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ABSTRACT

Consider a portfolio containing heterogeneous risks, where the policyholders’
premiums to the insurance company might not cover the claim payments.
This risk has to be taken into consideration in the premium pricing. On the
other hand, the premium that the insureds pay has to be fair. This fairness is
measured by the distance between the risk and the premium paid. We apply a
non-linear programming formulation to find the optimal premium for each
class so that the risk is below a given level and the weighted distance between
the risk and the premium is minimized. We consider also the dual problem: min-
imizing the risk level for a given weighted distance between risks and premium.
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1. INTRODUCTION

Consider a portfolio containing independent identically distributed (i.i.d) risks.
When pricing the insurance policy for such risks, the following two principles
are usually taken into consideration:

1. The probability that the total claims exceed the total premiums paid is a pre-
determined small number, a, 0 < a < 1.

2. The premium increases as the expected claim size increases.

In this paper we consider a portfolio with k classes of insureds, each containing
a large and fixed number of insureds.

1 This article is dedicated to the memory of our beloved friend Professor Benjamin Zeev Levikson
who passed away on July, 16, 2005.
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The goal is to find a premium for each class such that principle 1 will hold and
such that the premiums vector p = (p1,···, pk) will minimize the expected squared
distance between the total claim amount and the total premiums income in each
class. Here, pj is the premium for class j. It will be shown that under this opti-
mization scheme principle 2 also holds, within each class.

Bowers et al. (Chapter, 2.5, 1997) suggest the following premium for each
class j: pj = (1+ qa) mj , where mj is the expected risk of class j, and qa is a loading
factor which is determined so that the probability that the total claims exceed
the total premiums paid is a. This method is called the expected principle.

Some other premium pricing methods determine the premium only accord-
ing to principle 2, which is proportional to the expected claim size, without
considering principle 1. Lemaire (1995) demonstrates a Bonus-Malus System
(BMS) that is based only on the number of the claims. Calculations of the BMS
are based on the Bayes’ rule. Frangos and Vrontos (2001) develop a BMS based
on the frequency and the severity of the claims. Both components are deter-
mined by the Bayes’ theorem. Kliger and Levikson (1998) consider a portfolio
having i.i.d claims, from an economic point of view. They find the premium
such that the profit is maximized taking into account the number of policy-
holders. Goovaerts et al. (1984) present properties of premium calculation
principles.

The innovation in this paper is a systematic method to obtain the premium
for each class. By applying this method, the insurer has the flexibility to price
the premium for each class according to the company’s policy.

In section 2 we define the risk in terms of probability of ruin and then we
discuss a homogeneous portfolio consisting of i.i.d. risks. The main results are
in sections 3 and 4. In section 3 we analyze heterogeneous portfolio, where the
risks are not identically distributed. In Section 4 we state and solve the dual
problem.

2. PRELIMINARIES

In this section we define homogeneous and heterogeneous portfolios. We describe
intuitive and known methods to price premiums in both cases.

2.1. A homogeneous portfolio

Consider a portfolio containing n risks X1, ···, Xn. Let pi be the premium price
for risk i.

Definition 1: Let 0 < a < 1. An insurance company is faced with a risk level a
if the probability that the total claims exceed the total premiums is a. That is:

.aP pi i
i

n

i

n

11

# =
==

X!!e o (1)
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A portfolio containing n i.i.d risks Xi, i =1,···, n with mean mX and variance s2
X

is called a homogeneous portfolio. Clearly, in a homogeneous portfolio all the
insurds pay the same premium p.

Let

S = i
i

n

1=

X! , ms = E [S ] = nmX, and  s2
S = Var(S) = ns2

X .

Assume that the company is ready to face a risk a, that is

P(S ≥ np) ≤ a.

By the Central Limit Theorem, for a sufficient large n

S
s

m
S

S-
+ N(0,1).

Thus the minimal premium is (See Bowers et. al. (1997), Chapter 2.5)

p = mX + z1 – a
X

n
s

, (2)

where z1 – a is the 1 – a percentile of the standard normal distribution.

2.2. A heterogeneous portfolio 

Throughout the paper we consider a portfolio composed of k risk classes. We
call this portfolio a heterogeneous portfolio. The following assumptions hold:

(a) The risks in the portfolio are independent.

(b) Class j contains nj i.i.d risks, Xj,1 ···, Xj,nj
distributed as Xj, with mean mj and

variance s2
j , j =1,···, k. Let n = jj 1=

nk! .
(c) Assume that nj, j = 1,···, k, are large enough to implement the central limit

theorem (CLT).

For any random variable X let X * = .
X

X E X
var
-

6
6

@
@

The total risk of class j, Sj is Sj = j i,X
i

n

1

j

=

! . Clearly, E [Sj ] = nj mj and Var[Sj ] = nj s
2
j .

By CLT S*
j + N(0,1).

Let jS
j

k

1

=
=

S! , with mean m and variance s2, where 

m = E [S ] = n m
i

k

1=
i i! and s2 = var[S ] = n si

i

k
2

1=
i! .
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Furthermore, by CLT. S* + N(0,1).

