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This article surveys research on the application of compatible finite element methods
to large-scale atmosphere and ocean simulation. Compatible finite element methods
extend Arakawa’s C-grid finite difference scheme to the finite element world. They
are constructed from a discrete de Rham complex, which is a sequence of finite
element spaces linked by the operators of differential calculus. The use of discrete
de Rham complexes to solve partial differential equations is well established, but
in this article we focus on the specifics of dynamical cores for simulating weather,
oceans and climate. The most important consequence of the discrete de Rham
complex is the Hodge–Helmholtz decomposition, which has been used to exclude
the possibility of several types of spurious oscillations from linear equations of
geophysical flow. This means that compatible finite element spaces provide a useful
framework for building dynamical cores. In this article we introduce the main
concepts of compatible finite element spaces, and discuss their wave propagation
properties. We survey some methods for discretizing the transport terms that arise in
dynamical core equation systems, and provide some example discretizations, briefly
discussing their iterative solution. Then we focus on the recent use of compatible
finite element spaces in designing structure preservingmethods, surveying variational
discretizations, Poisson bracket discretizations and consistent vorticity transport.
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1. Introduction
Atmosphere and ocean models used in weather forecasting and climate simulation
are built around dynamical cores, which predict the fundamental quantities of fluid
motion: fluid velocity, pressure, density, temperature and, in the case of the ocean,
salinity. Dynamical cores are computer implementations of numerical discretiza-
tions of partial differential equation models of geophysical fluid dynamics in the
absence of viscosity. These models are then coupled with physics parametrizations
that describe additional physics as well as fluid dynamical processes involving
scales that are too small and fast to represent explicitly in the dynamical core. In
the case of atmosphere models, this can include radiation processes, cloud models,
moisture and precipitation in various phases, models of unresolved convection,
boundary layers, and momentum transfer due to unresolved internal waves. In
the case of ocean models, this includes vertical mixing due to convection, and
parametrization of unresolved eddy motions. Atmosphere and ocean models can
be coupled together using parametrizations of air–sea interaction processes, and
with other process models to form climate models. Other process models include
models of land albedo, land ice, sea ice, atmospheric chemistry, etc. Additionally,
in operational forecasting systems, atmosphere and ocean models are blended with
observed data using data assimilation algorithms.
A very important aspect of global atmosphere and oceanmodels is thewide range

of timescales. In the rotating compressible Euler equations that model atmospheric
flow (although usually with additional approximations), high-frequency motions
are possible in the form of pressure waves and internal waves. However, in the
solutions relevant to atmosphere models these frequencies are observed to have
very low amplitude, with the velocity remaining very close to being horizontal
and divergence-free. Since the numerical solution is never anywhere near being
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resolved in an atmosphere model, and due to the coupling with all of the other
modelled processes described above, plus the modifications made to the solution
by the data assimilation algorithms, it is critically important that unphysical large-
amplitude wave motions are avoided. Similar issues arise in the ocean model
context. All of this means that it is critically important to pay attention to what
happens in the dynamical core at the gridscale, to avoid numerical error triggering
these motions. These concerns lie at the heart of the decisions about which
discretizations to use in building a dynamical core.
In the past decades, atmosphere and ocean dynamical cores have been mainly

built around finite difference, finite volume and pseudospectral methods. In this
article we describe a more recent approach to building dynamical cores using com-
patible finite element methods. Finite element methods have the benefit that they
do not depend strongly on the structure of the underlying mesh for their consist-
ency and rate of convergence under mesh refinement. They can use polygonal
cells of different types, with triangulations in the horizontal being particularly flex-
ible. This allows mesh refinement in regions of focus, and the construction of
meshes that conform to coastlines and areas of high topography curvature. It also
allows adaptive mesh refinement, although the advantages of this are less clear in
large-scale weather and climate simulation.
The relaxation ofmesh structure also allows formore uniformmeshes in spherical

geometry. Instead of using a latitude–longitude grid, which has very thin cells
at the poles due to the convergence of lines of latitude, a cubed sphere mesh
(quadrilateral refinement of a cube mapped to a sphere) or an icosahedral mesh
(triangular refinement of an icosahedron mapped to a sphere) can be used. These
pseudo-uniform grids avoid the parallel scalability bottlenecks (Zängl, Reinert,
Rípodas and Baldauf 2015, Adams et al. 2019).
Finally, finite element methods allow for increasing the degree of polynomials

used in each cell, leading to higher-order accuracy. Higher-order finite element
methods have a denser, more structured data layout in each cell, which can be
exploited to try to achieve a higher computational intensity, doing more compu-
tational work whilst fetching data from nearby cells (Dennis et al. 2012, Giraldo,
Kelly and Constantinescu 2013).
Compatible finite elements, the subject of this survey, address the problem of

