banach space since F̃ is Lp(X)-lower

semicontinuous. Indeed, given a H1,p
F (X)-Cauchy sequence uj, that is also Lp(X)-

Cauchy, we can extract an Lp(X)-limit u. By lower semicontinuity, F(u − uk) ≤
limj→+∞ F(uj − uk) for every k, thus

0 ≤ lim
k→+∞

F(u− uk) ≤ lim
k→+∞

lim
j→+∞

F(uj − uk) = 0,

where the last equality follows by {uj} being H1,p
F (X)-Cauchy. Throughout the

whole paper we will consider several functionals F, where it can be readily checked
that they always satisfy properties (a), (b) and (c) above.

2.2. Curves and chains

Let (X, d) be a metric space. A curve is a continuous function γ : [a, b] → X for some
a, b ∈ R with a < b. The starting and final point of γ are, respectively, α(γ) := γ(a)
and ω(γ) := γ(b). The length of a curve γ is defined as

`(γ) := sup

{
N−1∑
i=0

d(γti , γti+1) : a = t0 < t1 < · · · < tN = b, N ∈ N

}
.

A curve of finite length is called rectifiable. Every rectifiable curve γ : [a, b] → X
admits a reparametrization sγ : [0, `(γ)] → [a, b] by arc-length. This means that the
curve γ′ := γ ◦ sγ : [0, `(γ)] → X satisfies `(γ′|[0,t]) = t for every t ∈ [0, `(γ)]. Given
two points x, y ∈ X, we denote by Γx,y the set of rectifiable curves γ with α(γ) = x
and ω(γ) = y.
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10 E. Caputo and N. Cavallucci

The integral of a Borel function g : X → [0,+∞] over a rectifiable curve γ is∫
γ

g :=

∫ `(γ)

0

g(γ(sγ(t))) dt.

Let ɛ> 0. A ɛ-chain is a finite collection of points {qi}Ni=0 such that d(qi, qi+1) ≤ ε.
The set of all ɛ-chains of X is denoted by C ε(X). The set of all chains of X is C (X) :=⋃

ε>0 C ε(X). When the context is clear we simply write C ε and C . More generally, if
E is a subset of X, we set C (E) := {c = {qi}Ni=0 ∈ C : qi ∈ Efor some 0 ≤ i ≤ N}
and C ε(E) := C (E) ∩ C ε. Notice that the two definitions of C ε(X) and C (X) are
consistent.

The first and last points of c = {qi}Ni=0 ∈ C are respectively α(c) := q0 and

ω(c) = qN . The concatenation of c = {qi}Ni=0 ∈ C ε, c′ = {q′i}N
′

i=0 ∈ C ε′ such that
ω(c) = α(c′) is defined as

c ? c′ = {q0, . . . , qN = q′0, q
′
1, . . . , q

′
N ′}.

Notice that c ? c′ ∈ C ε∨ε′ and α(c ? c′) = α(c), ω(c ? c′) = ω(c′). The inverse of a
chain c = {q0, . . . , qN} ∈ C is −c := {qN , . . . , q0}. If x, y ∈ X are two points then
we set Cx,y := {c ∈ C : α(c) = x, ω(c) = y} and C ε

x,y := Cx,y ∩ C ε.
A metric space (X, d) is said to be ɛ-chain connected if C ε

x,y 6= ∅ for every x, y ∈ X.
A metric space can be decomposed in ɛ-chain connected components in the following
way. Given two points x, y ∈ X we say that x ∼ε y if and only if C ε

x,y 6= ∅. This
defines an equivalence relation on X. Such a relation partitions X into a family of
sets {Ai}i∈I . If (X, d) is separable, it can be readily checked that the set of indices
I is countable. Moreover, every set Ai is ɛ-chain connected: it is called a ɛ-chain
connected component of X. By definition, every ɛ-chain connected component is
both open and closed. Moreover, we have that

d(Ai, Aj) ≥ ε, if i 6= j. (4)

Let ε′ ≤ ε and let X =
⋃

i∈Iε
Aε

i =
⋃

i∈Iε′
Aε′

i , be the two decompositions where

{Aε
i}i∈Iε and {Aε′

i }i∈Iε′ are respectively the ɛ and ε′-chain connected components

of X. Then, for every i ∈ Iε′ there exists j ∈ Iε such that Aε′

i ⊆ Aε
j . The set of

ɛ-chain connected components of X is denoted by C ε-cc(X).
Given c = {qi}Ni=0 ∈ C and a function g : X → [0,+∞] we define

∫
c

g :=
N−1∑
i=0

g(qi) + g(qi+1)

2
d(qi, qi+1). (5)

For every function g and every two chains c, c′ ∈ C it holds∫
c?c′

g =

∫
c

g +

∫
c′
g,

∫
−c

g =

∫
c

g. (6)

Moreover, the integral over a fixed chain c is linear, i.e.
∫
c
ag + bh = a

∫
c
g + b

∫
c
h

for every g, h : X → [0,+∞] and every a, b ≥ 0.

https://doi.org/10.1017/prm.2025.10052 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10052


Sobolev spaces via chains in metric measure spaces 11

The length of a chain c = {qi}Ni=0 ∈ C is `(c) :=
∫
c
1 =

∑N−1
i=0 d(qi, qi+1).

Remark 2.1. There is no canonical way to define the integral over a chain. Let
λ ∈ [0, 1]. If a, b ∈ R∪{+∞} we set [a, b]λ := λa+(1−λ)b. Given c = {qi}Ni=0 ∈ C ,
a function g : X → [0,+∞] and λ ∈ [0, 1], we define the λ-integral of g over c as

λ∫
c

g :=
N−1∑
i=0

[g(qi), g(qi+1)]λd(qi, qi+1).

When λ = 1
2 we recover the definition in (5), while for λ=1 we find the expression

used in [18]. The λ-integral is linear in the sense above and it satisfies the first
equality of (6). The second equality of (6) becomes λ

∫
−c
g = 1−λ

∫
c
g for every

g : X → [0,+∞] and every c ∈ C . In the paper we will present the results for the
1
2 -integral, for simplicity, and we will briefly comment on how it works for different
values of λ ∈ [0, 1].

2.3. Convergence of chains to curves

We recall the notion of convergence of a sequence of chains to a curve defined in [18].
Given a chain c = {qi}Ni=0 we define the set of interpolating times as (t0, . . . , tN ) by

t0 = 0 and ti =
`({q0,...,qi})

`(c) . Then we define the function γc : [0, 1] → X piecewisely

defined by [ti, ti+1) 3 t 7→ qi, for i = 0, . . . , N . We say that a sequence of chains
{cj}j converges to a curve γ : [0, 1] → X if {γcj}j converges uniformly to γ as j goes
to +∞. We have the following compactness result for complete metric spaces.

Proposition 2.2. [18, lemma 2.18] Let (X, d) be a complete metric space. Let
Kj ⊆ X be an increasing sequence of compact subsets of X and let hj(x) :=∑j

i=1 min{jd(x,Ki), 1}. Let M,L,∆ > 0 be constants. Let cj = {qj0, . . . , q
j
Nj

} ∈
C

1
j (X) be chains such that:

(i) `(cj) ≤ L for every j;
(ii) Diam(cj) := max{d(q, q′) : q, q′ ∈ cj} ≥ ∆ for every j;

(iii)
∑Nj−1

m=0 hj(q
j
m)d(qjm, q

j
m+1) ≤M for every j.

Then there exists a subsequence of {cj}j that converges to a curve γ : [0, 1] → X.

Remark 2.3. Condition (iii) in proposition 2.2 is exactly 1
∫
cj
hj ≤ M , for every j.

The proof of [18, lemma 2.18] can be straightforwardly modified replacing (iii) with
(iii)λ

λ
∫
cj
hj ≤M for every j, for every λ ∈ [0, 1].

The next goal is to compare the integral of a function along a sequence of chains
{cj}j converging to a curve γ with the integral of the same function on γ. To this
aim, we need the following approximation of Lebesgue integral by Riemann sums.
A classical reference is [15, pag. 63], but we adopt a strategy very close to the proof
in [13, proposition 3.18].
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12 E. Caputo and N. Cavallucci

Proposition 2.4. Let f : [0, `] → R ∪ {+∞} be a Borel integrable function such
that f(0), f(`) <∞. For n ∈ N and t ∈ [0, 1] we set

Rt(f, n) :=
f(0) + f

(
`
(
t
n

))
2

· `
(
t

n

)
+

n−2∑
i=0

f
(
`
(
t+i
n

))
+ f

(
`
(

t+(i+1)
n

))
2

· `
n

+
f
(
`
(
t+n−1

n

))
+ f(`)

2
· `
(
1− t

n

)
.

Then

lim
n→+∞

∫ 1

0

∣∣∣∣∣Rt(f, n)−
∫ `

0

f(s) ds

∣∣∣∣∣ dt = 0.

Remark 2.5. The quantity Rt(f, n) should be thought as a Riemann sum asso-
ciated to the partition 0 ≤ `

(
t
n

)
< . . . < `

(
t+n−1

n

)
≤ ` of [0, `]. The difference

is in the average of f evaluated at two successive points of the partition instead
of the value of f at every point of the partition. This is due to our definition
of integral along chains. The statement above implies that, up to subsequence,

Rt(f, n) →
∫ `

0
f(s) ds for a.e. t ∈ [0, 1].

Proof. For a Borel integrable function f : [0, `] → R∪{+∞} we define the auxiliary
quantity

R′
t(f, n) :=

n−2∑
i=0

f
(
`
(
t+i
n

))
+ f

(
`
(

t+(i+1)
n

))
2

· `
n
,

which is the middle term in the definition of Rt(f, n). First of all we estimate∫ 1

0

|Rt(f, n)−R′
t(f, n)| dt ≤

`

n

∫ 1

0

∣∣∣∣∣f(0) + f
(
`
(
t
n

))
2

∣∣∣∣∣ +

∣∣∣∣∣f
(
`
(
t+n−1

n

))
+ f(`)

2

∣∣∣∣∣ dt
≤ `

2n
(f(0) + f(`)) +

1

2

×

(∫ `
n

0

f(u) du+

∫ `

`
(

n−1
n

) f(u) du
)
,

(7)
and the last two terms go to 0 as n goes to ∞, respectively because f assume finite
values at 0 and ` and dominated convergence. We now set

D(f, n) :=

∫ 1

0

∣∣∣∣∣R′
t(f, n)−

∫ `

0

f(s) ds

∣∣∣∣∣ dt.
If f ∈ C0([0, `]) we have

D(f, n) ≤
∫ 1

0

n−2∑
i=0

∫ `
(

i+1
n

)
`
(

i
n

)
∣∣∣∣∣f
(
`
(
t+i
n

))
− f(s)

2

∣∣∣∣∣+
∣∣∣∣∣f
(
`
(
t+i+1

n

))
− f(s)

2

∣∣∣∣∣ ds dt ≤ `ε

(8)
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for n > n(f, ε), by uniform continuity of f on [0, `]. Finally, given two Borel
functions f and f ʹ, we estimate

|D(f, n)−D(f ′, n)| ≤
∫ 1

0

|R′
t(f, n)−R′

t(f
′, n)|dt+

∫ 1

0

∣∣∣∣∣
∫ `

0

(f − f ′)(s) ds

∣∣∣∣∣ dt
≤
∫ 1

0

∣∣∣∣∣∣
n−2∑
i=0

(f − f ′)
(
`
(
t+i
n

))
+ (f − f ′)

(
`
(

t+(i+1)
n

))
2

· `
n

∣∣∣∣∣∣ dt
+ ‖f − f ′‖L1(0,`)

≤ 1

2

n−2∑
i=0

∫ 1

0

|f − f ′|
(
`

(
t+ i

n

))
dt+

1

2

n−2∑
i=0

∫ 1

0

|f − f ′|

×
(
`

(
t+ i

n

))
dt+ ‖f − f ′‖L1(0,`)

≤ 1

2

n−2∑
i=0

∫ `( i+1
n )

`( i
n )

|f − f ′|dt+ 1

2

n−2∑
i=0

∫ `( i+2
n )

`( i+1
n )

|f − f ′| dt

+ ‖f − f ′‖L1(0,`)

≤ 2‖f − f ′‖L1(0,`).

(9)

By approximating f ∈ L1([0, `]) in L1-norm with a sequence {fj} ⊆ C0([0, `]),
applying the triangular inequality, (8) and (9) we conclude that limn→∞D(f, n) =
0. This, together with (7), proves the claim. �

Remark 2.6. Given λ ∈ [0, 1], one can prove the equivalent of proposition 2.4 for
the approximation

Rλ
t (f, n) :=

[
f(0), f

(
`

(
t

n

))]
λ

· `
(
t

n

)
+

n−2∑
i=0

[
f

(
`

(
t+ i

n

))
,

f

(
`

(
t+ (i+ 1)

n

))]
λ

· `
n
+

[
f

(
`

(
t+ n− 1

n

))
, f(`)

]
λ

· `
(
1− t

n

)
,

where f : [0, `] → R ∪ {+∞} is Borel and integrable and such that f(0), f(`) <∞.
When λ=1, this is exactly the statement of [15, pag.63].

We can adapt the proof of [18, lemma 2.19] to prove the following lemma.

Lemma 2.7. Let (X, d) be a metric space. Let g : X → [0,+∞] be a lower semi-
continuous function. Let gj : X → [0,+∞) be a sequence of continuous functions
such that gj(x) ↗ g(x) for every x ∈ X. Let {cj}j be a sequence of chains with
supj `(cj) <∞ and converging to a curve γ : [0, 1] → X. Then∫

γ

g ds ≤ lim
j→+∞

∫
cj

gj .
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14 E. Caputo and N. Cavallucci

Proof. The proof is identical to the one of [18, lemma 2.19], where he uses the
notion of λ-integral along chains with parameter λ=1. We just need to modify it
for the λ = 1

2 -integral as we did for the proof of proposition 2.4 with respect to the
original proof in [15]. �

On the other hand we have the next result.

Proposition 2.8. Let (X, d) be a metric space, let γ : [0, L] → X be a
curve parametrized by arc-length and let g : X → [0,+∞] Borel be such that
g(α(γ)), g(ω(γ)) <∞ and

∫
γ
g < +∞. For t ∈ [0, 1] and n ∈ N define

ct,n :=

{
γ(0), γ

(
L

(
t

n

))
, γ

(
L

(
t+ 1

n

))
, . . . , γ

(
L

(
t+ n− 1

n

))
, γ(L)

}
∈ C

L
n .

Then, there exists t ∈ [0, 1] and a subsequence nj such that∫
γ

g ≥ lim
j→+∞

∫
ct,nj

g.