Next, we describe some approaches to determine the premium for each class.

2.2.1. The individual approach

The insurer specifies for each class j, its risk level aj. For each class the premium
is calculated as in equation (2), i.e.,

pj = mj + z1 – aj

j

jn
s

This approach considers only the size of each class j, j = 1,···, k and does not
consider the effect of the total size of the population.

2.2.2. The global approach

The insurer determines the premium for each class such that the risk level is a,
i.e., principle 1 holds, and principle 2 holds (for each class). Thus, similar to (1),

.aP n j j j
j

k

j

k

11

# =
==

p S!!f p

In view of assumption (c) we obtain:

jz zj j j+ .n n nm s sa aj j
j

k

j

k

j

k

1 1
2

111

= + =- -
===

mp !!! (3)

Equation (3) presents the total amount of premiums which the insurer should
collect in order to achieve a risk level a.

Remark: Let us compare the total premium collected according to the indivi-
dual approach, and to the global approach.

The inequality,
2

a a#2
i i!! ^ h where ai > 0 implies that

z z

z

<n n n n

n
n

m s m s

m
s

a a

a

i

k

i
i

k

i
i

k

i

k

i

i

k

1
1

2

1
1

11

1
1

+ +

= +

=
-

=
-

==

-
=

i i i i i i

i i
i

! ! !!

! e o
(4)

The left hand side of (4) is the sum of all premiums which are collected accord-
ing to the global approach for a risk level a. The last term of (4) is the sum
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of all premiums which are collected according to the individual approach by
taking the same risk level a for each class. Thus, in the global approach, the
policyholders pay less than in the individual approach.

It still remains to set the premium for each class. One tends to price the pre-
mium of class i as follows:

pi = mi + z1 – aTi , (5)

where T1,…,Tk are nonnegative numbers such that

.n n s s
i

k

i
i

k

1

2

1

= =
= =

i i iT! ! (6)

Note that principles 1 and 2 hold when pi’s are derived from (3), (5) and (6)
for i = 1,···, k.

Clearly, there is an infinite number of options to determine T1,…,Tk. In what
follows we present some of them.

(1) Uniform allocation
The global standard deviation s defined in (6), is split equally among all
the policyholders, that is T1 = ... = Tk = n

s . The premium for a policyholder
in class j is

pj = mj + z1 – a n
s .

(2) Semi-Uniform allocation
The global standard deviation s is split equally among the classes. Here Ti = kn

s
i
.

The premium for a policyholder in class j is

pj = mj + z1 – a
jk

s
n .

(3) Proportional allocation
The global variance js sjj

k2 2
1

=
=

n! is split among the classes proportionally to 

the variance of the classes. Thus, Ti is determined as n
r s

i

i , where ri = i

s
n s

2

2
i . The

premium for a policyholder in class i is

pi = mi + z1 – a n
r s

i

i .

The next section contains the main result of the paper. We describe a systematic
approach to price class j premium such that principle 1, i.e. (3), and principle 2
hold. All the pricing schemes described above will be derived by this general
approach.
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3. THE OPTIMAL ALLOCATION

In this section we determine the premium for each class such that the follow-
ing two conditions hold:

1. Principle 1 holds. Note that under our assumptions principle 1 is equivalent
to the constraint given by (3).

2. The sum of the expected weighted squared distances between each class risk,

Sj, and class premium, nj pj, i.e. j
2

r E S1
j

k

j j
1

-
=

n
i

p! _ i , is minimized.

3.1. The analysis and the solution of the non-linear optimization problem

Theorem 1
Let p = (p1,···, pk), and r1,…,rk be positive numbers. The minimization problem

z

2

. .

min r E S n

s t n
I

p

p m s

1

a

i i
i

k

i
i

k

p 1

1
1

-

= +

=

-
=

i

i

i
!

!

^
]

h
g

; EZ

[

\

]
]]

]
]

) 3

has a unique solution which is

pj = mj + z1 – a
j

j

r
r s
n ,

where r = j
j

k

1=

r! .

To prove Theorem 1 we need two lemmas on positive definite matrices. The
proofs of these two lemmas appear in the Appendix.

Lemma 1
Let A be a positive definite matrix and let P be a nonsingular matrix, both of
dimensions m ≈ m. Let Pt be the transpose matrix of P. Then B = PtAP is a
positive definite matrix.

Lemma 2
Let a1,…, am be positive numbers, and let the matrix Am be as follows:

.A

a
a

a

1

1

1

1

1

1

1

1

1

m

m

1

2

h j

g

g

j

j

h
=

+

+

+

R

T

S
S
S
SS

V

X

W
W
W
WW

Then the matrix Am is a positive definite matrix.
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Proof of Theorem 1

Note that for i = 1,···, k

ni s
2
i = Var(Si) = Var(Si – nipi)

= E (Si – nipi)
2 – E 2(Si – nipi)

= E (Si – nipi)
2 – (ni mi – nipi)

2.