spurious numerical waves that cause problemswhen coupledwith numerical errors,
physics parametrizations and data assimilation schemes at the gridscale (Staniforth
and Thuburn 2012). They can be seen as an extension of the C grid finite difference
method (Arakawa and Lamb 1977), which avoids many spurious wave issues when
used with quadrilateral cells (and slightly less so with triangular cells). The C grid
method achieves this by placing different fields (velocity components, pressure,
etc.) on different entities of the grid (cells, edges, vertices) so that the discretized
vector calculus operators (div, grad, curl) retain kernels of the appropriate size. This
was formalized as the discrete exterior calculus (DEC) (Hirani 2003). Compatible
finite element methods do the same thing, but at the level of the finite element
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spaces and the vector calculus mappings between them. These methods have been
unified in the finite element exterior calculus (FEEC) (Arnold, Falk and Winther
2006),1 with a long history going back to the 1970s of applications to porous media,
elasticity and fluid dynamics. Their application to geophysical fluid dynamics also
has a long history, especially in the ocean (Le Roux, Staniforth and Lin 1998,
Walters 2005), and their representation of exact geostrophic balance has been well
known from numerical dispersion analysis for some time (Le Roux, Rostand and
Pouliot 2007, Rostand and Le Roux 2008). However, it was Cotter and Shipton
(2012) who first noticed that it was the compatible structure that was behind this
property, and that this structure can be used to understand the numerical dispersion
properties of compatible finite element schemes. Following earlier work by the
C grid and DEC communities, compatible finite element methods have also been
used to build structure preserving discretizations that embed conservation laws at
the discrete level.
This article will introduce compatible finite element methods for geophysical

fluid dynamics and their properties, and discuss how to build atmosphere and
ocean dynamical cores out of them, before focusing onwork on structure preserving
discretizations. The rest of the article is organized as follows. Section 2 will review
compatible finite element spaces and their fundamental properties. Section 3 will
discuss their application to linearwavemodels in geophysical fluid dynamics and the
use of the compatible structure to understand discrete wave propagation properties.
Moving towards nonlinear dynamical cores, Section 4will discuss the discretization
of transport schemes for compatible finite elements, and Section 5 will use them to
describe discretizations for nonlinear geophysical fluid dynamicsmodels and survey
their use. One common theme is that the analysis of the convergence and stability
of these schemes is very scarce and there is a lot of opportunity for future research
in this area. The next four sections concentrate on the use of compatible finite
element methods in structure preserving discretizations of various types. Section 6
surveys methods constructed from a discrete Hamilton’s principle. Section 7 covers
methods constructed from almost-Poisson brackets that ensure conservation of
energy and other quantities. Section 8 discusses methods that embed a diagnosed
vorticity or potential vorticity field with its own consistent dynamics. Finally,
Section 9 discusses some issues common to all structure preservingmethods related
to non-affine meshes, such as meshes approximating the sphere as well as terrain-
followingmeshes. We then end the survey with a very brief summary in Section 10.

1 The author uses the term ‘compatible finite elements’ as a way to discuss them with practitioners
when using the language of vector calculus instead of differential forms, which are more unifying
but require more background material to discuss.
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2. Compatible finite element spaces
In this section we describe compatible finite element spaces as they are used in
geophysical fluid dynamics applications. Compatible finite element spaces are
sequences of spaces that form a discrete differential complex (which we shall
describe below). In applications to geophysical fluid dynamics, the focus is on
the de Rham complex. There is a growing body of work for compatible finite
element spaces built around the Stokes complex (e.g. Tai and Winther 2006, Falk
and Neilan 2013, Neilan 2020, Hu, Zhang and Zhang 2022), the elasticity complex,
and the Regge complex for general relativity (e.g. Christiansen 2011, Christiansen,
Gopalakrishnan, Guzmán and Hu 2020), but we shall not discuss those spaces here.

2.1. Preliminary notation

First we establish some notation. Having defined the usual space !2(Ω) of square
integrable scalar functions on Ω (and writing !2(Ω)# as the space of vector func-
tions on Ω in dimension #), for a domain Ω in three dimensions we have

�1(Ω) = {q ∈ !2(Ω) : ∇q ∈ !2(Ω)}, (2.1)
�(curl;Ω) = {D ∈ !2(Ω)3 : ∇ × D ∈ !2(Ω)3}, (2.2)
�(div;Ω) = D ∈ !2(Ω)3 : ∇ · D ∈ !2(Ω), (2.3)

where ∇, ∇· and ∇× are the appropriately defined weak derivative operators; for
details, see a textbook on analysis of PDEs (e.g. Evans 2022), or proceed just
assuming that these are the usual derivatives for smooth functions and the cellwise
derivatives for finite element functions with the appropriate continuity, as we shall
discuss below. These spaces are accompanied by norms defined as