Proof. We apply proposition 2.4 to the function h = g ◦ γ, which is Borel and
integrable by assumption and satisfies h(0), h(L) < ∞. In particular, there exists
t ∈ [0, 1] and a subsequence nj such that

lim
j→+∞

Rt(h, nj) =

∫ L

0

h(s) ds

as noted in remark 2.5. For every j we compute

Rt(h, nj) =
h(0) + h

(
L
(

t
nj

))
2

· L
(
t

nj

)
+

nj−2∑
i=0

h
(
L
(

t+i
nj

))
+ h

(
L
(

t+(i+1)
nj

))
2

· L
nj

+
h
(
L
(

t+nj−1
nj

))
+ h(L)

2
· L
(
1− t

nj

)

=
g(γ(0)) + g

(
γ
(
L
(

t
nj

)))
2

· `
(
γ|[

0,L
(

t
nj

)])

+

nj−2∑
i=0

g
(
γ
(
L
(

t+i
nj

)))
+ g

(
γ
(
L
(

t+(i+1)
nj

)))
2

· `
(
γ|[

L
(

t+i
nj

)
,L

(
t+(i+1)

nj

)])

+
g
(
γ
(
L
(

t+nj−1
nj

)))
+ g(γ(L))

2
· `
(
γ|[

L
(

1−t
nj

)
,1
])

≥
∫
ct,nj

g

where we used in the last inequality that d(γ(a), γ(b)) ≤ `(γ|[a,b]) for every a, b ∈
[0, L]. �
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Remark 2.9. Combining lemma 2.7 and proposition 2.8 we get that for every
lower semicontinuous g : X → [0,+∞] there exists t ∈ [0, 1] and a subsequence nj
such that ∫

γ

g = lim
j→+∞

∫
ct,nj

g.

Remark 2.10. The proofs of lemma 2.7 and proposition 2.8 can be adapted to the
case of λ-integrals along chains, for λ ∈ [0, 1], using remark 2.6.

3. Sobolev and BV spaces à la Cheeger and Ambrosio-Gigli-Savaré

In this section, we recall the definitions of two functionals that have been used
by Cheeger ([14]) and Ambrosio-Gigli-Savaré ([4, 5]) to define Sobolev spaces, for
p> 1, and BV spaces, for p=1, via relaxation.

Let u : X → R be a Borel function. A Borel function g : X → [0,+∞] is an upper
gradient of u, and we write g ∈ UG(u), if

|u(ω(γ))− u(α(γ))| ≤
∫
γ

g, (10)

for every rectifiable curve γ.
Cheeger considered the functional

Fcurve : Lp(X) → [0,+∞], u 7→ inf
{
‖g‖Lp(X) : g ∈ UG(u)

}
,

with the usual convention that the infimum over an empty set is +∞. The relaxation
of Fcurve is then

F̃curve(u) = inf

{
lim

j→+∞
inf

g∈UG(uj)
‖g‖Lp(X) : uj −→

Lp(X)
u

}
.

We denote the associated Banach space defined as in (3) by (H1,p
curve(X), ‖·‖H1,p

curve(X)).

Remark 3.1. If p> 1 the space (H1,p
curve(X), ‖ · ‖H1,p

curve(X)) is isometric to the p-

Newtonian-Sobolev space, see [31, theorem 4.10]. Instead the space (H1,1
curve(X), ‖ ·

‖H1,1
curve(X)) can be used as a possible definition of the space of BV functions (equiv-

alent to other ones in literature when (X, d) is complete by [2]), which generally
strictly contains the 1-Newtonian-Sobolev space.

Ambrosio, Gigli and Savaré defined the functional

FAGS : Lp(X) → [0,+∞], u 7→

‖lipu‖Lp(X) if u ∈ Lip(X);

+∞ otherwise

The relaxation of FAGS is then

F̃AGS(u) = inf

{
lim

j→+∞
‖lipuj‖Lp(X) : uj ∈ Lip(X) and uj −→

Lp(X)
u

}
.
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We denote the associated Banach space defined as in (3) by (H1,p
AGS(X), ‖·‖H1,p

AGS(X)).

It is known that if u ∈ Lip(X) then lipu ∈ UG(u) (see for instance [22, lemma
6.2.6]). This gives immediately that F̃AGS(u) ≥ F̃curve(u) for every u ∈ Lp(X).
When the metric space (X, d) is complete, the several proofs of density in energy
of Lipschitz functions (see [4, 2, 18, 30]) say that F̃AGS(u) = F̃curve(u) for every
u ∈ Lp(X). We summarize these well known results in the following proposition.

Proposition 3.2. Let (X, d,m) be a metric measure space. Then H1,p
AGS(X) ⊆

H1,p
curve(X) with ‖u‖H1,p

curve(X) ≤ ‖u‖H1,p
AGS(X) for every u ∈ Lp(X). Moreover, if (X, d)

is complete then H1,p
AGS(X) = H1,p

curve(X) with ‖u‖H1,p
curve(X) = ‖u‖H1,p

AGS(X) for every

u ∈ Lp(X).

The last part of the statement cannot hold without the completeness assumption.
The motivation is the following: the space H1,p

AGS(X) does not change if we take the
completion of X, while H1,p

curve(X) is not preserved.

Proposition 3.3. Let (X, d,m) be a metric measure space and let (X̄, d̄, m̄) be its
completion. Then the identity map ι : Lp(X) → Lp(X̄) induces an isometry between
H1,p

AGS(X) and H
1,p
AGS(X̄).

Proof. Given u ∈ Lip(X), there exists a unique extension ū ∈ Lip(X̄). For every
ɛ> 0 and x ∈ X, we have

sup
y∈(Bε(x)∩X)\{x}

|u(y)− u(x)|
d(y, x)

= sup
y∈Bε(x)\{x}

|ū(y)− ū(x)|
d̄(y, x)

,

where the balls are in (X̄, d̄). By denoting with a superscript the space in which the
local Lipschitz constant is computed, we have that

lipXu(x) = lipX̄ū(x),

for every x ∈ X. This in particular implies that

‖lipXu‖Lp(X) = ‖lipX̄ū‖Lp(X̄).

Moreover, if a sequence of functions uj ∈ Lip(X) converges to u in Lp(X) then the
extensions ūj ∈ Lip(X̄) converge to ι(u) in Lp(X̄) as well, since m̄ is concentrated

on X. Thus ι(H1,p
AGS(X)) ⊆ H1,p

AGS(X̄) and ‖ι(u)‖H1,p
AGS(X̄) ≤ ‖u‖H1,p

AGS(X). On the

other hand the operator r : H1,p
AGS(X̄) → H1,p

AGS(X) induced by the restriction from
X̄ to X is linear, 1-Lipschitz and satisfies r ◦ ι = ι ◦ r = id, thus concluding the
proof. �

Example 3.4. In the simple example of X := R \ Q endowed with the Euclidean
distance and the Lebesgue measure, we have H1,p

AGS(X) 6= H1,p
curve(X). Indeed from

one side we have, by proposition 3.3, that H1,p
AGS(X)

∼= H1,p
AGS(R), and the latter is

the classical Sobolev space on R for p> 1 and the classical space of functions with
bounded variations on R for p=1, while H1,p

curve(X)
∼= Lp(X) ∼= Lp(R) since there
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are no nonconstant curves in X and so the constant function 0 is an upper gradient
of every Lp(X) function.

Remark. Example 3.4 shows that H1,p
curve(X) 6= H1,p

curve(X̄) in general. The two
spaces are the same if for instance the p-capacity of X̄ \ X, namely Capp(X̄ \ X),
is zero. For the definition of p-capacity we refer to [22, chapter 7]. The follow-
ing is a (non-exhaustive) list of papers studying sufficient conditions that ensure
H1,p

curve(X) = H1,p
curve(X̄): [22, 26, 28, 29]. They are expressed in terms of capacity or

porosity-type conditions.

4. Chain upper gradients

The goal of the next sections is to recover a description of the space H1,p
AGS(X) in

the sense of proposition 3.2, even when X is not complete. This is possible if we
replace upper gradients with chain upper gradients.

Let u : X → R and ɛ> 0. A function g : X → [0,+∞] is a ɛ-upper gradient of u,
and we write g ∈ UGε(u), if for all c ∈ C ε it holds

|u(ω(c))− u(α(c))| ≤
∫
c

g. (11)

The definition of ɛ-upper gradient is very sensitive to the value of the function at
every point. Sometimes it is preferable to impose some regularity on the function.
With this in mind we consider the class of Lipschitz ɛ-upper gradients of u, namely
LUGε(u) := UGε(u) ∩ Lip(X).

Remark 4.1. Let u : X → R, ɛ> 0 and λ ∈ [0, 1]. A function g : X → [0,+∞] is a
(ε, λ)-upper gradient of u, and we write g ∈ UGε,λ(u), if for all c ∈ C ε it holds

u(ω(c))− u(α(c)) ≤ λ

∫
c

g.

In the symmetric case, i.e. when λ = 1
2 , this is equivalent to (11). We also set

LUGε,λ(u) := UGε,λ(u) ∩ Lip(X).

Remark 4.2. The ɛ-upper gradient condition can be tested on nonconstant chains
with two elements. Namely, a function g : X → [0,+∞] is a ɛ-upper gradient of
u : X → R if and only if for every chain {x, y}, x, y ∈ X, x ≠ y with d(x, y) ≤ ε, it
holds that

|u(x)− u(y)| ≤ g(x) + g(y)

2
d(x, y) =

∫
{x,y}

g.

One implication is obvious. For the other one we fix a chain c = {qi}Ni=0 and we
compute
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|u(qN )− u(q0)| ≤
N−1∑
i=0

|u(qi)− u(qi+1)| ≤
N−1∑
i=0

∫
{qi,qi+1}

g =

∫
c

g.

A similar conclusion holds for (ε, λ)-upper gradients, for every λ ∈ [0, 1].

The next lemma shows that the slope at level ɛ is always a ɛ-upper gradi-
ent. On the other hand, the local Lipschitz constant is smaller than every upper
semicontinuous (in particular every Lipschitz) ɛ-upper gradient.

Lemma 4.3. Let (X, d) be a metric space and let u : X → R. Then slεu ∈ UGε(u)
for every ɛ> 0. Moreover, for every g ∈ UGε(u) it holds slε′u(x) ≤ supBε′ (x)

g for
every ε′ ≤ ε. Finally, if g ∈ UGε(u) is upper semicontinuous then lipu ≤ g.

Proof. By remark 4.2 it suffices to consider c = {q0, q1}. Then

|u(q1)− u(q0)| =
1

2

(
|u(q1)− u(q0)|

d(q0, q1)
+

|u(q1)− u(q0)|
d(q0, q1)

)
d(q0, q1)

≤ slεu(q0) + slεu(q1)

2
d(q0, q1) =

∫
c

slεu.

This proves the first part of the statement.
We move to the second part. Fix x ∈ X and consider y ∈ X such that d(x, y) ≤ ε′

with ε′ ≤ ε. Since g ∈ UGε(u) and {x, y} ∈ C ε, we have

|u(x)− u(y)| ≤ d(x, y)
g(x) + g(y)

2
≤ d(x, y) sup

Bε(x)

g.

By taking the supremum over y ∈ Bε′(x) the second conclusion follows. Taking the
limit as ε′ → 0 and using the uppersemicontinuity of g, we conclude also the third
part. �

On the other hand, every Borel ɛ-upper gradient g satisfies the upper gradient
inequality along every curve with endpoints in the set {g <∞}.

Proposition 4.4. Let (X, d) be a metric space and let u : X → R. If g ∈ UGε(u)
for some ɛ> 0 is Borel, then

|u(ω(γ))− u(α(γ))| ≤
∫
γ

g, (12)

for every rectifiable curve γ such that ω(γ), α(γ) ∈ {g < +∞}. In particular if g
takes only finite values then g ∈ UG(u).

Remark. The inequality (12) does not hold in general for curves whose endpoints
belong to the set {g = +∞}. Indeed let us consider u = χQ, i.e. the characteristic
function of the set of rational numbers in R. The function g : R → [0,+∞], g(x) =
+∞ if x ∈ Q and g(x) = 0 otherwise, belongs to UGε(u) for every ɛ> 0. However
it does not belong to UG(u) since

∫
γ
g = 0 for every rectifiable curve γ of R.
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Proof of proposition 4.4. Assume by contradiction that there exists a rectifiable
curve, that we can assume parametrized by arc length γ : [0, L] → X, with L := `(γ),
such that ∫ L

0

(g ◦ γ)(s) ds =
∫
γ

g < |u(ω(γ))− u(α(γ))| <∞, (13)

and g(α(γ)), g(ω(γ)) < ∞. By proposition 2.8 we can find a subsequence nj such
that ∫

γ

g ≥ lim
j→+∞

∫
ct,nj

g.

This, together with (13), implies the existence of a L
nj
-chain ct,nj

with same

endpoints of γ such that∫
ct,nj

g < |u(ω(γ))− u(α(γ))| = |u(α(ct,nj
))− u(ω(ct,nj

))|.

This proves that g /∈ UG
L
nj (u), which is a contradiction. �

Remark 4.6. The results of this section remain true if we consider the λ-integral
and (ε, λ)-upper gradients, for every λ ∈ [0, 1]. The proof of proposition 4.4 follows
by remark 2.10.

5. p-weak ɛ-upper gradients

In the classical theory of Sobolev spaces, one weakens the definition of upper gra-
dients along curves by requiring that (10) holds for Modp-almost every curve. The
definition of the outer measure Modp will be recalled in § 7. In this section, we will
give a similar definition for chain upper gradients and we will show similarities and
differences with the classical setting of curves.

Let (X, d,m) be a metric measure space. Let ɛ> 0 and p ≥ 1. The (ε, p)-modulus
of a family of chains C ⊆ C is

C -Modεp(C) := inf

{∫
ρp dm : ρ ∈ Admε(C)

}
where Admε(C) =

{
ρ ≥ 0 : ρ Borel,

∫
c
ρ ≥ 1 for every c ∈ C ∩ C ε

}
.

Proposition 5.1. Let ɛ> 0 and p ≥ 1. Then C -Modεp is an outer measure.

Proof. The only non trivial property to be proven is C -Modεp(
⋃∞

i=1 Ci) ≤∑∞
i=1 C -Modεp(Ci) for {Ci}∞i=1 ⊆ C . We assume that the right hand side is finite,

otherwise there is nothing to prove. We fix δ > 0 and we choose {ηi}i such that∑
i ηi ≤ δ. We take ρi ∈ Admε(Ci) such that

∫
ρpi dm ≤ C -Modεp(Ci) + ηi. The

function ρ := (
∑∞

i=1(ρi)
p)

1
p satisfies ρ ∈ Admε(

⋃∞
i=1 Ci). Therefore
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C -Modεp

( ∞⋃
i=1

Ci

)
≤
∫
ρp dm ≤

∞∑
i=1

∫
ρpi dm ≤

∞∑
i=1

C -Modεp(Ci) + δ.