Hence

E (Si – nipi)
2 = ni s

2
i + (ni mi – nipi)

2. (7)

Substituting (7) in the objective function in problem (I), yields the following:

2

2

2

i

i .

min

min

min

r E S n

r n n n

r
n

r n n

p

s m p

s
m p

1

1

1

i i
i

k

i

k

i

k

i

k

p

p

p

1

2

1

2

11

- =

= + -

= + -

=

=

==

i

i i i i i

i
i i i i

i

i

i i

!

!

!!

^
^`

^

h
h j

h

;
;

E
E

)
)

*

3
3

4

Clearly, eliminating the expression i

r
n s

i

k 2

1=

i

i
! does not change the optimal solution.

Let Wi (p) = ni mi – nipi, 1 ≤ i ≤ k. Problem (I) is equivalent to the following prob-
lem (II):

i

z. .
.

min r W

s t
II

p

p s

1

a

i

k

i
i

k

p 1

1
1

= -

=

-
=

2

i

W

!

!

]
]]

g
gg

; EZ

[

\

]
]]

]
]

) 3

The constraint in problem (II) can be rewritten as follows:

z .p p sa
i

k

1 1 1
2

- = + -
=

W W!] ]g g (8)

Let i .G r Wp p1
i

k

1

=
=

2

i
!] ]g g Substituting (8) in G (p) yields:

iz .G r r Wp p s p1 1
a

i

k

i

k

1
1 1

2

2

2

= + +-
= =

2

i
W! !] ]e ]g g o g (9)
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Thus, problem (II) is equivalent to problem (III), where

(III) .min G p
p

] g" ,
First we find the extreme points of G(p), that is, the vectors p for which all the
first partial derivatives vanish.

Note that G (p) is a function of p2,…, pk. The first partial derivatives are:

z ,...,G
r

n
r
n

i kp p s p
2 2

2a
i i

k

1 1
2

12
2 6=

-
+ - =-

=

i i

i
W W

1
! ]e ]g o g (10)

Equating the k-1 partial derivatives in (10) to 0 yields the following system of
linear equations for W2(p),…,wk(p):

z

z

z

,

r r r r

r r r r

r r r r

s

s

s

1 1 1

1 1 1

1 1 1

!

!

!

a

a

a

i

i
i

k

i

i
i

k

k
k i

i k
i

k

2
2

1

2
2

3
1

3
2

1

2

h

+ + = -

+ + = -

+ + = -

-

=

-

=

-

=

3

W W

W W

W W

1 1 1

1 1 1

1 1 1

!

!

!

c

c

c

m

m

m

Z

[

\

]
]
]
]
]]

]
]
]
]
]]

where Wi = Wi (p). Subtracting the first equations from each of the other equa-
tions yields the following set of linear equations (written in matrix form)

z
r r

r

r

r

r

r

r

r
s1 1

1

1

1

1

0

0

0

0

0

0

1

0

0
1

0

0

a

2

1

h

h

h

h

g

j

j

g

g

g

j

j

g

g

g

j

h

h

h

h

h

+

-

-

- -

h

k

2

2

3

1 1 1 1

R

T

S
S
S
S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W
W
W
W

.

The last k-2 rows yield that

r2Wi = riW2 �i = 3,..., k. (11)

The first row presents the equation
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z
.r r r r

s1 1 1 a

i

k

2 1
1

3

+ = - -

=

W W
21 1 1

!c m (12)

By substituting (11) in (12) and then multiplying (12) by r1r2 we obtain 

z .r r sa
i

k

2
1

1= -
=

-iW 2!

Hence,
z

.r
r sa

2
1=

- -W 2 (13)

Substituting (13) in (11) yields,

z
, , ...,r

r
i k

s
3a

i
1=

-
=-iW (14)

Finally, substituting (13) and (14), in (8) yields 

z
.r

r sa
1

1= -W 1

Since Wi (p) = ni mi – nipi the extreme point p* = (p*
1, ...,p*

k ) for problem (III) is

p*
i = mi + z1 – a r

r
n
s
i

i , i = 1,...,k

Next we have to verify that the Hessian matrix of the function given by (9), at
p* is a positive definite matrix. By differentiating (10), we find the second par-
tial derivatives of G (p):

2

, ,...,

< .

G
r
n

r
n

r r
n r r

i k

G
r

n
i j k

p

p

2 2 2
2

2
2

j i

j

2

2 2 2 2

2

2

2

2
2 # #

= + =
+

=

=

i

ni

i i

ii i i

p

1 1

1

1

^ h

Therefore the Hessian matrix, at all points, is

.

r r
n r r

r
n n

r
n n

r
n n

r r
n r r

r
n n

r
n n

r
n n

r
n n

r
n n

r
n n

r
n n

r r
n r r

H

2

2

2

2

2

2

2

2

2

2

2

2

2
k k k k

k

k

k k

2

2

3 2

2

2 3

2

3

2 4

3 4

1

2

3

1

2

h

h

j

g

g

g

j

g

g

g

j

+

+

+

=

-

-

h

k

2

3

k

k

2

3

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

^
^

^

h
h

h

R

T

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
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The property of a positive definite is not changed by multiplying the matrix
by a positive scalar. Thus, it is sufficient to show that the following matrix is
a positive definite:

.

r
n r r

n n

n n

n n

r
n r r

n n

n n

n n

n n

n n

n n

n n

r
n r r

H

k k k k

k

k

k k

2

2

3 2

2

2 3

2

3

2 4

3 4

1

2

3

1
2

h
h
h

j

g

g

g

j

g

g

g

j

+

+

+

=

-

-

2

3

k

k

k

2

3

3

1

1

1

^
^

^

h
h

h

R

T

S
S
S
S
S
S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W
W
W
W
W
W

H is a symmetric matrix which fulfills the equality

.
n

n

r
r

r
r

n

n
H

0

0 1

1

1

1
0

0

k k

2 2
h

g
j
g

h h

g

j

g

h h
g
j
g

h

+

+

=

k

2

1

1

R

T

S
S
SS

R

T

S
S
S
S
S
S

R

T

S
S
SS

V

X

W
W
WW

V

X

W
W
W
W
W
W

V

X

W
W
WW

By Lemma 1 and 2, H is a positive definite matrix and so is the Hessian matrix H.
Hence p* is the unique solution for problem (I). ¡

In Theorem 1 the constraint is equality. In practice the insurer constraint is

aP j
j

k

j j
j

k

1 1

$ #
= =

nS p! !f p , or equivalently zn p m sai
i

k

1
1

$ + -
=

i! .

Corolary 1
Let p = (p1,···,pk), and let r1, ..., rk be positive numbers, The minimization prob-
lem

z

2

. .

min r E S n

s t n
VI

p

p m s

1

a

i i
i

k

i
i

k

p 1

1
1

$

-

+

=

-
=

i

i

i
!

!

^
]

h
g

; EZ

[

\

]
]]

]
]

) 3

has a unique solution which is
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z j ,rn
r

m
s

aj j
j

1= + -p j = 1,···, k,

where .r j
j

k

1

=
=

r!

Proof
Let l > 0. Consider the following minimization problem:

2

. .
.

min r E S n

s t n
V

p

p m ls

1
i i

i

k

i
i

k

p 1

1

=

-

= +

=

=

i

i

i
!

!

^
]

h
g

; EZ

[

\

]
]]

]
]

) 3

In view of Theorem 1, Problem (V) has the following unique solution: pi = mi +
l rn

r s
i

i , i = 1,···, k. Thus substituting pi in Equation (7), yields that for a given l,
the optimal value of the corresponding objective function is:

i .r n r
r

s l1

i

k

1

2
2

+
=

s
i

i

i
! de n o

The objective function increases in l on l > 0. Note that the risk level is less
or equal to a, if, and only if l ≥ z1 – a. Thus the objective function attains its
minimum at l = z1 – a. ¡

Remark: By choosing the appropriate ri, i =1,···,k, the insurer has the flexibil-
ity to determine the premium for each class according to the company’s policy.

3.2. Applications of Theorem 1

In this subsection we demonstrate that the various premium pricing methods
presented in subsection 2.2.2 can be obtained from Theorem 1 by different
choices of rj , j =1,···, k.

1. ri = ni for each i =1,..., k. It follows that nj j
j

k

j

k

11

= =
==

r n!! . Hence 

p*
i = mi + z1 – a

r
n

s

i j

i

r! = mi + z1 – a n
s .

This is the case of the uniform allocation.
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2. ri = 1 for i =1,..., k. In this case kj
j

k

1

=
=

r! . Hence 

p*
i = mi + z1 – a

r
n

s

i j

i

r! = mi + z1 – a n k
s
i

.

This is the case of the semi-uniform allocation.

3. ir
n

s

s
2

2

=i
i for i =1,..., k. Since js sj

j

k
2 2

1

=
=

n! we obtain .1j
j

k

1

=
=

r!

Therefore 

p*
i = mi + z1 – a

r
n
s

i

i S

This is the case of the relative allocation.

4. Let Q be a function from the space of all nonnegative random variable to R,

such that for independent random variables X1,...,Xn, Q(X1+··· +Xk) = Q
j

k

1=

! (Xj),

Let r Q S
Q S

i
i= ]̂ gh . In this case the premium for class i, is pi = mi + z1 – a n Q S

s
i

S] gQ(Si).

Consider two special cases:

4.1. Q(X) = E [X ]. In this case pi = mi + z1 – a n m
s m
i

i. This is the expectation prin-
ciple.

4.2. Q(X) = Var[X ]. In this case pi = mi + z1 – a
i

n m
s

s

s

i
2

2

. This is the variance prin-
ciple.

3.3. Heterogeneous portfolio with ordered premium

In this subsection we determine the premium for each class such that principles
(1) and (2) hold, and in addition, we consider the case where the insurer or the
regulator, wants to grade the premiums for each class such that the premium
will increase as its risk increases. We also want to preserve, for each class, the
second premium principle as stated in the introduction. Thus, we impose more
constraints to the optimization problem (I).

Theorem 2
Let a1, ..., ak – 1 be nonnegative and r1, ..., rk be positive scalars such that

(1 + ai) mi ≤ mi + 1 i = 1,..., k – 1.
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The minimization problem

p

z

2

. .