‖q‖2
!2(Ω) =

∫
Ω

q2 dG, (2.4)

‖D‖2
!2(Ω)# =

∫
Ω

|D |2 dG, (2.5)

‖q‖2
� 1(Ω) = ‖q‖

2
!2(Ω) + ‖∇q‖

2
!2(Ω)# , (2.6)

‖D‖2� (curl;Ω) = ‖D‖
2
!2(Ω)# + ‖∇ × D‖

2
!2(Ω)# , (2.7)

‖D‖2� (div;Ω) = ‖D‖
2
!2(Ω)# + ‖∇ · D‖

2
!2(Ω). (2.8)

In two dimensions, we similarly define

�(curl;Ω) = {D ∈ !2(Ω)2 : ∇⊥ · D ∈ !2(Ω)}, (2.9)
�(div;Ω) = {D ∈ !2(Ω)2 : ∇ · D ∈ !2(Ω)}, (2.10)

having defined the operators ∇⊥q = (−mG2q, mG1q) and ∇⊥ · D = −mG2D1 + mG1D2.
Frequently we drop the Ω from this notation when the meaning is clear. We will
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also use the !2 inner product notation

〈?, @〉 =
∫
Ω

?@ dG for all ?, @ ∈ !2(Ω), (2.11)

〈D, E〉 =
∫
Ω

D · E dG for all D, E ∈ !2(Ω)# , (2.12)

noting that
‖?‖2

!2(Ω) = 〈?, ?〉, ‖D‖2
!2(Ω)# = 〈D, D〉. (2.13)

We also define !2(Ω) inner products for functions on boundaries,

〈〈?, @〉〉 =
∫
mΩ

?@ d( for all ?, @ ∈ !2(mΩ), (2.14)

〈〈D, E〉〉 =
∫
mΩ

D · E d( for all D, E ∈ !2(mΩ)# . (2.15)

2.2. Discrete de Rham complexes

In three dimensions, discrete de Rham complexes on a domain Ω consist of sub-
spacesW0 ⊂ �1(Ω),W1 ⊂ �(curl;Ω),W2 ⊂ �(div;Ω),W3 ⊂ !2(Ω), satisfying
the following commutation relations:

W0 = �1 d1=∇−−−−−→ W1 = �(curl) d2=∇×−−−−−→ W2 = �(div) d3=∇·−−−−−→ !2yc0
yc1

yc2
yc3

W0
ℎ

d1=∇−−−−−→ W1
ℎ

d2=∇×−−−−−→ W2
ℎ

d3=∇·−−−−−→ W3
ℎ
,

(2.16)

where c8 , 8 = 0, 1, 2, 3 are surjective projections, satisfying a bound appropriate to
their domain, for example

‖c1D‖� (curl) ≤ �‖D‖� (curl) for all D ∈ �(curl). (2.17)

The commutation property means that d:+1c:D = c:+1 d:+1D, : = 0, 1, 2. These
projection operators (see Arnold et al. (2006) for a guide to their construction)
do not play a role in computations, but they ensure that the finite element spaces
are compatible in the sense that the differential operators ∇, ∇× and ∇· map
surjectively onto the kernel of the next operator in the sequence, just as is the case
for the infinite-dimensional spaces at the top of the diagram.
In two dimensions, the de Rham complex is shorter, and there are two possible

ways to write it:

V0 = �1 d1=∇⊥−−−−−→ V1 = �(div) d2=∇·−−−−−→ V2 = !2yc0
yc1

yc2

V0
ℎ

d1=∇⊥−−−−−→ V1
ℎ

d2=∇·−−−−−→ V2
ℎ
,

(2.18)
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Ṽ0 = �1 d1=∇−−−−−→ Ṽ1 = �(curl) d2=∇⊥ ·−−−−−−→ Ṽ2 = !2yc0
yc1

yc2

Ṽ0
ℎ

d1=∇−−−−−→ Ṽ1
ℎ

d2=∇⊥−−−−−→ Ṽ2
ℎ
.

(2.19)

The equivalence stems from the fact that any vector field in �(div;Ω) in two
dimensions can be transformed into a vector field in �(curl;Ω) by rotating it by
c/2. In compatible finite element methods for geophysical fluid dynamics we tend
to use (2.18), since it allows for local mass conservation and exact application of
flux boundary conditions.