Taking the limit as δ converges to 0, we get the thesis. �

Remark. The (ε, p)-modulus is concentrated on ɛ-chains in the following sense.
Let C ⊆ C and let Cε := C∩C ε. Then C -Modεp(C\Cε) = 0 since the function ρ=0
belongs to Admε(C \ Cε).

Let (X, d,m) be a metric measure space. Given a function u : X → R, we say
that a function g : X → [0,+∞] is a p-weak ɛ-upper gradient of u and we write
g ∈ WUGε

p(u) if

|u(ω(c))− u(α(c))| ≤
∫
c

g for C -Modεp-a.e. chain.

In particular if g ∈ UGε(u) then g ∈ WUGε
p(u) for every p ≥ 1.

Remark. For λ ∈ [0, 1] one can define the (ε, λ, p)-modulus of a family of chains
C ⊆ C by

C -Modε,λp (C) := inf

{∫
ρp dm : ρ ∈ Admε,λ(C)

}
,

where Admε,λ(C) =
{
ρ ≥ 0 : ρ Borel, λ

∫
c
ρ ≥ 1 for every c ∈ C ∩ C ε

}
. This is still

an outer measure which is concentrated on ɛ-chains. A function g : X → [0,+∞] is
a p-weak (ε, λ)-upper gradient of u : X → R if

u(ω(c))− u(α(c)) ≤
λ∫
c

g for C -Modε,λp -a.e. chain.

The set of p-weak (ε, λ)-upper gradient of u is denoted by WUGε,λ
p (u). It holds

UGε,λ(u) ⊆ WUGε,λ
p (u).

The set of p-integrable p-weak ɛ-upper gradients is closed under Lp(X)-
convergence. This can be seen as a consequence of an appropriate version of
Fuglede’s Lemma in this context.

Proposition 5.4. Fuglede’s lemma for chains Let gj be a sequence of m-
measurable functions that converges in Lp(X). Then there is a subsequence gjk with
the following property: if g is any m-measurable representative of the Lp(X)-limit
of gj then

lim
k→+∞

∫
c

|gjk − g| = 0

for C -Modεp-a.e. chain.

In the chain case this result is easier to prove and it is a consequence of the
following easy but important fact.

Lemma 5.5. Let E ⊆ X, ɛ> 0, p ≥ 1. If m(E) = 0 then C -Modεp(C (E)) = 0.
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Proof. We write C (E) =
⋃

k∈N Ck, where

Ck :=

{
c = {qi}Ni=0 ∈ C (E) : min

0≤i<N
d(qi, qi+1) ≥

1

k

}
.

By proposition 5.1, C -Modεp is an outer measure. So it is enough to prove that
C -Modεp(Ck) = 0 for every k. The function ρ = 2k · χE belongs to Admε(Ck).
Therefore C -Modεp(Ck) ≤

∫
ρp dm = (2k)pm(E) = 0. �

Remark. The previous lemma differs to the classical case in which the modulus
is defined in terms of rectifiable curves. Given a Borel set E with m(E) = 0,
Modp(Γ(E)) = 0 if and only if Capp(E) = 0, see [22, proposition 7.2.8], where
Γ(E) denotes the family of curves intersecting E. In other words, given a m-null set
with positive capacity, the p-modulus of the curves hitting this set is positive. This
does not happen in the case of chains, as lemma 5.5 shows. On the other hand,
the same proof of lemma 5.5 shows in the case of curves that the p-modulus of
the set of curves spending a positive time in E is zero, if m(E) = 0. In this case
Modp(Γ(E)) is concentrated on the family of curves spending time zero in E (see
also [22, lemma 5.2.15]).

Remark 5.7. Lemma 5.5 implies that if g ∈ WUGε
p(u) is m-measurable and h is

another m-measurable function such that m({g 6= h}) = 0, then h ∈ WUGε
p(u) as

well.

Proof of proposition 5.4. Since gj converges to g in Lp(X) then we can find a
subsequence gjk which converges to g pointwise almost everywhere. This means
that we can find a set E ⊆ X with m(E) = 0 such that limk→+∞ gjk(x) = g(x) for
every x ∈ X \ E. Let us consider the set of chains C (E) which has (ε, p)-modulus
0 by lemma 5.5. We claim that for every chain which is not in C (E) we have
limk→+∞

∫
c
|gjk −g| = 0. Let us fix a chain c = {qi}Ni=0 which is not in C (E). Then

qi /∈ E for every 0 ≤ i ≤ N . In particular limk→+∞ gjk(qi) = g(qi) for 0 ≤ i ≤ N .
Therefore

lim
k→+∞

∫
c

|gjk − g| = lim
k→+∞

N−1∑
i=0

|gjk(qi)− g(qi)|+ |gjk(qi+1)− g(qi+1)|
2

d(qi, qi+1)

= 0.

�

Remark 5.8. Lemma 5.5 is true for C -Modε,λp , for every λ ∈ (0, 1), with the

same proof. An alternative argument is to observe that C -Modε,λp and C -Modε,λ
′

p

are mutually absolutely continuous if λ, λ′ ∈ (0, 1). However, if λ ∈ {0, 1},
lemma 5.5 is no more true. Indeed, if Q is the set of rational numbers in R, then
C -Modε,λp (C (Q)) = +∞ for λ ∈ {0, 1}. This follows from the fact that every admis-
sible function has to be equal to +∞ on R \Q. On the other hand, the same proof
as above shows that given E ⊆ X such that m(E) = 0, then
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C -Modε,1p ({c = {qi}Ni=0 ∈ C : qi ∈ Efor some i = 0, . . . , N − 1}) = 0

and

C -Modε,0p ({c = {qi}Ni=0 ∈ C : qi ∈ Efor some i = 1, . . . , N}) = 0.

This is enough for adapting the proof of proposition 5.4 to λ ∈ {0, 1}.

As a consequence we prove that the set WUGε
p(u) ∩ Lp(X) is closed in Lp(X).

Actually a stronger statement, that is the chain counterpart of [22, proposition
6.3.30], holds. Notice that in [22, proposition 6.3.30] is required the convergence of
uj to u Capp-a.e. while in our result it is enough to consider convergence m-a.e.

Proposition 5.9. Let uj → u pointwise m-almost everywhere, let gj ∈ WUGε
p(uj)

and suppose gj → g in Lp(X). Then g ∈ WUGε
p(u).

Proof. Let E be the set of points of X where the convergence of uj to u does
not hold. By proposition 5.4 we can extract a further subsequence, not relabeled,
and a set of chains C such that limj→+∞

∫
c
gj =

∫
c
g for every c ∈ C and with

C -Modεp(C \ C) = 0. Since gj ∈ WUGε
p(uj) we can find set of chains Cj such that

|uj(ω(c))− uj(α(c))| ≤
∫
c
gj for every c ∈ Cj and such that C -Modεp(C \ Cj) = 0.

The set of chains C′ =
(
C ∩

⋂
j∈N Cj

)
\ C (E) still satisfies C -Modεp(C \ C′) = 0,

because of proposition 5.1, since C \ C′ = C (E) ∪ (C \ C) ∪
⋃

j(C \ Cj).
For every c ∈ C′ we have

|u(ω(c))− u(α(c))| = lim
j→+∞

|uj(ω(c))− uj(α(c))| ≤ lim
j→+∞

∫
c

gj =

∫
c

g.

This shows that g ∈ WUGε
p(u). �

Remark. Proposition 5.9 remains true for every λ ∈ (0, 1), while it is not clear
if it holds for λ ∈ {0, 1}. However it is still true, and the proof is the same, that
WUGε,1

p (u) and WUGε,0
p (u) are closed with respect to the Lp(X)-topology.

As a consequence we can find a p-weak ɛ-upper gradient of minimal norm.

Proposition 5.11. The set WUGε
p(u)∩Lp(X) is a closed, convex subset of Lp(X).

If not empty, it contains an element of minimal Lp(X)-norm. If p> 1 such element
is unique.

Proof. We already showed in proposition 5.9 that WUGε
p(u) is closed, while its con-

vexity is trivial. The existence of an element of minimal norm, i.e. the existence of
a projection of 0 ∈ Lp(X) on WUGε

p(u), follows directly. The uniqueness statement
for p> 1 is a consequence of the strict convexity of the norm of Lp(X) for p> 1. �

On the other hand the minimal norm can be computed also using true ɛ-upper
gradients because of the next result.

Proposition 5.12. The set WUGε
p(u) ∩ Lp(X) is the Lp(X)-closure of UGε(u) ∩

Lp(X).
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Proof. By proposition 5.9 we know that WUGε
p(u) ∩ Lp(X) is closed in Lp(X) and

therefore it contains the Lp(X)-closure of UGε(u) ∩ Lp(X). Let g ∈ WUGε
p(u).

Let C be a family of chains such that C -Modεp(C \ C) = 0 and such that
|u(ω(c)) − u(α(c))| ≤

∫
c
g for every c ∈ C. By definition, for every j ≥ 1 there

exists an admissible map ρj ∈ Admε(C \ C) such that
∫
ρpj dm ≤ 2−jp. We set

ρ =
(∑

j≥1 ρ
p
j

) 1
p ∈ Admε(C \ C), because ρ ≥ ρj for every j. Moreover ρ ∈ Lp(X)

and
∫
c
ρ = ∞ for every c ∈ C \ C. Now, for every k ∈ N, we define the func-

tion gk := g + 2−kρ. It is easy to check that gk converges to g in Lp(X) and that
gk ∈ UGε(u). �

Example 5.13. Non uniqueness of minimal weak chain upper gradient If p=1
it can happen that there is more than one element of minimal norm in WUGε

1(u).
We now produce an example of a metric measure space (X, d,m) and a function
u : X → R such that for every 0 < ε ≤ 1

3 there are infinitely many elements of
minimal norm in WUGε

1(u).
We define the following two sequences of real numbers: xn = n, yn = n + 1

n ,
for n ≥ 3. Let X be the countable set X :=

⋃
n≥3{xn, yn} ⊂ R. We endow X with

the Euclidean distance and with the reference measure m :=
∑

n≥3
1
n3 (δxn

+ δyn
).

Notice that X is complete. We define the function u : X → R as u(xn) = 1 and
u(yn) = 0 for every n ≥ 3. We fix 0 < ε ≤ 1

3 and we notice that all the possible
nonconstant ɛ-chains with two elements are of the form {xn, yn} and {yn, xn}, for
n ≥ ε−1. Therefore, by remark 4.2, a function g : X → [0,+∞] is a ɛ-upper gradient
if and only if

g(xn) + g(yn) ≥ 2n ∀n ≥ ε−1.

Hence, its L1(m) norm satisfies the following lower bound

‖g‖L1(m) =
∑
n≥3

g(xn) + g(yn)

n3
≥ 2

∑
n≥ε−1

1

n2
=: Lε.

For every µ ∈ [0, 1] the function gµ,ε defined as

gµ,ε(x) :=


2nµ x = xnfor n ≥ ε−1

2n(1− µ) x = ynfor n ≥ ε−1

0 otherwise

we have ‖gµ,ε‖L1(m) = Lε, therefore they are all ɛ-chain upper gradients of minimal
L1-norm, by proposition 5.12.

Remark. Every result of this section extends verbatim to the case λ ∈ (0, 1), while
some differences appear in case λ ∈ {0, 1}. For simplicity we state the results for
λ=1, the case λ=0 being analogous. We have already noticed that we do not know
if proposition 5.9 holds for λ=1, but in any case WUGε,1

p (u) is closed. Moreover it is

possible to show, adapting verbatim the proof of [22, lemma 6.3.8], that WUGε,1
p (u)

is a lattice. As a consequence there exists a minimal p-weak (ε, 1)-upper gradient
gu of u in the following sense: if g ∈ WUGε,1

p (u) is m-measurable then gu ≤ g m-a.e.
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For the function u in example 5.13 and p=1, then gu is equal to

gu(x) :=

n x = xn for n ≥ ε−1

0 otherwise.

The unique element of minimal norm in WUGε,0
1 (u) is instead

gu(x) :=

n x = ynfor n ≥ ε−1

0 otherwise.

6. The chain Sobolev spaces

In this section, we introduce two new functionals and we study their relaxations.
The two functionals are

FC : Lp(X) → [0,+∞], u 7→ lim
ε→0

inf
{
‖g‖Lp(X) : g ∈ UGε(u),

g is m-measurable} ,

FC ,Lip : Lp(X) → [0,+∞], u 7→


limε→0 inf

{
‖g‖Lp(X) : if u ∈ Lip(X),

g ∈ LUGε(u)}
+∞ otherwise,

where the infimum of an empty set is +∞. By propo-
sition 5.12, FC can be equivalently defined by FC (u) =
limε→0 inf

{
‖g‖Lp(X) : g ∈ WUGε

p(u), gis m-measurable
}
. Moreover, one obtains

the same quantity considering the infimum among Borel functions instead of
m-measurable ones, because of the Vitali-Carathéodory’s Theorem (cp. [22,
p.108]). The limits in the definitions exist because the arguments are decreasing
functions. Indeed if ε′ ≤ ε then every ɛ-upper gradient is also a ε′-upper gradient.
The two functionals satisfy properties (a),(b) and (c) of section 2.1. The less trivial
property, which is (c), is consequence of the symmetric property in (6) that implies
that UGε(u) = UGε(−u) for every Borel function u : X → R.

The relaxations of the functionals above are denoted respectively by F̃C and
F̃C ,Lip. The associated Banach spaces are respectively (H1,p

C (X), ‖ · ‖H1,p
C (X)) and

(H1,p
C ,Lip(X), ‖ · ‖H1,p

C ,Lip(X)). Since FC ,Lip(u) ≥ FC (u) for every u ∈ Lp(X), we have

that

H1,p
C ,Lip(X) ⊆ H1,p

C (X),

and the inclusion is 1-Lipschitz.

Remark. The domain of FC , namely the set of functions in Lp(X) that admits an
Lp(X)-integrable ɛ-upper gradient for some ɛ> 0, is clearly larger than the domain
of FC ,Lip, but it is also bigger than the set of functions (not necessarily Lipschitz)
that admit p-integrable, Lipschitz, ɛ-upper gradients for some ɛ> 0. Indeed, it con-
tains functions that are highly non-regular, as the next example shows. Let u = χQ
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be the characteristic function of the rational numbers on R. It can be readily checked
that LUGε(u) = ∅, thus it does not admit a p-integrable, Lipschitz, ɛ-upper gra-
dient for every ɛ> 0, while g : X → [0,+∞], g = ∞ · χQ belongs to UGε(u). Since
‖g‖Lp(R) = 0 we have that FC (u) = 0.

In order to familiarize with the definition of FC and H1,p
C we compute explicitly

this space in the case of a snowflake of a metric measure space. In view of theo-
rem 1.1 and the well known fact that there are no rectifiable curves in such spaces,
hence H1,p

curve(X) = Lp(X), we know that it must hold that H1,p
C (X) = Lp(X) too.