, ...,

, ...,

min r n n

s t n

a i k

i k

IV

m p

p m s

p

m p

1

1 1 1

1

a

i i
i

k

i
i

k

i i i

i i

p 1

1
1

1#

#

=

-

= +

+ = -

=

=

-
=

+

i i

i

i
!

!

^

^
]

h

h
g

; EZ

[

\

]
]
]
]

]
]
]
]

) 3

has a unique solution.

Proof
Substituting 

r
n m

i =Y i i

i r
n p

i = i i

i
X in problem (IV), yields problem (V) as follows:

i

i i

z

2 2

. .

, ...,

, ...,

( )

( )

( )

min min

s t r X r

a n
r X

n
r X

i k

i k

V
a

b

c

s

1 1 1

1

� �

a

X
i i

i

k

X
i i

i

k

i
i

k

i

k

i

i i

1 1

1
11

1

1 1
#

#

=

- = -

= +

+ = -

=

! != =

-
==

+

+ +

+ +

k k

i i

i i

i i

Y X X Y

Y

Y X

! !

!!

^ ^

^
]

h h

h
g

8 8B BZ

[

\

]
]
]
]]

]
]
]
]]

) )3 3

Let Wi = Xi –Yi . Hence (V) becomes

i

i

i i

z

a

. .

, ...,

, ...,

.
( )

( )

( )

min minW W

s t r

n
r

n
r

i k

i k

VI
a

b

c

s

1 1 1

0 1

� �

a

W i

k

W

i

k

i
i i

i

1

2

1
1

1

1 1 1
#

#

=

=

=

+
+ +

= -

=

! !=

-
=

+

+ + +

+ +

2

k k

W

W W

i i

i

i iY Y

W

!

!

^ ^ ^
]

h h h
g

Z

[

\

]
]
]
]]

]
]
]
]]

) 3

Constraint (a) is a hyper-plane in �k.

Constraints (b) and (c) are half spaces in �k.
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The intersection of (a) , (b) and (c) contains the solution

W1 = ... = Wk – 1 = 0 Wk =
z

r
sa1 -

k
.

Therefore the constraints define a non-empty convex set. Baptiste et al. (1993,
Chapter III.3) study the problem of projection onto a convex set and they
prove the existence and uniqueness of such a projection. Consequently, there
is a unique solution for problem (VI).

¡

Remark: The objective function of Problem (IV) is to find a point +�W k! in
the region described by the constraints (a)-(c) with minimal Euclidian distance
to 0. The solution can be found using methods of nonlinear programming.

Another method is using Dykstra algorithm (Dykstra, (1983), Censor and
Reich, (1998)). Let Cj ⊂ �n, j =1,···, m be closed and convex sets in �n, and let

C = j
j

m

1=

C( be a non-empty set. Let x ∈ �
n, and let yo ∈ C, where yo has the min-

imal Euclidian distance to x, compare to all other points in C. For each, e > 0,
Dykstra algorithm finds a point ye ∈ C, such that the Euclidian distance between
yo and ye is less than e. We apply this algorithm in the following example 1.

3.3. Examples

Example 1
In this example we determine the premium for six classes. We compare some
premium principles as described in section 3.2. Class k contains nk insureds,
where each has a probability qk for a claim. The mean and variance of a class k
claim are mk and s2

k , respectively. The mean and the variance of the total claims
from class k are nk = nkqk and u2

k = m2
k qk(1 – qk) + s2

k qk, respectively. The infor-
mation of each class is shown in table 1.

In Table 2 we present the premiums for each class according to the expec-
tation principle, the variance principle, the uniform allocation and the semi-
uniform allocation.

Note that according to the semi-uniform allocation, the premium for class 3
is greater than the premium for class 4, although the expected claim amount
of class 3 is less than the expected claim amount in class 4. Therefore, we use
Theorem 2 to obtain the premiums that are based on the semi-uniform alloca-
tion, i.e., ri = 1 for each i =1,...,6. In column 6 we present the premium for each
class assuming ai = 0.1 for each i = 1,...,6 (Semi-Uniform BMS0). In the last
column we assume that ai = 0, that is, a difference of at least 10% between the
classes (Semi-Uniform BMS1). The premiums in BMS0 and BMS1 were obtained
by the Dykstra algorithm.

The difference between premiums in the uniform allocation is the same as
the difference between the corresponding the expected values of the claims.
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This is due to the fact that the uniform principle does not take into account
the number of insureds in each class nor the variance. Therefore, the premium
for class one is the biggest compare to all the other premium principles while
the premium of the sixth class is the smallest among all other premium prin-
ciples.