2.3. Discrete Hodge–Helmholtz decomposition

Crucially for the geophysical fluid dynamics setting, the bounded, commuting,
surjective projections ensure a discrete version of the Hodge–Helmholtz decom-
positions. At the infinite-dimensional level, these decompositions are

W: = �: ⊕ h: ⊕ (�∗): , (2.20)

where

�: = {D ∈ W: : ∃q ∈ W:−1, with D = d:q}, (2.21)
h: = {D ∈ W: : d:+1D = 0, X:D = 0}, (2.22)

(�∗): = {D ∈ W: : ∃q ∈ W:+1, with D = X:q}, (2.23)

defining the dual operator X: : W: →W:−1 such that

〈q, X:D〉 = −
〈
d:+1q, D

〉
. (2.24)

When D ∈ W: is appropriately constructed so that boundary integrals vanish
under integration by parts (and sufficiently smooth that integration by parts is
well-defined), then we can make the following associations:

X0 = −∇·, X1 = ∇×, X2 = −∇. (2.25)

For example, considering X1, we have

〈E, X1D〉 = 〈∇ × E, D〉 = 〈E,∇ × D〉 − 〈〈E, = × D〉〉, (2.26)

where = is the outward-pointing normal to mΩ. If we choose D ∈ W̊2, where

W̊2 = {D ∈ W̊2 : D · = = 0 on mΩ}, (2.27)

then we obtain that X1D = ∇ × D for D ∈ W̊2 ∩W1. Similarly, we define

W̊0 = {q ∈ W0 : q = 0 on mΩ}, (2.28)
W̊1 = {D ∈ W1 : D × = = 0 on mΩ}, (2.29)
W̊3 =W0. (2.30)
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See Chapter 3 of Arnold (2018) for an accessible description of the full functional
setting for these aspects.
Returning to (2.20), we explain the ⊕ notation. It means that any D ∈ W: can

be written uniquely as 1 + ℎ + 2 with 1 ∈ �: , ℎ ∈ h: and 2 ∈ (�∗): . Further, we
have that the spaces �: , h: and (�∗): are mutually orthogonal under the !2 inner
product. When : = 2, we recognize this as the Helmholtz decomposition for vector
fields, which says that a vector field can be written uniquely as D = ∇× E + ℎ + ∇q,
with ∇ · ℎ = 0 and ∇ × ℎ = 0; ℎ is referred to as a ‘harmonic vector field’. This
decomposition is crucial to the understanding of rapidly rotating fluid dynamics.
As described inArnold et al. (2006), three-dimensional compatible finite element

spaces satisfy a discrete Hodge–Helmholtz decomposition,

W:
ℎ = �

:
ℎ ⊕ h

:
ℎ ⊕ (�∗):ℎ, (2.31)

where

h:ℎ =
{
D ∈ W:

ℎ : d:+1D = 0, X:ℎD = 0
}
, (2.32)

(�∗):ℎ =
{
D ∈ W:

ℎ : ∃q ∈ W:+1
ℎ , with D = X:ℎq

}
, (2.33)

and we have the discrete dual operator X:
ℎ

: W:+1
ℎ
→W:

ℎ
, such that〈

q, X:ℎD
〉
=

〈
d:+1q, D

〉
for all q ∈ W:

ℎ, D ∈ W
:+1
ℎ . (2.34)

We note the asymmetry under discretization: d: has the same definition at the
discrete level, but X: is replaced by the approximation X:

ℎ
.

The discrete Hodge–Helmholtz decomposition inherits some important proper-
ties from the infinite-dimensional decomposition. First, we have �:

ℎ
⊂ �: . Second,

although h:
ℎ
≠ h: , we do have that dim(h:

ℎ
) = dim(h:). Further, h:

ℎ
converges to h:

as the mesh is refined. These two properties have important consequences for the
correct representation of inertial oscillations in geophysical fluid dynamics models.
We do not have (�∗):

ℎ
⊂ (�∗): .

For later discussion we also define

Z : =
{
D ∈ W: : 3:+1D = 0

}
, (2.35)

noting that Z : = �: ⊕ h: . Similarly, we write Z :
ℎ
= �:

ℎ
⊕ h:

ℎ
.

The two-dimensional discrete de Rham complexes also provide an analogous
Hodge–Helmholtz decomposition for V:

ℎ
, which is most significant for V1

ℎ
.