Example 6.2. Snowflaking of a metric space (X, d) Let (X, d) be a metric space
and 0 < α < 1. We consider (X, dα), where dα(x, y) := (d(x, y))α. Let m be a Borel
measure on (X, d) (so a Borel measure on (X, dα) too) and consider ɛ> 0. Notice
that c ∈ C ε(X, d) if and only if c ∈ C εα(X, dα). We claim that, if g is a ɛ-upper
gradient of u on (X, d), then ε1−αg is a ɛα-upper gradient of u on (X, dα). Indeed,
for a chain c = {qi}Ni=0 such that d(qi, qi+1) ≤ ε we have

|u(ω(c))− u(α(c))| ≤
∑
i

g(qi) + g(qi+1)

2
d(qi, qi+1)

=
∑
i

g(qi) + g(qi+1)

2
dα(qi, qi+1) d

1−α(qi, qi+1)

≤
∑
i

ε1−αg(qi) + ε1−αg(qi+1)

2
dα(qi, qi+1).

Therefore, for every u ∈ Lp(X), we have

FX,dα,m
C (u) = lim

ε→0
inf
{
‖g‖Lp(X) : g is a εα-upper gradient of u in (X, dα)

}
≤ lim

ε→0
ε1−α inf

{
‖g‖Lp(X) : g is a ε-upper gradient of u in (X, d)

}
.

In particular, since every function u ∈ Lip(X, d) with bounded support has a chain

upper gradient, namely slε(u), which is in Lp(X), then FX,dα,m
C (u) = 0 for all

such functions. Therefore F̃X,dα,m
C (u) = 0 for every u ∈ Lp(X) since the class

of Lipschitz functions (w.r.t. d) with bounded support is dense in Lp(X). Thus
H1,p

C (X, dα,m) = Lp(X).

6.1. Proof of the main results

The goal of this section is to compare the space H1,p
C (X) with H1,p

curve(X) and

H1,p
AGS(X), with the help of H1,p

C ,Lip(X).

Proposition 6.3. Let (X, d,m) be a metric measure space. Then

H1,p
C ,Lip(X) ⊆ H1,p

curve(X)

and

‖u‖H1,p
curve(X) ≤ ‖u‖H1,p

C ,Lip(X)
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for every u ∈ Lp(X).

Proof. Proposition 4.4 implies that Fcurve(u) ≤ FC ,Lip(u) for every u ∈ Lp(X) and
this concludes the proof. �

Theorem 6.4. Let (X, d,m) be a metric measure space such that (X, d) is complete.
Then

H1,p
C ,Lip(X) = H1,p

curve(X),

and

‖u‖H1,p
C ,Lip(X) = ‖u‖H1,p

curve(X),

for every u ∈ Lp(X).

Remark 6.5. The proof of theorem 6.4 can be done following word by word the
proof of [18, theorem 1.1], with very few modifications, like the obvious one due to
our definition of integral along chains, that requires lemma 2.7 in place of [18, lemma
2.19]. However, we are not able to use this scheme of demonstration in order to prove
the next theorem 6.7. For this reason we propose a proof of theorem 6.4 which is
still inspired to the one of [18, theorem 1.1], but that can be easily modified to prove
theorem 6.7. The main difference relies on the simplifications procedures: while we
are able to reduce the proof to bounded functions with bounded support, in theorem
6.7 we are not able to restrict the study to nonnegative functions. This is due to the
fact that the p-minimal ɛ-weak upper gradients are not local in any suitable sense.
In particular is not clear how to show that F̃C (u) = F̃C (u+) + F̃C (u−), where u+
and u− are the positive and negative part of u. Notice that, a posteriori, this has to
be true because of theorems 6.7 and 6.4, since F̃curve(u) = F̃curve(u+)+ F̃curve(u−).

Proof of theorem 6.4. For simplicity we divide the proof in steps.
Step 1. It is enough to prove that for every bounded function u with bounded

support it holds F̃C ,Lip(u) ≤ Fcurve(u). Indeed, by [22, proposition 7.1.35], for every
u ∈ Lp(X) such that Fcurve(u) < ∞ we can find a sequence of bounded functions
uj with bounded support such that uj → u in Lp(X) and limj→+∞ Fcurve(uj) ≤
Fcurve(u). Therefore

F̃C ,Lip(u) ≤ lim
j→+∞

F̃C ,Lip(uj) ≤ lim
j→+∞

Fcurve(uj) ≤ Fcurve(u),

because of the lower semicontinuity of F̃C ,Lip. Since F̃curve is the biggest lower
semicontinuous functional which is smaller than or equal to Fcurve, we infer that
F̃C ,Lip(u) ≤ F̃curve(u) for every u ∈ Lp(X) such that Fcurve(u) < ∞. The thesis

for an arbitrary u ∈ Lp(X) follows directly by the definitions of F̃C ,Lip(u) and

F̃curve(u).
In the following we fix x0 ∈ X and we assume that u : X → [−M,M ] and that

there exists R ≥ 3 such that u|X\BR(x0) = 0.
Step 2. We claim that it is enough to prove the following statement. For every

Borel upper gradient g ∈ UG(u) and for every η > 0 there exists another Borel
upper gradient gη ∈ UG(u) such that
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‖g − gη‖Lp(X) < η, (14)

and with the following property. For every j ∈ N there exist functions uη,j : X → R
and gη,j ∈ LUG

1
j (uη,j) such that

lim
j→+∞

‖uη,j − u‖Lp(X) ≤ η and lim
j→+∞

‖gη,j − gη‖Lp(X) = 0, (15)

Indeed, if the claim is true, then we have

lim
j→+∞

FC ,Lip(uη,j) ≤ lim
j→+∞

‖gη,j‖Lp(X) = ‖gη‖Lp(X) ≤ ‖g‖Lp(X) + η,

for every η > 0, where we used (14) and (15). By a diagonal argument we deduce that
F̃C ,Lip(u) ≤ ‖g‖Lp(X). By the arbitrariness of g ∈ UG(u) we infer that F̃C ,Lip(u) ≤
Fcurve(u), which is the statement we had to prove from Step 1.

In the remaining steps we will prove the claim of Step 2. In order to simplify
the proof we notice that it is enough to prove the statement for upper gradients
g ∈ UG(u) that are lower semicontinuous and such that g ≡ 0 on X\B2R(x0). The
first assertion follows by Vitali-Carathéodory Theorem (cp. [22, page 108]), while
the second one follows by truncation: for every g ∈ UG(u), the truncated function
g · χB2R(x0) is still an upper gradient of u since u|X\BR(x0) = 0 and it is smaller
than the original one. In the sequel we assume that g has these properties.

Step 3: For every g as above, we define gη. By Lusin’s Theorem and the fact that

m is Radon, we can find compact sets Kj ⊆ B2R(x0) such that m(B2R(x0)\Kj)
1
p ≤

2−jη and so that u|Kj
is continuous. We can suppose Kj ⊆ Kj+1 for every j. Let

σ ∈ (0, 1) be so that m(B2R(x0))
1
pσ ≤ η

2 . Define

gη(x) := g(x) + σχB2R(x0) +
∞∑
i=1

χB2R(x0)\Ki
(x).

The function gη is still lower semicontinuous and belongs to UG(u), since it is
bigger than g. Moreover, gη ≡ 0 on X \B2R(x0). We show that (14) holds. Indeed

‖g − gη‖Lp(X) ≤ σm(B2R(x0))
1
p +

∞∑
i=1

m(B2R(x0) \Ki)
1
p ≤ η.

In the next step we define auxiliary functions ĝη,j . Later we will slightly modify
these functions in order to define the gη,j ’s of Step 2.

Step 4. We proceed to the definition of ĝη,j . Let gj be an increasing sequence of
bounded Lipschitz functions such that gj ↗ g pointwise, whose existence is guar-
anteed for instance by [22, corollary 4.2.3]. Define ψj(x) := max{0,min{1, j(2R −
d(x0, x))}}. Observe that ψj is j -Lipschitz, that ψj ≤ χB2R(x0), that ψj ≡ 1 on
B2R− 1

j
(x0) and that ψj → χB2R(x0) pointwise as j → +∞. We define
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ĝη,j(x) = gj(x) + σψj(x) +

j∑
i=1

min{jd(x,Ki), ψj(x)}.

By definition, ĝη,j is Lipschitz and bounded. Moreover, ĝη,j ≤ gη for every j and
ĝη,j ↗ gη pointwise as j → +∞.

We define auxiliary functions ûη,j . In Step 6 will modify them in order to define
the functions uη,j required by Step 2.

Step 5.We define ûη,j . We choose N ∈ N so that m(B2R(x0)\KN )
1
p ≤ (2M)−1η.

We define the closed set A := KN ∪ (X \ BR(x0)). Since u|KN
and u|X\BR(x0) are

continuous and since both sets are closed, then u|A is continuous as well. We set

ûη,j(x) := min

{
M, inf

{
u(α(c)) +

∫
c

ĝη,j : c ∈ C
1
j , ω(c) = x, α(c) ∈ A

}}
.

These functions satisfy the following properties:

(a) ûη,j : X → [−M,M ] and ûη,j ≤ u on A: this follows directly from the
definition.

(b) ûη,j is max{2Mj, supX ĝη,j}-Lipschitz. Indeed if x, y ∈ X are such that
d(x, y) > 1

j then |ûη,j(x) − ûη,j(y)| ≤ 2M ≤ 2Mjd(x, y). On the other

hand, if d(x, y) < 1
j then {x, y} ∈ C

1
j
x,y, implying that |ûη,j(y) − ûη,j(x)| ≤

ĝη,j(x)+ĝη,j(y)
2 d(x, y) ≤ supX ĝη,jd(x, y).

(c) ĝη,j ∈ UG
1
j (ûη,j). We prove that ûη,j(y)−ûη,j(x) ≤

∫
c
ĝη,j for every x, y ∈ X

and every c ∈ C
1
j
x,y. This is enough to show the thesis, since the integral is

symmetric. If ûη,j(x) = M there is nothing to prove. Otherwise for every

δ > 0 we can find a chain cδ ∈ C
1
j with ω(cδ) = x and α(cδ) ∈ A such

that ûη,j(x) ≥ u(α(cδ)) +
∫
cδ
ĝη,j − δ. The chain cδ ? c is admissible for the

computation of the infimum in the definition of ûη,j(y), giving ûη,j(y) ≤
u(α(cδ)) +

∫
cδ
ĝη,j +

∫
c
ĝη,j ≤ ûη,j(x) +

∫
c
gη,j + δ. The thesis follows by the

arbitrariness of δ.
(d) ûη,j(x) ≤ ûη,k(x) if j ≤ k. This follows since ĝη,j ≤ ĝη,k and since each

1
k -chain is also a 1

j -chain.

(e) ûη,j is constant on each 1
j -chain connected component of X\B2R(x0). Indeed,

let x, y ∈ X be such that there exists a 1
j -chain cx,y ⊆ X \ B2R(x0). Let

c ∈ C
1
j be such that α(c) ∈ A and ω(c) = x. Then c′ = c ? cx,y ∈ C

1
j and

satisfies α(c′) ∈ A, ω(c′) = y. Moreover,∫
c′
ĝη,j =

∫
c

ĝη,j +

∫
cx,y

ĝη,j =

∫
c

ĝη,j

since ĝη,j ≡ 0 on X\B2R(x0). This is enough to show that ûη,j(y) ≤ ûη,j(x).
Reversing the roles of x and y we get the opposite inequality and so that
ûη,j(y) = ûη,j(x).
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Step 6. Definition of uη,j and gη,j . We define uη,j with a cutoff procedure to
impose that uη,j ≡ 0 outside B3R(x0). We piecewisely define uη,j . On B2R(x0) we
set uη,j = ûη,j . Then we define uη,j on each 1

j -chain connected component Y of

X \B2R(x0) in the following way. By items (e) and (a) of Step 5, we have that ûη,j
is constantly equal to some δY ∈ [−M, 0] on Y. We define uη,j on Y by

uη,j(x) :=

− δY
R d(x, x0) + 3δY if d(x, x0) ∈ [2R, 3R],

0 if d(x, x0) ≥ 3R.

The same proof of item (b) of Step 5 implies that uη,j is max{2Mj, supX ĝη,j+
M
R }-

Lipschitz. Indeed, the only non-trivial case is when d(x, y) < 1
j . In that case,

if x, y ∈ B2R(x0) then the proof does not change. If x, y ∈ X \ B2R(x0) then
they must be in the same 1

j -chain connected component Y of X \ B2R(x0), so

|uη,j(x) − uη,j(y)| ≤ |δY |
R |d(x, x0) − d(y, x0)| ≤ M

R d(x, y). In the last case we have
x ∈ B2R(x0) and y ∈ X \B2R(x0). Here we have

|uη,j(x)− uη,j(y)| ≤ |ûη,j(x)− ûη,j(y)|+
|δY|
R

(d(y, x0)− 2R)

≤ sup
X
ĝη,jd(x, y) +

M

R
d(x, y),

where Y is the 1
j -chain connected component of X \B2R(x0) containing y.

It remains to define the new gradients gη,j . We set

δj := sup
{
|δY| : Y ∈ C

1
j -cc(X \B2R(x0))

}
and

hη,j :=
δj
R

·max

{
0,min

{
1, 5− d(x0, x)

R

}}
.

Observe that hη,j =
δj
R on B4R(x0), that hη,j is Lipschitz and that hη,j ≡ 0 on

X \ B5R(x0). Finally define gη,j := ĝη,j + hη,j . We claim that gη,j ∈ LUG
1
j (uη,j).

By definition, gη,j is Lipschitz, so it remains to show it is a 1
j -upper gradient of

uη,j . Let c ∈ C
1
j . We divide c in subchains ci such that ω(ci) = α(ci+1) for every i

and such that each ci is of one of the following forms:

• ci ⊆ B2R(x0);
• ci ⊆ A2R,3R(x0) := B3R(x0) \B2R(x0);
• ci ⊆ X \B3R(x0)
• ci = {xi, yi} with xi ∈ B2R(x0) and yi /∈ B2R(x0) or xi /∈ B2R(x0) and
yi ∈ B2R(x0);

• ci = {xi, yi} with xi ∈ B3R(x0) and yi /∈ B3R(x0) or xi /∈ B3R(x0) and
yi ∈ B3R(x0).

In all these cases we prove that |uη,j(ω(ci)) − uη,j(α(ci))| ≤
∫
ci
gη,j . If ci ⊆

B2R(x0), we use item (c) of Step 5 to get |uη,j(ω(ci))−uη,j(α(ci))| = |ûη,j(ω(ci))−
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ûη,j(α(ci))| ≤
∫
ci
ĝη,j ≤

∫
ci
gη,j . If ci ⊆ A2R,3R(x0), then it must be contained

in the same 1
j -chain connected component Y of X \ B2R(x0). Therefore we have

|uη,j(ω(ci)) − uη,j(α(ci))| ≤ |δY |
R |d(ω(ci), x0) − d(α(ci), x0)| ≤ δj

R d(ω(ci), α(ci)) ≤∫
ci
hη,j ≤

∫
ci
gη,j . If ci ⊆ X \B3R(x0) then 0 = |uη,j(ω(ci))−uη,j(α(ci))| ≤

∫
ci
gη,j .