In the semi-uniform principle the variance is shared among all the insureds
in the same class. Thus, the premiums for classes 1 and 2, which are the classes
with the biggest number of insurdes, are reduced with respect to the uniform
allocation, while the premiums for the classes with smaller number of insureds
are higher compared to the uniform allocation. This phenomenon occurs also
in the expected principle premium. The biggest differences among the premiums
occur when considering the variance principle. In this case both the class size
and the variance of the claim size are taken into account. Therefore, the biggest

OPTIMAL PRICING OF A HETEROGENEOUS PORTFOLIO 175

TABLE 1

DATA FOR EXAMPLE 1

Class
Population Claim 

Mean Variance
in class Probability

k nk qk mk s2
k jk = qk mk u2

k = m2
k qk(1 – qk) + s2

k qk

1 4000 0.050 2,100.00 100,000 105 214,475
2 2200 0.100 10,000.00 200,000 1,000 9,020,000
3 800 0.210 13,000.00 100,000 2,730 28,058,100
4 1500 0.185 15,000.00 6,000,000 2,775 35,034,375
5 800 0.250 17,000.00 8,000,000 4,250 56,187,500
6 500 0.300 19,000.00 7,000,000 5,700 77,910,000

TABLE 2

OPTIMAL PREMIUMS ALLOCATION

Class Expected Variance Uniform Semi-Uniform Semi-Uniform Semi-Uniform 
Principle principle allocation allocation BMS0 BMS1

k ai = 0 ai = 0.1

1 109.81 105.83 176.13 134.05 134.25 138.05
2 1,045.81 1,035.01 1,071.13 1,052.81 1,053.20 1,060.10
3 2,855.06 2,838.90 2,801.13 2,875.23 2,858.20 2,658.40
4 2,902.13 2,910.98 2,846.13 2,852.45 2,858.20 2,924.20
5 4,444.70 4,468.08 4,321.13 4,395.23 4,395.50 4,414.90
6 5,961.12 6,002.39 5,771.13 5,932.36 5,934.30 5,964.40
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difference between the premiums for class 1 and class 6 is obtained in the
variance principle. The smallest difference between the premiums for class 1 and

class 6 is obtained in the uniform allocation. Note that the variance of a pol-

icyholder in class 6 is , ,
,

500
77 910 000

155 820= . This value is over 2900 times of

the variance of a policyholder in class 1 and over twice of the variance of a
policyholder who is in class 5.

Example 2
The goal of this example is to compare the methods presented in Theorem 1
to price bonus-malus systems, to known methods.

Lemaire (1995, Chapter 10) considers a fair system in the Bayesian sense.
The number of claims for each policyholder during a year is assumed to be a
Poisson distributed random variable with parameter L. L is assumed to be a
random variable, with Gamma distribution, with shape parameter a and scale

parameter t. That is the density function of L is : L

a 1-

, >a
e

l
tl t

lG 0
tl

=
-

f ] ]]g gg ,

and E a
tL =6 @ . Let Ki be the number of claims of the policyholder in year i,

i = 1, 2, ···, . Given the claim frequency in the first t years, that is given that
Ki = ki, i =1,···, t, the conditional density of L is Gamma with shape parameter

kt = a + kii 1=

t! , scale parameter t + t and expectation t
a k

t
ii 1

+

+
=

t!
.

The premium in year t + 1 is based on the number of claims during the first

t year and it is : a t

a k

t

t
100

ii 1

+

+
=

t!
]

a
g

k
. Thus, the premium for the first year is 100.

Lemaire developed the above pricing system to a portfolio of 106,965
policyholders, where 96,978 policyholders having a history of no claims, 9240
with 1 claim, 704 with 2 claims and 43 policyholders with 3 claims. The data
is taken from Lemaire (1995, Chapter 3). The average frequency of claims is
0.1011 and variance is 0.1074. From these numbers we conclude that a = 1.6049,
t = 15.8778.

The premiums obtained by Lemaire (1995) for 7 years for policyholders
having k claims in t years are exhibited in Table 3.

To derive the premiums by the methods discussed in section 3.2, we consider
eight portfolios, numbered 0, ···,7, that is, for each year in Lemaire’s example
we consider a different portfolio. Each portfolio consists of four classes indexed
from 0 to 3. All the eight portfolios contain the same number of policyholders
for each class. The numbers of policyholders from class j is nj , j = 0,1, 2, 3,
where n0 = 96,978, n1 = 9,240, n2 = 704, n3 = 43.

Portfolio 0 is homogeneous, that is the expectation and the variance of the
claim amount of all policyholders are a

t and a
t2 respectively, and the number

of policyholders is n = 106,965. Thus the premium for a given risk level a is
po = za

nt
s

a1+ - .
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TABLE 5

BMS ACCORDING TO THE SEMI-UNIFORM ALLOCATION

claims

year 0 1 2 3

0 100.00
1 93.14 153.58 224.87 495.18
2 87.93 144.99 212.29 467.48
3 83.27 137.31 201.04 442.72
4 79.08 130.41 190.93 420.44
5 75.29 124.16 181.78 400.30
6 71.85 118.48 173.48 382.01
7 68.71 113.30 165.89 365.31

TABLE 3

BONUS MALUS SYSTEM ACCORDING TO LEMAIRE (1995)

claims

year 0 1 2 3

0 100.00
1 94.08 152.69 211.31 269.93
2 88.81 144.15 199.49 254.83
3 84.11 136.52 188.92 241.33
4 79.88 129.65 179.42 229.19
5 76.05 123.44 170.82 218.21
6 72.57 117.80 163.02 208.24
7 69.40 112.65 155.89 199.14