2.4. Two-dimensional compatible finite element spaces used in geophysical fluid
dynamics

For compatible finite element methods for geophysical fluid dynamics, we are
mainly focused on the goal of producing three-dimensional fluid models of the
atmosphere and ocean. However, model development usually starts by consid-
eration of the rotating shallow water equations, since these equations encompass
many of the challenges of designing numerical schemes for atmosphere and ocean
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but without the additional computational challenges of three-dimensional models.
On quadrilateral meshes (such as the ‘cubed sphere’ meshing of the sphere), the
most commonly used spaces are V0

ℎ
= &: (tensor product Lagrange elements,

e.g. bilinear, biquadratic), V1
ℎ
= RT :−1 (Raviart–Thomas elements on quadri-

laterals, noting here that we use the traditional numbering convention according
to the largest complete polynomial space contained by the finite element, not the
UFL/FIAT numbering according to the highest-degree polynomial in the space)
and V2

ℎ
= �&1 (discontinuous tensor product Lagrange elements). However, it

may be interesting to consider the trimmed serendipity family of elements, espe-
cially at higher order (Gillette and Kloefkorn 2019). On triangular meshes (which
are much more flexible in allowing local mesh refinement), the main possibilities
are V0

ℎ
= %:+1 (Lagrange elements), V1

ℎ
= BDM: (Brezzi–Douglas–Marini ele-

ments on triangles) and V2
ℎ
= DG:−1, or V0

ℎ
= %:+1, V1

ℎ
= RT : (Raviart–Thomas

elements on triangles) and V0
ℎ
= DG: . Whilst in most applications the second

grouping is preferred, because it requires fewer degrees of freedom for the same
accuracy, in geophysical fluid dynamics this grouping has wave propagation issues
related to the Coriolis term, and we tend to prefer the first grouping based on
BDM elements (we shall discuss this later). In all of these discrete de Rham com-
plexes, we see the reduction in interelement continuity properties moving across
the discrete de Rham complex: V0

ℎ
contains only continuous functions,V1

ℎ
requires

continuity of normal components of its vector-valued functions across cell facets
(but not tangential components) and V2

ℎ
has functions with no interelement con-

tinuity constraints. See Boffi, Brezzi and Fortin (2013) for definitions of the finite
elements introduced in this paragraph.

2.5. Three-dimensional compatible finite element spaces used in geophysical fluid
dynamics

Whenmoving to three-dimensionalmodels, since the Earth’s atmosphere and ocean
are much larger in horizontal extent than the vertical, good preservation of hydro-
static balance (balance between gravitational acceleration and vertical pressure
gradient) requires the use of prismatic meshes that are constructed by extruding
a two-dimensional base mesh into layers. When the base mesh is constructed
from quadrilaterals, this produces hexahedra, and when the base mesh is construc-
ted from triangles, this produces triangular prisms. Three-dimensional discrete
de Rham complexes are constructed on these spaces by a tensor product of a two-
dimensional de Rham complex on the base mesh with a one-dimensional de Rham
complex for the vertical direction, given by

U0 = �1 d1=mG−−−−−→ V1 = !2yc0
yc1

U0
ℎ

d1=mG−−−−−→ U1
ℎ
.

(2.36)
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Excluding splines, etc., themain family of options for these one-dimensional spaces
is continuous Lagrange elements of degree :+1 forU0

ℎ
and discontinuous Lagrange

elements of degree : for U1
ℎ
. The three-dimensional discrete de Rham complex is

then formed on the reference cell  ̂3 =  ̂2 ×  ̂1 as follows:

W0
ℎ( ̂3) = V0

ℎ( ̂2) ⊗ U0
ℎ( ̂1), (2.37)

W1
ℎ( ̂3) = :̂V0

ℎ( ̂2) ⊗ U1
ℎ( ̂1)︸                  ︷︷                  ︸

=W1,+
ℎ

⊕ ](V1
ℎ( ̂2))⊥ ⊗ U0

ℎ( ̂1)︸                      ︷︷                      ︸
=W1,�

ℎ

, (2.38)

W2
ℎ( ̂3) = V2

ℎ( ̂2) ⊗ :̂U0
ℎ( ̂1)︸                  ︷︷                  ︸

=W2,+
ℎ

⊕ ](V1
ℎ( ̂2)) ⊗ U1

ℎ( ̂1)︸                    ︷︷                    ︸
=W2,�

ℎ

, (2.39)

W3
ℎ( ̂3) = V2

ℎ( ̂2) ⊗ U1
ℎ( ̂1). (2.40)

Herewewrite coordinates on  ̂3 as (G, I)with G ∈  ̂2 and I ∈  ̂1, defining the tensor
product+( 2)⊗*( 1) as the span of function products D(G)E(I)with D ∈ +( 2) and
E ∈ +( 1). Further, :̂ is the unit upward-pointing vector, ] is the inclusion operator
that maps two-dimensional vectors into equivalent three-dimensional vectors with
zero vertical part, and⊥ is the operator that rotates vectors by a quarter of a rotation
in the horizontal direction. These latter technicalities involving ], :̂ and ⊥ can all
be avoided in the unified presentation of spaces of discrete differential forms in
the finite element exterior calculus, which also unifies many other aspects across
dimensions, numbering of the spaces, etc. See Arnold and Awanou (2014) for a
full presentation of tensor product discrete differential forms.
Again, in all of these three-dimensional discrete de Rham complexes we see

the reduction in interelement continuity properties moving across the discrete
de Rham complex: W0