If ci = {xi, yi} is as in the last two cases, we have

|uη,j(yi)− uη,j(xi)| ≤ |ûη,j(yi)− ûη,j(xi)|+
|δj |
R

×max{d(yi, ∂A2R,3R(x0)), d(xi, ∂A2R,3R(x0))}

≤
∫
{xi,yi}

ĝη,j +

∫
{xi,yi}

hη,j =

∫
{xi,yi}

gη,j ,

because max{d(xi, ∂A2R,3R(x0)), d(yi, ∂A2R,3R(x0))} ≤ d(xi, yi) and item (c) of
Step 5. Therefore

|uη,j(ω(c))− uη,j(α(c))| ≤
∑
i

|uη,j(ω(ci))− uη,j(α(ci))| ≤
∑
i

∫
ci

gη,j =

∫
c

gη,j .

Step 7. In this step we show that uη,j and gη,j satisfy (15) if we prove that
uη,j converges pointwise to u on KN and ûη,j converges uniformly to u ≡ 0 on
X \B2R(x0) as j → +∞. Indeed, if this is true, we get that δj satisfies

lim
j→+∞

δj = lim
j→+∞

‖ûη,j‖L∞(X\B2R(x0)) = 0. (16)

Therefore we obtain

lim
j→+∞

‖u− uη,j‖Lp(X)

= lim
j→+∞

(∫
KN

|u− uη,j |p dm+

∫
B2R(x0)\KN

|u− uη,j |p dm

+

∫
X\B2R(x0)

|u− uη,j |p dm

) 1
p

≤ 0 + (2M)m(B2R(x0) \KN )
1
p + 0 ≤ η.

We used dominated convergence for the estimate of the first summand and the
estimate |u − uη,j | ≤ 2M since both functions take values on [−M,M ] and

m(B2R(x0) \KN )
1
p ≤ η(2M)−1 for the second term. For the third term we divided

the integral in two parts: on the annulus A2R,3R(x0) we used again dominated
convergence since |u − uη,j | = |uη,j | ≤ δj on it, and we can use (16), while on
X \ B3R(x0) we have |u − uη,j | = 0. This concludes the first estimate in (15). For
the second one we observe that

lim
j→+∞

‖gη,j − gη‖Lp(X) ≤ lim
j→+∞

(
‖ĝη,j − gη‖Lp(X) + ‖hη,j‖Lp(X)

)
= 0,

https://doi.org/10.1017/prm.2025.10052 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10052


Sobolev spaces via chains in metric measure spaces 31

Figure 1. The picture shows the definition of csj and cej in three different situations that
cover all possible cases. On the left, α(cj) /∈ B2R− 1

j
(x0), so csj = ∅ and cej 6= cj . In the

middle, α(cj) ∈ B2R− 1
j
(x0) and cj is contained in B2R− 1

j
(x0), so cj = csj = cej . On the

right, α(cj) ∈ B2R− 1
j
(x0), but cj ∩ (X \B2R− 1

j
(x0)) 6= ∅, so csj 6= ∅, csj 6= cj and cej 6= cj .

where we used dominated convergence on the first term, since ĝη,j → gη pointwise
almost everywhere and they are supported on B2R(x0), and the estimate

‖hη,j‖Lp(X) ≤
δj
R
m(B5R(x0))

1
p ,

where the limit superior of the right hand side is 0 because of (16).
In the last two steps we show that uη,j converges to u pointwise on KN and that

ûη,j converges uniformly to 0 outside B2R(x0).
Step 8. We prove that uη,j converges pointwise to u on KN as j → +∞. We

suppose by contradiction that there exists some x ∈ KN such that uη,j(x) does not
converge to u(x ) as j goes to +∞. On KN we have uη,j = ûη,j , by definition. By item
(d) of Step 5, the sequence ûη,j(x) is increasing and so it admits a limit. Moreover,
by item (a) of Step 5, ûη,j(x) ≤ u(x) for every j. So, our assumption means that
limj→+∞ ûη,j(x) < u(x). Let us fix δ > 0 such that limj→+∞ ûη,j(x) ≤ u(x) − δ.
Since u(x) ≤ M , we get ûη,j(x) ≤ M − δ for every j. By definition, we can find

chains cj ∈ C
1
j such that ω(cj) = x, α(cj) ∈ A and

u(α(cj)) +

∫
cj

ĝη,j < u(x)− δ

2
≤M. (17)

We consider two subchains. If cj = {qj0, . . . , q
j
Nj

= x} we define csj := {qj0, . . . , q
j
ij
}

and cej := {qjkj
, . . . , qjNj

}, where ij is the biggest integer i such that the chain

{qj0, . . . , q
j
i } is contained in B2R− 1

j
(x0), while kj is the smallest integer k such that

the chain {qjk, . . . , q
j
Nj

= x} is contained in B2R− 1
j
(x0). Here, the superscript stay

for ‘start’ and ‘end’, respectively. Figure 1 represents these subchains in three differ-
ent exhaustive situations. As x ∈ KN ⊆ B2R(x0), we have that x ∈ B2R− 1

j
(x0) for

j big enough. For these indices, cej is not empty, as it contains at least x. Moreover,
ω(cej) = x and α(cej) ∈ A. The last assertion can be proved as follows: either cej = cj ,

so α(cej) = α(cj) ∈ A, or d(α(cej), x0) ≥ 2R − 2
j ≥ R, because of the maximality

property of cej , and so α(cej) ∈ X\BR(x0) ⊆ A. On the other hand, csj can be empty,
and it is empty if and only if α(cj) /∈ B2R− 1

j
(x0). If c

s
j is not empty then either
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csj = cj , so ω(c
s
j) = x ∈ A, or ω(csj) /∈ B2R− 2

j
(x0) by the maximality property of

csj , so ω(c
s
j) ∈ A. Moreover, α(csj) = α(cj) ∈ A. In any case the four points α(csj),

ω(csj), α(c
e
j), ω(c

e
j) belong to A. There are three possible cases:

(1) α(cj) /∈ BR(x0), so u(α(cj)) = 0 = u(α(cej)). In this case, (17) implies that

u(α(cej)) +

∫
cej

ĝη,j ≤ u(α(cj)) +

∫
cj

ĝη,j < u(x)− δ

2
= u(ω(cej))−

δ

2
. (18)

(2) α(cj) ∈ BR(x0), which means csj 6= ∅ and α(csj) = α(cj), and we have

u(α(csj)) +

∫
csj

ĝη,j < u(ω(csj))−
δ

4
. (19)

(3) α(cj) ∈ BR(x0) and (19) does not hold. In this case, in view of (17), we
necessarily have csj 6= cj 6= cej , so ω(c

s
j), α(c

e
j) /∈ B2R− 2

j
(x0). Moreover

u(α(cej)) +

∫
cej

ĝη,j = u(ω(csj)) +

∫
cej

ĝη,j ≤ u(α(csj)) +

∫
csj

ĝη,j +

∫
cej

ĝη,j +
δ

4

≤ u(α(cj)) +

∫
cj

ĝη,j +
δ

4

< u(x)− δ

4
= u(ω(cej))−

δ

4
(20)

One of the three cases (1), (2) or (3) holds true for infinitely many j ’s. We now
show how to conclude the proof supposing that case (1) occurs infinitely many
times. Later we will show how to conclude in the other two cases. We restrict to
the indices where (1) holds true and we do not relabel the subsequence. We claim
that the assumptions of proposition 2.2 (see also the discussion in remark 2.3) are
satisfied by {cej}j .

• Length. `(cej) ≤ σ−1
∫
cej
ĝη,j ≤ σ−1M , where we used (18), (17) and the fact

that cej ⊆ B2R− 1
j
(x0), so ĝη,j ≥ σ on cej .

• Diameter. Since u|A is continuous, we can take ∆ > 0 so that for every
y ∈ A such that d(x, y) ≤ ∆ we have |u(x) − u(y)| ≤ δ

4 . Since by (18)

u(α(cej)) < u(x) − δ
4 , and since α(cej) ∈ A, we conclude that Diam(cej) ≥

d(α(cej), x) ≥ ∆.
• h-sum. By definition, hj |B

2R− 1
j
(x0) ≤ ĝη,j |B

2R− 1
j
(x0), so∫

cej

hj ≤
∫
cej

ĝη,j ≤M,

again by (18) and (17).
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Therefore the chains cej subconverge to a curve γ of X, by proposition 2.2 and
remark 2.3. We relabel the sequence accordingly, and we denote the chains again by
cej . Since A is closed, so α(γ) = limj→+∞ α(cej) belongs to A, and u|A is continuous,
we have that u(α(γ)) = limj→+∞ u(α(cej)). This, together with Step 4, says that we
are in position to apply lemma 2.7 to the functions ĝη,j ↗ gη and to the sequence
of chains cej converging to γ, concluding that

u(α(γ)) +

∫
γ

gη ≤ lim
j→+∞

u(α(cej)) +

∫
cej

ĝη,j ≤ u(x)− δ

2
= u(ω(γ))− δ

2
.

Here we used (18) in the last inequality. This contradicts the fact that gη ∈ UG(u).
Suppose now that case (3) occurs for infinitely many indices j. Then (20) and

the same proof given above says that {cej}j is a sequence of chains satisfying again
the assumptions of proposition 2.2. The remaining part of the argument is exactly
the same, using (20) to violate the fact that gη is an upper gradient of u.

Finally suppose that (2) occurs for infinitely many indices. Then the sequence
{csj}j satisfies the assumptions of proposition 2.2. Indeed, the estimate of the length
and the h-sum is identical, using (19) instead of (18). In the proof of the lower bound
of the diameter we need to distinguish two cases. If csj = cj then the same proof
as above says that Diam(csj) ≥ ∆. Otherwise we have that ω(csj) /∈ B2R− 2

j
(x0), so

Diam(csj) ≥ d(α(csj), ω(c
s
j)) ≥ R − 2

j ≥ 1. In any case, Diam(csj) ≥ min{∆, 1} > 0.

The remaining part of the argument is again the same, using (19) to violate the
fact that gη is an upper gradient of u. We remark that the argument works since
both endpoints of csj belong to A, which is closed and on which u is continuous.

Step 9. We prove that ûη,j converges uniformly to 0 on X\B2R(x0) as j → +∞.
Suppose it is not the case and recall that ûη,j ≤ u because of item (a) of Step 5. Then
we can find 0 < δ < M and a sequence of points xj /∈ B2R(x0) such that ûη,j(xj) <

−δ. By definition of ûη,j there must be a chain cj = {qj0, . . . , q
j
Nj

} ∈ C
1
j with

α(cj) ∈ A and ω(cj) = xj such that u(α(cj))+
∫
cj
ĝη,j ≤ − δ

2 . Since u|X\BR(x0) = 0,

then α(cj) must belong to BR(x0). Let c
s
j = {qj0, . . . , q

j
ij
} be the subchain of cj with

the property that ij is the biggest integer i such that {qj0, . . . , q
j
i } ⊆ B2R− 1

j
(x0).

By maximality we have that qjij /∈ B2R− 2
j
(x0). Therefore u(q

j
ij
) = u(ω(csj)) = 0.

Moreover, we have

u(α(csj)) +

∫
csj

ĝη,j ≤ u(α(cj)) +

∫
cj

ĝη,j ≤ −δ
2
= u(ω(csj))−

δ

2
.

We now claim that {csj}j satisfies the assumptions of proposition 2.2. The proof of
the upper bound on the length is the same given in Step 8, since ĝη,j ≥ σ on csj , so

`(csj) ≤ σ−1

∫
csj

ĝη,j ≤ σ−1

(
−u(α(csj))−

δ

2

)
≤ σ−1M.

For the diameter we have: Diam(csj) ≥ d(α(csj), ω(c
s
j)) ≥ R − 2

j , since α(c
s
j) ∈

BR(x0) and ω(c
s
j) /∈ B2R− 2

j
(x0). Finally,
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csj

hj ≤
∫
csj

ĝη,j ≤M.

Using again proposition 2.2 and remark 2.3, we conclude that the sequence of
chains {csj}j subconverges to a curve γ of X. Arguing as in Step 8 we deduce that
gη violates the upper gradient inequality on γ since the endpoints of csj belong to
A and u is continuous on A. This is a contradiction. �

Remark 6.6. By proposition 4.4 we know that every Borel ɛ-upper gradient with
finite values is an upper gradient in the classical sense. Therefore the proof above
implies that if (X, d) is complete then F̃curve(u) can be realized as an infimum of
the Lp(X)-norms of Lipschitz upper gradients of Lipschitz functions that converge
to u in Lp(X).

As announced, the proof of theorem 6.4 can be adapted to show that H1,p
C ,Lip(X)

and H1,p
C (X) are isometric if (X, d) is complete.

Theorem 6.7. Let (X, d,m) be a metric measure space such that (X, d) is complete.
Then

H1,p
C ,Lip(X) = H1,p

C (X)

and

‖u‖H1,p
C ,Lip(X) = ‖u‖H1,p

C (X)

for every u ∈ Lp(X).

Before doing that we need a version of the Leibniz rule for chain upper gradients.

Proposition 6.8 (Leibniz rule). Let u : X → R be Borel and ϕ ∈ Lip(X). For
every g ∈ UGε(u), we have

|u| slεϕ+Qεϕg ∈ UGε(uϕ), (21)

where Qεϕ(x) := supy∈Bε(x)
|ϕ|(y). In particular, for every u ∈ Lp(X) it holds that

FC (uϕ) ≤
(∫

|u|p(lipϕ)p dm
) 1

p

+ ‖ϕ‖L∞(X) FC (u).

Proof. Let g ∈ UGε(u). We verify (21). Given c = {qi}Ni=0 ∈ C ε, we compute

https://doi.org/10.1017/prm.2025.10052 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10052


Sobolev spaces via chains in metric measure spaces 35

|(uϕ)(ω(c))− (uϕ)(α(c))| ≤
N−1∑
i=0

|(uϕ)(qi+1)− (uϕ)(qi)|

≤
N−1∑
i=0

∣∣∣∣u(qi+1)ϕ(qi+1)−
1

2
u(qi+1)ϕ(qi) +

1

2
u(qi+1)ϕ(qi)

− 1

2
u(qi)ϕ(qi+1) +

1

2
u(qi)ϕ(qi+1)− u(qi)ϕ(qi)

∣∣∣∣
≤

N−1∑
i=0

(
1

2
|u(qi+1)|slεϕ(qi+1) +

1

2
|u(qi)|slεϕ(qi)

)
d(qi, qi+1)

+
1

2
|ϕ(qi+1)||u(qi+1)− u(qi)|+

1

2
|ϕ(qi)||u(qi+1)− u(qi)|

≤
∫
c

|u| slεϕ+
N−1∑
i=0

1

4
(|ϕ(qi)|+ |ϕ(qi+1)|)(g(qi) + g(qi+1))d(qi, qi+1)

≤
∫
c

|u| slεϕ+
N−1∑
i=0

(Qεϕg)(qi) + (Qεϕg)(qi+1)

2
d(qi, qi+1) =

∫
c

(|u| slεϕ+Qεϕg).