TABLE 4

BMS ACCORDING TO THE UNIFORM ALLOCATION

claims

year 0 1 2 3

0 100.00
1 94.09 152.38 210.67 268.96
2 88.83 143.86 198.89 253.92
3 84.12 136.24 188.35 240.47
4 79.89 129.38 178.88 228.37
5 76.06 123.19 170.31 217.43
6 72.59 117.56 162.52 207.49
7 69.41 112.42 155.42 198.42
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In the j th portfolio the mean and the variance of the claim amount of class k

are equal to j
a k
t +

+ and
j

a k
t 2+

+^ h respectively, j = 1, ···,7, k = 0,1,2,3.

The risk level is chosen to be 1%.
For  j =1, ···,7, k = 0,1,2,3, let pj,k be the premium for class k in the jth port-

folio. Table 4 exhibits the values of 100 p
,j k

0

p
when pj,k is calculating according

to the uniform allocation. Table 5 exhibits the values of 100 p
,j k

0

p
when pj,k is cal-

culating according to the semi-uniform allocation.
We see that tables 3 and 4 are quite similar. In table 5, the dangerous policy-

holders are punished much severely. As in example 1, the impact of the variance
of a single policyholder is emphasized in the semi-uniform allocation and not
in the uniform allocation.

Note that the premium levels for the different classes in the uniform alloca-
tion are similar to Lemaire’s results. In the semi-uniform allocation the danger-
ous policyholders (class 3) are punished more severely than in Lemaire’s exam-
ple, while non-dangerous policyholders have a greater bonus than in Lamire’s
example. This is due to the fact that the number of policyholders in the non-
dangerous class 0 is higher than the number of policyholders in the dangerous
class-class 3, thus the share of each policyholder in class 0 in the total variance
is much less than in class 3.

Thus, choosing appropriate premium allocation, such as the semi-uniform
principle or the variance principle, the more dangerous classes pay higher pre-
mium and the less dangerous policyholders pay less than in the Bayes pricing
system. Note also that the methods applied in the paper, enable us to take into
account also the claims’ size, and not only the claims’ frequency as in the Lemaire’s
example.

4. THE DUAL PROBLEM

In Section 3 we found the premiums for each class such that the expected
squared deviation between the collected premiums and the payments of the
insurer is minimized, subject to a given risk level. In this section we consider
the dual problem: as stated in Theorem 3: The minimization of the risk level
under the constraint that the expected squared deviation between the collected
premiums and the insurer’s payments is given.

Let, p̂i = nipi m̂i = ni mi, p̂ = (p̂1,···, p̂k).

4.1. The dual optimal allocation

Theorem 3
Let r1,···, rk and A be positive numbers, where i .r

n s
A

i

k 2

1

$
=

i

i
!
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The minimization problem
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) 3

has a unique solution which is

,..., ,r r
A i kp m 1i 6= + =i i

where r rj
j

k

1

=
=

! and A = A – i

r
n s

i

k 2

1=

i

i
! .

Proof

> > .p
p m

P S P
S

s
m

si
i

k i
i

k

i
i

k

1

1 1=
-

-

=

= =!
! !

J

L

K
K
K
KK

e
N

P

O
O
O
OO

o (15)

Minimizing the left-hand side of (15) with respect to (p̂i,···, p̂k) is equivalent

to finding the maximum of
p m
s

ii

k

1
-

= i! ^ h
or, equivalently to the maximization

of p mii

k

1
-

= i! ^ h (since s > 0 is a constant). The constraint can be rewritten as
in Theorem 1. Thus, problem (VII) is equivalent to the following problem (VIII):

i 2. .

, ...,

.

max p m

p m

m p

s t r
n

r

i k

VIII
s

A1
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i
i

k

i
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]
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]

) 3

Let Xi = p̂i – m̂i, and A = A – i

r
n s

i

k 2

1=

i

i
! . Problem (VIII) can then be rewritten as

follows
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To solve this problem we use Lagrange multipliers. Let

i, .G X r X Al l 1
i

i

k

i

k
2

11

= + -
== i

X !!] eg o
Differentiate G (X ) with respect to (X1, ···,Xk) and l yields a system of k + 1
equations:

i

,
,...,

,

G X
r i k

G X
r

X
A

l
l

l
l

1 2 0 1

0

i

i

i

k 2

1

2
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= + = =

= - =
=

i

i

X
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!

]
]
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g

Z

[

\

]
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]
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(16)

From the first k equations of (16) we obtain:

,..., .
r

i kl2
1i 6= - =iX (17)

Since Xi ≥ 0 then l has to be negative. Substituting (17) in the last equation of
(16) yields,

r

r

A

A r

l

l

2

4
1

i

k

i

k

2

1

2

1

&

-

=

=

=

=

i

i

i

!