ℎ
contains only continuous functions,W1

ℎ
requires continuity

of tangential components of its vector-valued functions across cell facets (but not
normal components),W2

ℎ
requires continuity of normal components of its vector-

valued functions across cell facets (but not tangential components) and W3
ℎ
has

functions with no interelement continuity constraints.
As indicated in (2.38)–(2.39). theW1

ℎ
andW2

ℎ
spaces can be split into vertical

and horizontal parts, indicated by the + and � superscripts, respectively. As
suggested by this notation, the vertical part contains vector fields that point in the
vertical direction, whilst the horizontal part contains vector fields that point in
the horizontal direction. After Piola transformation to mesh cells (discussed in
Section 2.6), this decomposition is not preserved in general. However, if mesh
cells are arranged into a global tensor product mesh (i.e. flat vertical layers),
then this decomposition is preserved. This will also occur in a spherical annulus
meshed by radially extruding a two-dimensional surface mesh of the sphere (or an
approximation of one). If a terrain-following mesh is used, so that the side walls
of the mesh are arranged vertically but the horizontal layers move up and down
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to conform to mountain ranges on the surface, the decomposition is only partially
preserved: W1,�

ℎ
remains tangential to the ‘up’ direction andW2,+

ℎ
remains normal

to the ‘up’ direction, butW1,+
E will contain some horizontal component andW2,+

ℎ

will contain some vertical component.
In discretizations for geophysical fluid dynamics it is important that the gravity

term can be balanced by a vertical pressure gradient. To avoid degeneracy in this
balance, discussed in Section 3.8, it is necessary to use a finite element spaceW\

for temperature variables (entropy, temperature, potential temperature, etc.) that is
adapted to the vertical part of W2

ℎ
, which is used to represent the velocity in this

framework. We chooseW\ ( ̂) so that \ ∈ W\ ( ̂) =⇒ :̂\ ∈ W2,+
ℎ

( ̂), that is,

W\ ( ̂) = V0
ℎ( ̂2) ⊗ U1

ℎ( ̂1). (2.41)

It is also useful to construct vertical slice models by making analogous tensor
product constructions combining the (U0

ℎ
,U1

ℎ
) de Rham complex with itself. Since

the only possible one-dimensional meshes are intervals, this just leads to the usual
tensor product elements for quadrilaterals that we have already discussed above.
For further description of the construction and efficient implementation of these

tensor product elements within an automated system, see McRae et al. (2016).
The use of extruded meshes also has computational benefits that offset the ad-
ditional computational cost of using unstructured meshes in the horizontal. If a
semistructured data layout is used (i.e. a horizontal unstructured index and a ver-
tical structured one), then for a reasonable number of vertical layers (20 is already
enough in numerical experiments) the lookups to find data in the unstructured grid
data structure are negligible compared to the computational work done on data
loaded into memory. Thus there is no significant performance penalty to using
an unstructured data structure in the horizontal (Bercea et al. 2016). This means
that the benefits of the flexibility and mesh invariance of the unstructured grid
data structure in the horizontal can be exploited in performant three-dimensional
geophysical fluid models.

2.6. Local to global mappings

Whilst there has been work on, for example, �(div) elements on quadrilaterals
where the polynomials are defined directly on the mesh elements (Arbogast and
Correa 2016), here we mostly restrict discussion to discrete de Rham complexes
that are constructed on reference elements and mapped to mesh elements using
Piola maps. In three dimensions, this corresponds to the following set of relations:

k ∈ W0
ℎ( ) : k ◦ 6 = k̂, k̂ ∈ W0

ℎ( ̂), (2.42)
D ∈ W1

ℎ( ) : D ◦ 6 = �−>D̂, D̂ ∈ W1
ℎ( ̂), (2.43)

F ∈ W2
ℎ( ) : D ◦ 6 = �F̂/det �, F̂ ∈ W2

ℎ( ̂), (2.44)
q ∈ W3

ℎ( ) : q ◦ 6 = q̂/det �, q̂ ∈ W3
ℎ( ̂), (2.45)
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where 6 is the map between reference cell  ̂ and mesh cell  , with derivative �,
�−> means the inverse of the transpose of �, and ◦ indicates function composition,
that is, 5 ◦ 6 is another function with ( 5 ◦ 6)(G) = 5 (6(G)). This ensures that the
discrete de Rham complex property is preserved under the mapping from  ̂ to  .
To define W\ (Ω), we just use straightforward composition with the reference to
cell map as is done for W0

ℎ
. This leads to some differences between W\

ℎ
and the

vertical component ofW2
ℎ
(Ω) when terrain-following coordinates are used.