Now, to estimate FC (ϕu), we use that inf{‖h‖Lp(X) : h ∈ UGε(uϕ), hBorel} is
less than or equal to

inf{‖|u| slεϕ+Qεϕg‖Lp(X) : g ∈ UGε(u), g Borel}
≤ inf{‖|u| slεϕ‖Lp(X) + ‖Qεϕg‖Lp(X) : g ∈ UGε(u), g Borel}

≤
(∫

|u|p slεϕp dm

) 1
p

+ ‖ϕ‖L∞(X) inf{‖g‖Lp(X) : g ∈ UGε(u), g Borel}

where we used that ‖Qεϕ‖L∞(X) = ‖ϕ‖L∞(X). By taking the limit as ɛ→ 0 and
using the fact that ϕ is Lipschitz, dominated convergence and the definition of
FC (·), we get the conclusion. �

Proof of theorem 6.7. The proof is a modification of the one of theorem 6.4. We
highlight what are the differences in each step.

Step 1. The proof does not change if we show that for every u ∈ Lp(X) we
can find a sequence of bounded functions uj with bounded support such that
uj → u in Lp(X) and limj→+∞ FC (uj) ≤ FC (u). We fix a basepoint x0 ∈ X and
we consider the 1-Lipschitz function ϕj(x) = max{0,min{1, j + 1 − d(x, x0)}}.
We define uj := min{j,max{−j, ϕju}}. By definition, uj is bounded and has
bounded support. Moreover, every ɛ-upper gradient of ϕju is also a ɛ-upper gradi-
ent of uj. This implies that FC (uj) ≤ FC (ϕju) for every j. proposition 6.8 implies
that
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lim
j→+∞

FC (uj) ≤ lim
j→+∞

FC (ϕju) ≤ lim
j→+∞

(∫
|u|p(lipϕj)

p dm

) 1
p

+ ‖ϕj‖L∞ FC (u)

= lim
j→+∞

(∫
Bj+1(x0)\Bj(x0)

|u|p dm

) 1
p

+ FC (u)

= FC (u),

where in the last equality we used that u ∈ Lp(X).
Step 2. It does not change. In particular the claim we have to prove is the

following. For every ɛ> 0, for every Borel ɛ-upper gradient g ∈ UGε(u) and for
every η > 0 there exists another Borel ɛ-upper gradient gη ∈ UGε(u) such that

‖g − gη‖Lp(X) < η

and with the following property. For every j ∈ N there exist functions uη,j : X → R
and gη,j ∈ LUG

1
j (uη,j) such that

lim
j→+∞

‖uη,j − u‖Lp(X) ≤ 2η and lim
j→+∞

‖gη,j − gη‖Lp(X) = 0.

Let R ≥ 1 be such that u ≡ 0 on X\BR(x0). We recall that it is enough to consider
chain upper gradients g ∈ UGε(u) that are lower semicontinuous and such that
g ≡ 0 on X \B2R(x0), by a truncation argument.

Step 3. The definition of gη does not change. Observe that gη ≡ 0 on X\B2R(x0)
and that gη ∈ UGε(u) because gη ≥ g.

Step 4. The definition of ĝη,j does not change and satisfies the same properties.
Step 5. Here there is a difference in the definition of the set A. Since gη ∈ Lp(X)

then m({gη = +∞}) = 0. By outer regularity of the measure we can find an open

set Uη containing {gη = +∞} and such that m(Uη)
1
p < η(2M)−1. Moreover, since

gη ≡ 0 on X \B2R(x0), we can choose Uη such that Uη ⊆ B2R(x0). Now we change
the definition of the set A by setting A := (KN ∪(X\(BR(x0)))\Uη. It is still closed
and u|A is still continuous. Now, the definition of ûη,j does not change, except for
the fact that we use this set A. Properties (a)-(e) continue to hold.

Step 6. The definitions of uη,j and gη,j do not change.
Step 7. Here we claim that it is enough to show that uη,j(x) converges to u(x )

for every x ∈ KN \ Uη as j → +∞ and that ûη,j converges uniformly to 0 on
X \B2R(x0). Indeed if this is true we have

lim
j→+∞

∫
X

‖u− uη,j‖Lp(X) dm

≤ lim
j→+∞

(∫
KN\Uη

|u− uη,j |p dm+

∫
(B2R(x0)\KN )∪Uη

|u− uη,j |p dm

+

∫
(X\B2R(x0))

|u− uη,j |p dm

) 1
p

≤ 0 + (2M)m(B2R(x0) \KN )
1
p + (2M)m(Uη)

1
p + 0 ≤ 2η.
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Step 8. Here we need an additional argument that justifies the different choice
of A. Indeed, we claim that in any of three cases, the limit curve has its extreme
points in A.

In cases (1) and (3) this is true because either α(cej) = α(cj) ∈ A by defi-

nition, or d(α(cej),X \ B2R(x0)) ≤ 2
j , by maximality of cej . In the first case the

result is trivial because A is closed and u|A is continuous. In the second case
α(γ) = limj→+∞ α(cej) ∈ X \B2R(x0), so α(γ) ∈ A since Uη ⊆ B2R(x0). Moreover,
u(α(γ)) = 0 = u(α(cej)) because all these points belong to X\BR(x0). On the other
hand ω(γ) = limj→+∞ ω(cej) = x ∈ A because x is chosen in KN \ Uη. Here, we
have u(ω(γ)) = u(x) = u(ω(cej)).

In case (2) we have that α(γ) = limj→+∞ α(csj) ∈ A, because α(csj) ∈ A for every
j and A is closed. Moreover, u(α(γ)) = limj→+∞ u(α(csj)) since u|A is continuous.
On the other hand, either ω(csj) = x for every j, so ω(γ) = x ∈ A and u(ω(γ)) =

u(x) = u(ω(csj)), or d(ω(csj),X \ B2R(x0)) ≤ 2
j , by maximality of csj . Arguing as

before, we get that ω(γ) ∈ X \ B2R(x0), so it belongs to A and u(ω(γ)) = 0 =
u(ω(csj)).

In every case, the extreme points of γ belong to the set {gη < +∞}. Hence gη
satisfies the upper gradient inequality along γ because of proposition 4.4, while the
proof shows that this is not the case, giving a contradiction.

Step 9. The proof does not change, using the same modifications we did in
Step 8. �

The combination of theorems 6.4, 6.7 and proposition 3.2 gives the proof of
theorem 1.1.

The next theorem states that the two spaces defined via chains do not change if
we take the completion.

Theorem 6.9. Let (X, d,m) be a metric measure space and let (X̄, d̄, m̄) be its
completion. Then the identity map ι : Lp(X) → Lp(X̄) induces isometries between
H1,p

C ,Lip(X) and H
1,p
C ,Lip(X̄) and between H1,p

C (X) and H1,p
C (X̄).

Proof. Let u0 ∈ Lp(X̄) be any representative of ι(u). Since ɛ-chains in X are ɛ-
chains in X̄, restrictions of m̄-measurable elements in UGε(u0) are m-measurable
and belong to UGε(u) and the property of being Lipschitz is preserved. Thus,
H1,p

C (X̄) ⊆ ι(H1,p
C (X)) and ‖u‖H1,p

C (X) ≤ ‖ι(u)‖H1,p
C (X̄) for every u ∈ Lp(X), and

similarly H1,p
C ,Lip(X̄) ⊆ ι(H1,p

C ,Lip(X)) and ‖u‖H1,p
C ,Lip(X) ≤ ‖ι(u)‖H1,p

C ,Lip(X̄) for every

u ∈ Lp(X).
For the other inequality we proceed in two different ways. If u ∈ Lp(X)∩Lip(X)

and g ∈ LUGε(u)∩Lp(X), then we consider the Lipschitz extensions ū, ḡ of u and
g on X̄. We claim that ḡ ∈ LUG

ε
2 (ū) ∩ Lp(X). Indeed, given a chain c = {qi}Ni=0 ∈

C
ε
2 (X̄) we can find sequence of chains cj = {qji }Ni=0 ∈ C ε(X) such that qji converges

to qi for every i = 0, . . . , N as j → +∞. By continuity of ḡ and ū we then have

ū(ω(c))− ū(α(c)) = lim
j→+∞

u(ω(cj))− u(α(cj)) ≤ lim
j→+∞

∫
cj

g =

∫
c

ḡ.

https://doi.org/10.1017/prm.2025.10052 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10052


38 E. Caputo and N. Cavallucci

Therefore F̃C ,Lip(ι(u)) = F̃C ,Lip(ū) ≤ FC ,Lip(u) for every u ∈ Lp(X). This

is enough to conclude that ι(H1,p
C ,Lip(X)) ⊆ H1,p

C ,Lip(X̄) and ‖ι(u)‖H1,p
C ,Lip(X̄) ≤

‖u‖H1,p
C ,Lip(X) for every u ∈ Lp(X).

For the remaining inequality we recall that in the definition of FC (u) the infimum
of the Lp(X)-norms can be taken among the p-weak ɛ-upper gradients of u that
are m-measurable. Moreover, since m(X̄ \ X) = 0, then C -Modεp(C (X̄ \ X)) = 0.
This means that every g ∈ WUGε

p(u) ∩ Lp(X) defines a m̄-measurable function

on X̄, by (2), which belongs to WUGε
p(u0) ∩ Lp(X̄), where u0 ∈ Lp(X̄) is any

representative of ι(u). Hence FC (u0) ≤ FC (u) for every u ∈ Lp(X). This implies
that ι(H1,p

C (X)) ⊆ H1,p
C (X̄) and ‖ι(u)‖H1,p

C (X̄) ≤ ‖u‖H1,p
C (X) for every u ∈ Lp(X). �

Theorem 1.2. Let (X, d,m) be a metric measure space, possibly non-complete.
Then

H1,p
C ,Lip(X) = H1,p

C (X) = H1,p
AGS(X)

and

‖u‖H1,p
C ,Lip(X) = ‖u‖H1,p

C (X) = ‖u‖H1,p
AGS(X)

for every u ∈ Lp(X).

Proof. Direct consequence of theorems 1.1, 6.9 and proposition 3.3. �

6.2. Comments on the main results with the λ-integral

If one considers (ε, λ)-upper gradients instead of ɛ-upper gradients, for λ ∈ [0, 1],
one defines natural variants of the functionals FC and FC ,Lip, denoted by Fλ

C and

Fλ
C ,Lip. Their relaxations are F̃λ

C and F̃λ
C ,Lip. Let us outline some differences.

For λ 6= 1
2 , the symmetric property in (6) does not hold, see remark 2.1.

Therefore, it is not obvious that Fλ
C and Fλ

C ,Lip satisfy property (c) of section

2.1. This is due to the fact that it is not true in general that if g ∈ UGε,λ(u) then
g ∈ UGε,λ(−u) when λ 6= 1

2 . However the same proofs of theorems 6.4 and 6.7 show

that F̃λ
C ,Lip(u) = F̃curve(u) = F̃λ

C (u) for every u ∈ Lp(X), if (X, d) is complete. In

particular, a posteriori, F̃λ
C and F̃λ

C ,Lip are seminorms, when (X, d) is complete

and the related Sobolev spaces are denoted by H1,p
C ,Lip,λ and H1,p

C ,λ. There are some
subtleties to be taken into consideration.

First, the proof of proposition 6.8 holds for every λ ∈ [0, 1] under the additional
assumption that ϕ ≥ 0, which is enough to perform Step 1 in the proof of the-
orem 6.7. One can follows verbatim the same proof removing the absolute values
except for the first term in the third line and replacing the first two 1

2 -factors on
the second line with (1− λ) and the other two 1

2 -factors with λ.
Second, one can use remark 2.10 to arrive to a contradiction in Steps 8 and 9.
Theorem 6.9 holds also for the spaces H1,p

C ,Lip,λ and H1,p
C ,λ, for every λ ∈ [0, 1]. For

H1,p
C ,Lip,λ the proof is identical. Also forH1,p

C ,λ, when λ ∈ (0, 1), the proof is the same,
in view of remark 5.8. When λ ∈ {0, 1} one needs a different argument because it
is no more true that C -Modε,1p (C (X̄ \ X)) = 0 and similarly for λ=0, see remark
5.8. We do it for the case λ=1, the other being similar. We extend u ∈ Lp(X)
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as ū(z) := limr→0 supw∈Br(z)∩X u(w), for z ∈ X̄ \ X. Moreover, we extend every

m-measurable g ∈ UGε,1(u) on X as +∞ on X̄\X. This is a m̄-measurable function
by (2). We claim that ḡ ∈ UG

ε
2 ,1(ū). Let c = {qi}Ni=0 ∈ C

ε
2 (X̄). If there exists

i ∈ {0, . . . , N − 1} such that qi ∈ X̄ \ X then 1
∫
c
g = +∞ and there is nothing to

prove. Otherwise qi ∈ X for every i ∈ {0, . . . , N − 1}. For every w ∈ Br(ω(c)) ∩ X
we have that cw := {q0, . . . , qN−1, w} is a ɛ-chain contained in X if r < ε

2 . For every
0 < r < ε

2 we have

ū(ω(c))− ū(α(c)) ≤ sup
w∈Br(ω(c))∩X

u(w)− u(α(c)) ≤ sup
w∈Br(ω(c))∩X

1

∫
cw

g

= sup
w∈Br(ω(c))∩X

N−2∑
i=0

g(qi)d(qi, qi+1) + g(qN−1)d(qN−1, w)

≤
N−2∑
i=0

g(qi)d(qi, qi+1) + g(qN−1)(d(qN−1, qN ) + r).

By taking r→ 0 on the right hand side we get ū(ω(c) − ū(α(c)) ≤ 1
∫
c
ḡ. This is

enough to conclude the proof.
As a consequence, the spacesH1,p

C ,λ(X) are all isometric, for every possible value of

λ ∈ [0, 1], even when X is not complete. The same holds for the spaces H1,p
C ,Lip,λ(X).

7. Poincaré inequality

We recall the notion of the Poincaré inequality that we now discuss. Let u : X → R,
g : X → [0,+∞] be locally integrable and let p ≥ 1. We say that the couple (u, g)
satisfies a p-Poincaré inequality if there exists λ,C ≥ 1 such that

−
∫
Br(x)

∣∣∣∣∣u−−
∫
Br(x)

udm

∣∣∣∣∣ dm ≤ Cr

(
−
∫
Bλr(x)

gp dm

) 1
p

for every ball Br(x) ⊆ X. The following result is a consequence of theorem 1.2 and
proposition 3.3.