!

d n
. (18)

Since l < 0, substituting the negative root of l from (18) in the first k equa-
tions of (16) yields a unique solution which is

i ,..., .X
r

r r
A i kl2

16= - = =* i
i (19)

Next we confirm that the point X*= (X*
1 ,..., X*

k ) is a maximum. Let e1, ..., ek ∈ �
be k arbitrary scalars. The point X* is the solution of Problem (IX), if, and only
if
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i< ,y Xi
i

k

i
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1 1= =

*! !

for any point y = (y1, ...,yk) ∈ �k such that yi ≥ 0, i = 1,···,k and such that :

.r y A1 0i
i

k
2

1

- =
= i

! (20)

Let yi = X*
1 + ri ei ∀i = 1,...,k. Hence, (20) implies 

i

2
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Substituting the values of X*
1 as given in (19) yields:
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i

k

i

k

i

k

i

k

i

k

111 11

= + = +
=== ==
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Thus the optimal premium for class i is :

,..., .r r
A i kp m 1i 6= + =i i

¡

Corollary 2
By changing the first constraint of problem (VII) into 

2
pr E S A1

i
i

k

1

#-
=

i
i

! ^ h; E the
unique solution does not change.

The proof is similar to the proof of Corollary 1.
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4.2. The dual problem with ordered premium

In this subsection we determine the premium for each class such that the pre-
miums are minimized the risk level under the constraint that the expected
squared deviation between the collected premiums and the insurer’s payments
is given. In addition, we consider the case where the insurer or the regulator,
wants to grade the premiums for each class such that the premium will increase
as its risk increases.

Theorem 4
Let a1,..., ak – 1, r1,...,rk be positive scalars. Such that

(1 + ai ) mi ≤ mi +1 i = 1,..., k – 1

The maximization problem
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) 3

has at least one solution.

Proof
By substituting 

n np mi i= -i i iX

the problem (X) becomes
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) 3

The vector X = (X1,...,Xk – 1, Xk) = (0,...,0, Ark ) is a feasible solution for the
constraints of problem (XI). Denote by C the intersection of (a), (b) and (c)
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in problem (XI). Hence, the set C is a non-empty and close set. Since the objective
function f (X ) = iX

i

k

1=
! is a continuous function, it follows that f has a minimum

and a maximum in C. ¡

Remark: We did not succeed to prove that there is a unique point where the
maximum in problem (X ) is achieved, that is there might be several points
where the global maximum is achieved. However, in the examples we tested,
we obtained a unique solution. Since the constraints are not-linear, we find the
solution by using the well known Lagrange’s multipliers method, see (Apostol,
(1969), chapter 9).

Example 3:
The example refers to theorems 3 and 4. We consider three classes. Class k
contains nk policyholders, where each has a probability qk for a claim. The mean
and variance of a class k claim are mk and s2

k , respectively. The mean and the
variance of the total claims from class k are, jk and u 2

k respectively, where
jk = qk mk and u 2

k = m 2
k qk (1 – qk) + s 2

k qk. The weight for class i is ri = 1⁄ni
. The

information of each class is shown in table 6. We assume that A = 10,000,000.
In table 7, we present the premiums for each class according to the data in table 6.

Assume the insurer wants a BMS where the premiums are at least doubled
between the classes. The premiums that are obtained by theorem 3 do not satisfy
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TABLE 6

DATA FOR EXAMPLE 3.

Class Weight
Population Claim

Mean Variance
in class Probability

k ri nk qk mk s2
k jk u2

k

1 1/6000 6000 0.050 2,100.00 500,000 105.00 234,475
2 1/1500 1500 0.108 11,000.00 3,000,000 1,188.00 11,980,656
3 1/1000 1000 0.145 16,500.00 1,000,000 2,392.50 33,897,193

TABLE 7

OPTIMAL PREMIUMS FOR THE DUAL PROBLEM

Class k Premiums by BMS with doubled
theorem 3 premiums

1 139.30 133.76
2 1,222.30 1,212.04
3 2,426.80 2,457.09
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the demand for 100% difference between the classes, since the difference between
classes 2 and 3 is about 98.5%. For this reason, we calculate the premiums for the
appropriate BMS.
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APPENDIX

Proof of lemma 1:
Let x ∈ �m (x ! 0) and let z = Px. Since P is nonsingular and x ! 0 then z ! 0.
Since A is a positive definite matrix, xtAx > 0 for each x ! 0 and especially
ztAz > 0. Therefore 

xtBx = xtPtAPx =
= (Px)t A(Px) = ztAz > 0

¡

Proof of Lemma 2:
A matrix is a positive definite matrix if and only if each one of its leading
principal minors is positive. The lemma is proved by induction on m.

Clearly the Lemma holds for m = 1. Suppose that Am – 1 is a positive definite
matrix. Thus, all its main minors are positive. Hence it is enough to show
|Am | > 0, where |A| is the determinant of A. Note that |Am| = |Dm| + |Em|, where 
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Evaluating the determinant of Dm according to the last column yields:

|Dn | = (–1)2mam |Am – 1| > 0,

where the inequality holds since am > 0 and since by the induction hypothesis
|Am – 1| > 0.

To evaluate |Em| we subtract the last column from each of the other columns,
and we obtain
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Thus, |Am | > 0.
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