In two dimensions when using (2.18), this becomes

k ∈ V0
ℎ( ) : k ◦ 6 = k̂, k̂ ∈ V0

ℎ( ̂), (2.46)
F ∈ V1

ℎ( ) : D ◦ 6 = �F̂/det �, F̂ ∈ V1
ℎ( ̂), (2.47)

q ∈ V2
ℎ( ) : q ◦ 6 = q̂/det �, q̂ ∈ V2

ℎ( ̂). (2.48)

In geophysical fluid dynamics applications, being able to solve equations on
the surface of a sphere is important. In general, two-dimensional complexes can
be extended to orientable manifolds embedded in three dimensions by restricting
vector fields to be tangential to the manifold at each point. Then, for such a vector
field D, we define D⊥ = :×D, ∇⊥D = :×∇D and∇⊥ ·D = : ·∇×D, where∇ is now the
projection of the gradient onto the tangent plane. In fact, these operations can all
be given intrinsic definitions on any two-dimensional manifold without reference
to an external space R3 containing the manifold, best expressed using the language
of differential forms. However, we do not do this here; see Arnold et al. (2006) for
intrinsic constructions using differential forms.
The geometric factors in these formulae introduce complications. These are

related both to the approximation properties of the spaces and to their computer
implementation, the latter due to the resulting non-polynomial integrands in weak
formulations. When 6 is an affine transformation, � is constant on each cell, and no
alterations to the approximation properties arise. However, when 6 is non-affine,
� is non-constant. This means that the transformed basis functions may not span
the same polynomial spaces as they do on the reference cell. Arnold, Boffi and Falk
(2005) and Falk, Gatto and Monk (2011) showed that this occurs for transformed
�(div) and �(curl) elements on non-affine quadrilaterals and hexahedra. This in-
terferes with the standard approximation theory error estimates, because they apply
the Bramble–Hilbert lemma considering the largest polynomial space spanned by
the basis. The degradation of approximation theory was demonstrated in practice
in those papers. This presents a concern for the applicability of these spaces in
geophysical fluid dynamics, because we encounter non-affine transformations when
using quadrilaterals or higher-order triangular cells (i.e. triangles that have been
curved to better approximate the sphere) to approximate the surface of the sphere.
These spaces are also used when extruding the sphere radially to make a spherical
annulus, required for three-dimensional atmosphere and ocean models; this leads
to non-affine prismatic meshes. Non-affine cells also arise when terrain-following
meshes are used. These are meshes that slope layers up and down to conform to
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mountain ranges at the Earth’s surface in the atmosphere and ocean. Fortunately,
these approximation issues can be avoided through the framework of Holst and
Stern (2012), who used Strang-type estimates to consider the ‘variational crime’ of
a sequence of meshes that only conform to a manifold in the limit. Provided that the
meshes can be obtained by piecewise smooth mappings from an affine mesh (i.e.
a mesh consisting of cells mapped to the reference cell by affine transformations),
then approximation error bounds can be obtained that match those of the reference
cell. For meshes of interest in geophysical fluid dynamics, this covers the sphere
meshes described above, as well as terrain-following meshes obtained by smooth
transformation (smoothing of topography is standard practice in atmosphere and
ocean modelling). For the case of meshes (non-affine or otherwise) of the sphere
extruded into a spherical annulus, Natale, Shipton and Cotter (2016) showed that
these meshes can be obtained via transformation from an affine mesh embedded in
four dimensions.
Additionally, on unstructured meshes one must take care that the degrees of

freedom are correctly matched up on facets, and with the correct sign (since they
involve normal and tangential components in general). A systematic approach for
this was set out by Rognes, Kirby and Logg (2010), which is now implemented in
a number of finite element software systems, such as FEnICS (Logg, Mardal and
Wells 2012) and Firedrake (Rathgeber et al. 2016). Such systems are very useful
as an aid to productivity when dealing with the complexities of compatible finite
elements.

2.7. Replacing ∇· with DIV

One practical modification to this framework on non-affine meshes is to replace
the transformation for the !2 space (+ = V2

ℎ
in two dimensions or + =W3

ℎ
in three

dimensions) with straightforward composition, that is,

q ∈ +( ) : q ◦ 6 = q̂, q̂ ∈ +( ̂). (2.49)

Then the discrete de Rham complex can be restored by replacing ∇· with DIV ≔

%+∇·, where %+ is the !2 projection into + . This is always a local operation
since + is a discontinuous space with no interelement coupling. The diagram still
commutes, since if D ∈ �(div;Ω) then c# ◦ ∇· = DIV. This idea was originally
proposed in Bochev and Ridzal (2009), who defined DIV equivalently in the case
of RT0 spaces on quadrilateral grids using the discrete exterior calculus framework
by evaluating fluxes through edges, after which the definition as projection of the
divergence can be obtained using the divergence theorem. The extension to more
general �(div) finite element spaces on non-affine meshes was probably clear to
those authors, but it was also discussed from a practical perspective in Shipton,
Gibson and Cotter (2018).