Corollary 7.1. Let (X, d,m) be a metric measure space. Then it satisfies a p-
Poincaré inequality for all couples (u, lipu), where u ∈ Lip(X), if and only if
it satisfies a p-Poincaré inequality for all couples (u, g), where u is Borel and
g ∈ UGε(u) for some ɛ> 0 is m-measurable, with same constants. Moreover,
this happens if and only if the metric completion (X̄, d̄, m̄) satisfies a p-Poincaré
inequality for couples (u, lipu), where u ∈ Lip(X̄).

Proof. Let us consider the first equivalence. The if implication is trivial by
lemma 4.3 and dominated convergence. The converse implication follows by apply-
ing theorem 1.2 to the metric measure space (Bλr(x), d,m). This gives a sequence
uj ∈ Lip(Bλr(x)) such that uj → u in Lp(Bλr(x)) and such that
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lim
j→+∞

‖lipuj‖Lp(Bλr(x)) = F̃C (u) ≤ FC (u) ≤ ‖g‖Lp(Bλr(x)).

Note that F̃C (u) and FC (u) are defined on the metric measure space (Bλr(x), d,m).
To apply the hypothesis and conclude, we consider any Lipschitz extension ũj ∈
Lip(X) of uj. The last equivalence follows from proposition 3.3. �

Remark 7.2. The previous corollary is not true if we consider the p-Poincaré
inequality for all couples (u, g) with u Borel and g ∈ UG(u). Indeed the metric
measure space (X, d,m) = ([0, 1]\Q, de,L1|[0,1]\Q) satisfies the 1-Poincaré inequality
for all couples (u, lipu) with u ∈ Lip(X), because of corollary 7.1. However, it
does not satisfy the 1-Poincaré inequality for all couples (u, g) with u Borel and
g ∈ UG(u). Indeed g ≡ 0 is an upper gradient of every function u.

Remark. As a consequence of remark 6.6 we have the following fact. A metric
measure space (X, d,m) such that (X, d) is complete satisfies a p-Poincaré inequality
with respect to couples (u, g), g ∈ UG(u), if and only if it satisfies a p-Poincaré
inequality with respect to couples (u, g), g ∈ UG(u) with u ∈ Lip(X) and g ∈
UG(u)∩Lip(X), with same constants. This result sharpens [24, theorem 2], in which
m is required to be doubling and whose proof does not say that the constants of
the Poincaré inequalities are the same, compare also with [22, theorem 8.4.1].

7.1. Pointwise estimates with Riesz potential via chains

When the metric measure space is doubling, the Poincaré inequality is usually
expressed in terms of pointwise estimates. We extend these classical results to our
setting. In order to do that, we recall that, given a Borel function u : X → R, a
point x ∈ X is called a Lebesgue point of u if u(x) = limr→0 −

∫
Br(x)

udm. The set of

Lebesgue points of u is denoted by Leb(u) ⊆ X. If u ∈ Lp(X) for some 1 ≤ p < +∞
then m(X \ Leb(u)) = 0.

Proposition 7.4. Let (X, d,m) be a doubling metric measure space. The following
properties are quantitatively equivalent:

(i) X satisfies a p-Poincaré inequality for all couples (u, lipu), with u ∈
Lip(X);

(ii) there exist C> 0 and L ≥ 1 such that for every Borel u : X → R, for every
x, y ∈ Leb(u), for every ɛ> 0 and for every m-measurable g ∈ UGε(u), it
holds

|u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
gp dmL

x,y; (22)

(iii) there exist C> 0 and L ≥ 1 such that for every u ∈ Lip(X) and for every
x, y ∈ X it holds

|u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
(lipu)p dmL

x,y. (23)
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The measure mL
x,y appearing in (22) and (23) is defined as RL

x,ym, where RL
x,y is

the L-truncated Riesz potential with poles at x, y, namely

RL
x,y(z) :=

(
d(x, z)

m(Bd(x,z)(x))
+

d(y, z)

m(Bd(y,z)(y))

)
χBL

x,y
,

where BL
x,y = BLd(x,y)(x) ∪ BLd(x,y)(y). At x, y we impose by definition that

RL
x,y(x) = RL

x,y(y) = 0. If the measure m is doubling then mL
x,y(X) is a finite

measure, more precisely (see [12, proposition 2.3], whose proof does not use the
completeness of (X, d))

mL
x,y(X) ≤ 8CDLd(x, y). (24)

Proof of proposition 7.4. If (i) holds then (X, d,m) satisfies a p-Poincaré inequality
for all couples (u, g) with u Borel and m-measurable g ∈ UGε(u) for some ɛ> 0, by
corollary 7.1. Then (ii) can be proved as in [21, theorem 9.5]. Indeed two things are
needed: that x, y are Lebesgue points of u and that the space X is geodesic. However,
since (X, d,m) satisfies (i) then also the completion (X̄, d̄, m̄) satisfy (i). Therefore,
after a biLipschitz change of the metric d̄, we can suppose that d̄ is geodesic. In
general, d is not geodesic, but by density, there are points of X arbitrarily close to
every point of a fixed geodesic of X̄. Therefore the proof of [21, theorem 9.5] can
be easily adapted.

Suppose (ii) holds and let u ∈ Lip(X). We have Leb(u) = X, since u is continuous.
Moreover, by lemma 4.3, slεu ∈ UGε(u) for every ɛ> 0. Therefore (22) implies that
|u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
(slεu)

p dmL
x,y for every x, y ∈ X and every ɛ> 0. By

dominated convergence, thanks to the fact that mL
x,y(X) < +∞ by (24), we get

(23), so (iii) holds.
If (iii) holds then (i) holds by a combination of [21, theorem 9.5] and [22, theorem

8.1.7]. �

Remark. The pointwise estimate of item (ii) cannot hold at every point. Indeed
let (X, d,m) = (R, de,L), u = χ0 and g = +∞ · χ0 ∈ UGε(u), for every ɛ> 0. If
x =0 and y =1 then +∞ = |u(x)− u(y)|, while

∫
gp dmL

x,y = 0. This is in contrast
with the case of upper gradients along curves when (X, d) is complete. Indeed, even
if a priori one gets the pointwise estimate with respect to every upper gradient only
on the Lebesgue points of u, see [21, theorem 9.5] and [22, theorem 8.1.7], in [11,
theorem A.3] we showed that it actually holds everywhere.

The pointwise estimate in item (ii) of proposition 7.4 holds everywhere for chain
upper gradients that assume finite values at x and y. This is established in the next
result.

Proposition 7.6. Let (X, d,m) be a doubling metric measure space. Let x, y ∈ X.
The following properties are quantitatively equivalent:
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(i) there exist C> 0 and L ≥ 1 such that (23) holds for every u ∈ Lip(X);
(ii) there exist C> 0 and L ≥ 1 such that for every m-measurable function

g : X → [0,+∞] with g(x), g(y) < +∞ it holds

lim
ε→0

inf
c∈C ε

x,y

`(c)≤Cd(x,y)

(∫
c

g

)p

≤ Cd(x, y)p−1

∫
gp dmL

x,y. (25)

(iii) there exist C> 0 and L ≥ 1 such that (22) holds for every Borel u : X →
R, for every ɛ> 0 and for every m-measurable g ∈ UGε(u) such that
g(x), g(y) < +∞;

Proof of proposition 7.6. If (ii) holds, (25) and the chain upper gradient inequality
gives

|u(x)− u(y)|p ≤ lim
ε→0

inf
c∈C ε

x,y

`(c)≤Cd(x,y)

(∫
c

g

)p

≤ Cd(x, y)p−1

∫
gp dmL

x,y,

which is (iii).
If (iii) holds and u ∈ Lip(X), (22) applied to slεu ∈ UGε(u) by lemma 4.3, gives

|u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
(slεu)

p dmL
x,y.

Therefore (i) follows by applying dominated convergence.
It remains to prove the implication (i) ⇒ (ii). For every ɛ> 0 we denote by Yε

the ɛ-chain connected component of X containing x.
Reduction to the case y ∈ Yε for every ɛ> 0. We assume that y does not

belong to Yε̄ for some ε̄ > 0. If this is the case, condition (i) does not hold and thus
the implication holds trivially true. Indeed, if y /∈ Yε̄ then the function u ≡ 0 on
Yε̄ and u ≡ 1 on (X \Yε̄) is Lipschitz, since d(Yε̄,X \Yε̄) > ε̄ by (4), has lipu ≡ 0
and contradicts (i).

Reduction to the case (X, d) is complete. We claim that properties (i) and
(ii) hold on (X, d,m) if and only if they hold on the completion (X̄, d̄, m̄). If they
hold on X then they clearly hold on X̄. The vice versa in the case of (i) is given
arguing as in proposition 3.3.

Regarding (ii) we argue as follows: given am-measurable function g : X → [0,+∞]
such that g(x), g(y) < +∞ we extend it to ḡ : X̄ → [0,+∞] setting ḡ ≡ +∞
on X̄ \ X. Observe that ḡ is m̄-measurable by (2). If

∫
gp dmL

x,y = +∞ there is

nothing to prove. Otherwise, condition (ii) on X̄ gives that for every η > 0 there

exists ɛ> 0 and a chain cη ∈ C ε
x,y such that `(cη) ≤ Cd(x, y) and

(∫
cη
ḡ
)p

≤
Cd(x, y)p−1

∫
ḡp dm̄L

x,y + η < +∞. Then cη ⊆ X for every η > 0, since if not we
would have

∫
cη
ḡ = +∞. Therefore (25) holds for g on X.

From now on, we assume that (X, d) is complete and x, y belongs to the same
ɛ-chain connected component Yε for every ɛ> 0.

Main argument. We introduce the additional conditions (i)Liploc
there exist

C > 0, L ≥ 1 such that (22) holds for every u ∈ Liploc(X), every ɛ> 0 and every
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g ∈ LUGε(u) bounded; (ii)Lip there exist C > 0 and L ≥ 1 such that for every
g ∈ Lip(X), g ≥ 0 and bounded, and for every ɛ> 0 it holds that

inf
c∈C ε

x,y

`(c)≤Cd(x,y)

(∫
c

g

)p

≤ Cd(x, y)p−1

∫
gp dmL

x,y.

We end the proof of the theorem by showing the following chains of implications:
(i) ⇒ (i)Liploc

⇒ (ii)Lip ⇒ (ii).
Suppose (i) holds, let u ∈ Liploc(X) and g ∈ LUGε(u). lemma 4.3 says that

lipu ≤ g. The function u is Lipschitz on the compact set B
L

x,y, because of [10,
theorem 4.2]. By McShane Extension Theorem we can find a Lipschitz map û ∈
Lip(X) which coincides with u on B

L

x,y. Applying (i), and using that lip û = lipu

mL
x,y-a.e., we get

|u(x)− u(y)|p = |û(x)− û(y)|p ≤ Cd(x, y)p−1

∫
(lip û)p dmL

x,y

= Cd(x, y)p−1

∫
(lipu)p dmL

x,y

≤ Cd(x, y)p−1

∫
gp dmL

x,y,

which proves (i)Liploc
.

To prove that (i)Liploc
⇒ (ii)Lip, we adapt the argument of [16, theorem 1.5]. We

fix ɛ> 0 and a bounded g ∈ Lip(X), with g ≥ 0. We claim that (ii)Lip holds with
C ′ = 2p+4CCDL and L′ = max{L,C ′}. For every δ > 0 such that

∫
X
gp dmL

x,y <

δpmL
x,y(X) we consider the function

uδ : X → [0,+∞), uδ(z) =


inf
{∫

c
(g + δ) : c ∈ C ε(X), if z ∈ Yε,

α(c) = x, ω(c) = z}
0 otherwise.

With usual techniques it is possible to show that uδ is (supX g + δ)-Lipschitz up
to scale ɛ, i.e. if d(z, w) ≤ ε then |uδ(z)− uδ(w)| ≤ (supX g + δ)d(z, w). Moreover,
(g + δ) ∈ LUGε(uδ). Condition (i)Liploc

applied to the couple (uδ, g + δ) implies
that

uδ(y)
p ≤ Cd(x, y)p−1

∫
X

(g + δ)p dmL
x,y.

By definition of uδ we have that
∫
X
(g + δ)p dmL

x,y > 0 and that we can find chains
cδ ∈ C ε

x,y(X) such that

(∫
cδ

(g + δ)

)p

≤ 2Cd(x, y)p−1

∫
X

(g + δ)p dmL
x,y.
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Moreover, using that (g(z) + δ)p ≤ 2p−1(g(z)p + δp) for all z ∈ X, we have

δp`(cδ)
p ≤

(∫
cδ

(g + δ)

)p

≤ 2pCd(x, y)p−1

(∫
X

gp dmL
x,y + δpmL

x,y(X)

)
≤ 2p+1Cd(x, y)p−1

(
δpmL

x,y(X)
)

24
≤ 2p+1C · 8CDLd(x, y)

pδp.

(26)

This implies that `(cδ) ≤ C ′d(x, y) for every δ.
If
∫
X
gp dmL′

x,y > 0 then, by choosing δ such that δpmL
x,y(X) < 2

∫
X
gp dmL′

x,y, we
have that the chain cδ satisfies(∫

cδ

g

)p

≤ 3 · 2p+1Cd(x, y)p−1

∫
X

gp dmL′

x,y ≤ C ′d(x, y)p−1

∫
X

gp dmL′

x,y

and one can take c = cδ to get the thesis.
If
∫
X
gp dmL′

x,y = 0, so g ≡ 0 on BL′

x,y since g is Lipschitz, we argue as follows.
By (26) we have the existence of a chain c ∈ C ε

x,y(X) with `(c) ≤ C ′d(x, y), so

c ⊆ BC′

x,y ⊆ BL′

x,y. Therefore,
∫
c
g = 0 and (ii)Lip holds also in this case.

Suppose (ii)Lip holds. Since X is complete, we can use proposition 2.2 and lemma
2.7 to show that for every g ∈ Lip(X), g ≥ 0 and bounded, there exists a curve

γ ∈ Γx,y with `(γ) ≤ Cd(x, y) and such that
(∫

γ
g
)p

≤ Cd(x, y)p−1
∫
gp dmL

x,y.

This is condition (iii) of [11, theorem A.3] which is equivalent to the following:
for every Borel g : X → [0,+∞] there exists γ ∈ Γx,y such that `(γ) ≤ Cd(x, y)

and
(∫

γ
g
)p

≤ Cd(x, y)p−1
∫
gp dmL

x,y. If moreover g(x), g(y) < +∞ we can use

proposition 2.8 to find chains cj ∈ C
1
j
x,y such that

∫
γ
g ≥ limj→+∞

∫
cj
g. This implies

(ii) for Borel functions g. The usual application of Vitali-Carathéodory’s Theorem
[22, p.108] to the metric measure space (X, d,mL

x,y) and monotone convergence
theorem for decreasing sequences gives (ii) for every m-measurable function. �

Remark 7.7. The proof above shows that the conditions of proposition 7.6 are
equivalent to

(iii)UG there exist C > 0 and L ≥ 1 such that for every Borel u : X → R and for
every g ∈ UG(u) it holds |u(x)− u(y)|p ≤ Cd(x, y)p−1

∫
gp dmL

x,y, in case (X, d) is
complete. Indeed if (iii)UG holds then (i) holds because lipu ∈ UG(u) if u ∈ Lip(X).
Vice versa, in the proof we showed that the conditions of proposition 7.6 are also
equivalent to condition (iii) of [11, theorem A.3], which is in turn equivalent to
(iii)UG by the same [11, theorem A.3].

This generalizes the result of [11, theorem A.3], in which the implication from
item (i) of proposition 7.6 and (iii)UG is proved under the additional assumption of
local quasiconvexity of the space. By using chains as we did, we are able to remove
this assumption and to show the equivalence of pointwise estimates in general.

The reason behind this improvement is the following. A standard technique, that
we used also in the proof of proposition 7.6, consists in taking a bounded function
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g and in associating the functions

ucurve(z) := inf

{∫
γ

g : γ curve, α(γ) = x, ω(γ) = z

}
,

uε-chain(z) := inf

{∫
c

g : c ∈ C ε, α(c) = x, ω(c) = z

}
.

As showed in the proof of proposition 7.6, using the discrete nature of chains, it is
possible to say that uε-chain is locally Lipschitz, actually Lipschitz up to scale ɛ, on
the ɛ-chain connected component containing x. On the other hand, in order to say
that ucurve is locally Lipschitz one needs some connectivity property of the metric
space X, as the local quasiconvexity.

7.2. Keith’s characterization via chains

The Poincaré inequality with upper gradients can be characterized via modulus
estimates, see [24, theorem 2] and [11, proposition A.1]. We will show a similar
statement for chains. Let (X, d,m) be a metric measure space.

Let F be a family of Borel functions on X. Given a family of chains C, the
(ε, p)-modulus of C with respect to F is defined as

C -Modpε(C,F ,m) := inf

{∫
ρp dm : ρ ∈ Admε(C) ∩ F

}
,

where we recall that

Admε(C) =

{
ρ ≥ 0 : ρ Borel,

∫
c

ρ ≥ 1 for every c ∈ C ∩ C ε

}
.

If F is closed under finite sums, the same proof of proposition 5.1 shows that the
assignment C 7→ C -Modεp(C,F ,m) satisfies

C -Modεp

(⋃
i∈I

Ci,F ,m

)
≤
∑
i∈I

C -Modεp (Ci,F ,m) (27)

for a finite set of indices I. In general it does not define an outer measure. Notice
that (0,+∞) 3 ε 7→ C -Modpε(C,F ,m) ∈ [0,+∞] is non-decreasing.

We also recall the definition of the p-modulus of a family of curves. Let Γ be a
family of curves and let F be a family of Borel functions. Then

Modp(Γ,F ,m) := inf

{∫
ρp dm : ρ ∈ Adm(Γ) ∩ F

}
,

where Adm(Γ) := {ρ : X → [0,+∞] :
∫
γ
ρ ≥ 1for all γ ∈ Γ}. If F is the class of all

Borel functions, then we simply write Modp(Γ,m).
For the next result we define Fx,y := {g : X → R : g is Borel, g(x), g(y) < +∞},

for x, y ∈ X.
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Proposition 7.8. Let (X, d,m) be a doubling metric measure space such that (X, d)
is complete, x, y ∈ X and L ≥ 1. Then

Modp(Γx,y,m
L
x,y) = lim

ε→0
C -Modεp(Cx,y,Fx,y,m

L
x,y)

= lim
ε→0

C -Modεp(Cx,y,Lip(X),m
L
x,y).

Proof. During this proof we use the notation C ε,Λ
x,y to denote the family of chains

c ∈ C ε
x,y such that `(c) ≤ Λd(x, y). In the same way, ΓΛ

x,y denotes the family of
rectifiable curves with α(γ) = x, ω(γ) = y and `(γ) ≤ Λd(x, y). We want to show

lim
ε→0

C -Modεp(Cx,y,Lip(X),m
L
x,y) ≤ Modp(Γx,y,m

L
x,y).

We fix δ > 0. The same proof of [12, lemma A.2], together with (27),
shows that we can find Λ ≥ 1 such that C -Modεp(Cx,y,Lip(X),m

L
x,y) ≤

C -Modεp(C
ε,Λ
x,y ,Lip(X),m

L
x,y) + δ. We consider the compact family of curves ΓΛ

x,y.

By [24, proposition 6] we have Modp(Γ
Λ
x,y,m

L
x,y) = Modp(Γ

Λ
x,y,Lip(X),m

L
x,y). Let

ρ ∈ Adm(ΓΛ
x,y) ∩ Lip(X). We claim that

lim
ε→0

inf
c∈C ε,Λ

x,y

∫
c

ρ ≥ 1. (28)

Assuming the claim holds true, this implies that for every η > 0 there exists εη > 0
such that if ε ≤ εη then (1 + η)ρ ∈ Admε(C ε,Λ

x,y ). Hence

lim
ε→0

C -Modεp(C
ε,Λ
x,y ,Lip(X),m

L
x,y) ≤ lim

η→0

∫
(1 + η)ρp dmL

x,y =

∫
ρp dmL

x,y.

By the arbitrariness of ρ, we would get

lim
ε→0

C -Modεp(Cx,y,Lip(X),m
L
x,y) ≤ Modp(Γ

Λ
x,y,m

L
x,y) + δ ≤ Modp(Γx,y,m

L
x,y) + δ

By taking δ→ 0 we would conclude that

lim
ε→0

C -Modεp(Cx,y,Lip(X),m
L
x,y) ≤ Modp(Γx,y,m

L
x,y).

We prove the claim. Suppose (28) is not true. Then there exists η > 0 and chains
cε ∈ C ε,Λ

x,y such that
∫
cε
ρ < 1− η, for every ɛ sufficiently small. We are in position

to apply proposition 2.2 in order to find a curve γ ∈ ΓΛ
x,y such that cε subconverges

to γ as ɛ→ 0. By lemma 2.7 we have∫
γ

ρ ≤ lim
ε→0

∫
cε

ρ < 1− η,

which is a contradiction to the fact that ρ ∈ Adm(ΓΛ
x,y). This concludes the proof

of the claim.
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The inequality

C -Modεp(Cx,y,Fx,y,m
L
x,y) ≤ C -Modεp(Cx,y,Lip(X),m

L
x,y)

holds trivially for every ɛ> 0. It remains to show that

Modp(Γx,y,m
L
x,y) ≤ lim

ε→0
C -Modεp(Cx,y,Fx,y,m

L
x,y). (29)

Let ρ ∈ Admε(Cx,y) ∩ Fx,y. We claim that ρ ∈ Adm(Γx,y). Let γ ∈ Γx,y. If
∫
γ
ρ =

+∞ there is nothing to prove. Otherwise, applying proposition 2.8, we have that∫
γ

ρ ≥ lim
j→+∞

∫
ct,nj

ρ ≥ 1,

for ct,nj
∈ C

1
nj
x,y defined therein. By the arbitrariness of ρ we have

Modp(Γx,y,m
L
x,y) ≤ C -Modεp(Cx,y,Fx,y,m

L
x,y),

for every ɛ> 0. By taking the limit as ɛ→ 0, we obtain (29) and we conclude the
proof. �

Remark 7.9. Notice that the statement of proposition 7.8 cannot be formu-
lated with the class F = {g : X → [0,+∞] : gBorel}. Indeed, observe that
C -Modεp(Cx,y,m

L
x,y) = 0 as soon as m({x, y}) = 0, because of lemma 5.5, while

C -Modεp(Cx,y,Fx,y,m
L
x,y) can be different from 0, because of proposition 7.8. The

difference is due to the fact that C -Modεp(·,Fx,y,m
L
x,y) is not an outer measure.

Moreover, denoting by Fmeas
x,y := {g : X → [0,+∞] :

gis m-measurable, g(x), g(y) < +∞}, we have that

C -Modεp(Cx,y,Fx,y,m
L
x,y) = C -Modεp(Cx,y,Fmeas

x,y ,mL
x,y)

for every metric measure space, even non complete, by Vitali-Carathéodory’s
Theorem (cp. [22, p.108]). Furthermore,

C -Modεp(Cx,y,Fmeas
x,y ,mL

x,y) = C -Modεp(Cx,y,Fmeas
x,y , m̄L

x,y)

C -Modεp(Cx,y,Lip(X),m
L
x,y) = C -Modεp(Cx,y,Lip(X̄), m̄

L
x,y),

where the right hand sides are computed on the metric measure space (X̄, d̄, m̄). In
particular

lim
ε→0

C -Modεp(Cx,y,Fx,y,m
L
x,y) = lim

ε→0
C -Modεp(Cx,y,Lip(X),m

L
x,y)

holds true in every doubling metric measure space without the completeness
assumption.

Corollary 7.10. Let (X, d,m) be a doubling metric measure space. Let x, y ∈ X.
Then the conditions of proposition 7.6 are equivalent to the following. There exists
c> 0, L ≥ 1 such that
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lim
ε→0

C -Modεp(Cx,y,Fx,y,m
L
x,y) = lim

ε→0
C -Modεp(Cx,y,Lip(X),m

L
x,y) ≥ cd(x, y)1−p.

Proof. As noticed in the proof of proposition 7.6 and remark 7.9, the conditions
hold if and only if they hold on the metric completion (X̄, d̄, m̄). Therefore the
result follows by proposition 7.8 and proposition A.1]CaputoCavallucci2024II, see
also the original [24, theorem 2]. �

7.3. Energy of separating sets via chains

In the case p=1 we can extend our characterizations in [11] to possibly non com-
plete metric spaces. We need the notion of chain width of a given set A ⊂ X, which
is

C -widthx,y(A) := lim
ε→0

inf
c∈C ε

x,y

∫
c

χA.

We also need to recall the notion of separating set and of Minkowski content.
Given x, y ∈ X we say that a set Ω ⊆ X is separating if it is closed, x belongs to
the interior of Ω and y belongs to Ωc. The family of separating sets between x and
y is denoted by SStop(x, y).

Given a measurable subset A of a metric measure space (X, d,m), we define its
Minkowski content by

m+(A) := lim
r→0

m(Br(A) \A)
r

.

The following theorem is the chain version of [11, theorem 1.4] and it is suited
for the case p=1.

Theorem 7.11. Let (X, d,m) be a doubling metric measure space. Let x, y ∈ X.
Then the following conditions are quantitatively equivalent:

(i) there exist C> 0, L ≥ 1 such that (23) holds for every u ∈ Lip(X);
(ii) there exist C> 0, L ≥ 1 such that for every m-measurable A ⊆ X it holds

C -widthx,y(A) ≤ CmL
x,y(A).

(iii) there exist c> 0, L ≥ 1 such that for every Ω ∈ SStop(x, y) it holds
(mL

x,y)
+(Ω) ≥ c.

Proof. If (i) holds then item (ii) of proposition 7.6 holds. Applying it to the m-
measurable function g = χA, where A ⊆ X is m-measurable, we get that

C -widthx,y(A) ≤ lim
ε→0

inf
c∈C ε

x,y

`(c)≤Cd(x,y)

∫
c

χA ≤ C

∫
χA dmL

x,y = CmL
x,y(A).

This shows (ii).
We now assume (ii) and we consider Ω ∈ SStop(x, y). Let 0 < r <

min{d(x, ∂Ω), d(y, ∂Ω)}. For ε < r, let c = {qi}Ni=0 ∈ C ε
x,y and let c′ = (qm, . . . , qM )
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be a maximal subchain such that qi ∈ Br(Ω) \Ω for every i = m, . . . ,M . Therefore
we have ∫

c

χBr(Ω)\Ω ≥
∫
c′
χBr(Ω)\Ω ≥ r − 2ε,

by maximality of c′. By taking the limit for ɛ going to zero we find

C -widthx,y(Br(Ω) \ Ω) ≥ lim sup
ε→0

(r − 2ε) = r. (30)

Hence we compute

(mL
x,y)

+(Ω) = lim
r→0

mL
x,y(Br(Ω) \ Ω)

r

30
≥ lim

r→0

mL
x,y(Br(Ω) \ Ω)

C -widthx,y(Br(Ω) \ Ω)
≥ 1

C
.

This proves (iii).
It remains only to prove (iii) implies (i). This is the proof of the last implication

in [12, theorem 6.1] that we report for completeness. Let u : X → R, u ≥ 0 be a
bounded Lipschitz function and let x, y ∈ X. We can assume that u(x) < u(y)
otherwise there is nothing to prove. The sets Ωt := {u ≥ t} belong to SStop(x, y)
for all t ∈ (u(x), u(y)). So we can apply the coarea inequality for the Minkowski
content (see [3, lemma 3.2]) with respect to the measure mL

x,y to get

c |u(x)− u(y)| ≤
∫ u(y)

u(x)

(mL
x,y)

+({u ≥ t}) dt ≤
∫
X

lipudmL
x,y.

Therefore item (i) follows with C = 1/c for Lipschitz, nonnegative, bounded func-
tions. A standard approximation argument gives the same estimate for all Lipschitz
functions. �

Remark 7.12. Condition (iii) of theorem 7.11 is denoted by (BMC)x,y in [11],
meaning ‘big Minkowski content’. If it holds for every couple of points of X with
same constants we say that (X, d,m) satisfies property (BMC). This property has
been studied in [12], where it is shown to be equivalent to the 1-Poincaré inequality
if (X, d,m) is complete and doubling. Other properties regarding the boundary of
separating sets have been studied there, and they are all equivalent to the 1-Poincaré
inequality in case of complete, doubling metric measure spaces. In the non-complete
case, this is not true. This happens since a separating set can have empty boundary
like in the following example. Let X = R2 \ {x = 0}. We consider A = (−1, 0) and
B = (1, 0) and Ω := (−∞, 0) × R ∈ SStop(A,B). Here ∂Ω = ∅. Moreover, X
satisfies a 1-Poincaré inequality for all couples (u, lipu) with u ∈ Lip(X), because
of corollary 7.1. However, with the notation of [12, theorem 6.1], we have that
the set Ω above does not satisfy (BH),(BHR), (BH

e), (BHe
R), (BP), (BPR), (BC),

(BAM), (BAM)e and (BAM)t. The last condition (BAM)t can be expressed via
chains in a way that it is equivalent to (BMC).
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