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


304 C. J. Cotter

2.8. Primal–dual grids

There have been various attempts to build complementary spaces on dual grids, in
order to avoid the global mass solves that are required to compute X. These spaces
are linked by ‘discrete Hodge star’ operators (★0, ★1, ★2), with mappings indicated
in the following diagram:

V0
ℎ

d1=∇⊥−−−−−→ V1
ℎ

d2=∇·−−−−−→ V2
ℎ
,y★0

y★1
y★2

Ṽ2
ℎ

d2=∇⊥ ·←−−−−−− Ṽ1
ℎ

d1=∇←−−−−− Ṽ0
ℎ
.

(2.50)

It is important that the discrete Hodge star maps are invertible. The approach
is clearest for lowest-order spaces, where there is at most one nodal degree of
freedom per edge, vertex or cell in the definition of each space, in analogy with the
discrete exterior calculus (Hirani 2003). Thuburn and Cotter (2015) and Melvin
and Thuburn (2017) constructed complementary spaces on triangulations and their
duals by subdividing cells into triangles and placing RT0 elements in each subcell.
A constraint is applied so that the 32 operators produce constant functions over
the primal and dual cells, respectively. This scheme produces an extension of
the primal–dual finite difference C grid approach to the consistent finite element
setting; inconsistencies in the Coriolis term occur on dual icosahedral and cubed
sphere set-ups in the framework of Thuburn and Cotter (2012) and Thuburn, Cotter
and Dubos (2014a). The framework of mimetic spectral elements extends this idea
to higher-order polynomial spaces (Lee, Palha and Gerritsma 2018).

3. Wave propagation properties
In this section we review the properties of compatible finite element discretizations
applied to linearized geophysical fluid dynamics. We will see the favourable
properties of the C grid finite difference approach to finite element methods. It
is these properties that underpin the Met Office’s choice to use compatible finite
element methods to build their ‘GungHo’ atmospheric dynamical core that lies
at the centre of their next generation LFRic modelling system (e.g. Adams et al.
2019).

3.1. Compatible discretization of the linear rotating shallow water equations

For now, we consider compatible finite element methods applied to the linearized
rotating shallowwater equations on the doubly periodic planewith constant Coriolis
parameter,

DC + 5 D⊥︸︷︷︸
Coriolis

+ 6∇[︸︷︷︸
pressure gradient

= 0, [C + �∇ · D = 0, (3.1)
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where D is the horizontal velocity, ℎ = [+� is the layer height with � constant and
[ integrating to zero, 5 is the (constant) Coriolis parameter and 6 is the acceleration
due to gravity. The ⊥ operator rotates vectors one quarter of a rotation, to obtain
D⊥ = (−D2, D1). These equations are solved in two dimensions.

We use the Helmholtz decomposition D = ∇⊥k + D̄ + ∇q, where D̄ is a spatially
constant (but possibly time-dependent) vector field, as the harmonic vector fields
in the doubly periodic plane are of this form. Then we may write

qC − 5 k + 6[ = 0, (3.2)
kC + 5 q = 0, (3.3)
D̄C + 5 D̄⊥ = 0, (3.4)

[C + �∇2q = 0. (3.5)

First, we observe that the harmonic component D̄ is decoupled and rotates at
frequency 5 . These are called inertial oscillations. Second, we can find steady
solutions with q = 0, D̄ = 0, k = 6[/ 5 . These solutions correspond to states
of ‘geostrophic balance’, where the velocity is divergence-free and the pressure
gradient term cancels out the Coriolis term. The remaining solutions are inertia–
gravity waves with q non-zero. Applying time derivatives to (3.5) and (3.2), we
eliminate k and [ (by also using (3.3)), to obtain

qCC + 5 2q − 6�∇2q = 0, (3.6)

which is the inertia–gravity wave equation. When 5 = 0, this becomes the wave
equation with wavespeed

√
6�. When 5 ≠ 0 (a positive sign would be used

for Northern Hemisphere dynamics) then the equation becomes a Klein–Gordon
equation, which is dispersive.
Numerically induced oscillations (physical and spurious) in shallow water mod-

els have been extensively examined byLeRoux in a series of papers using dispersion
analysis (Le Roux et al. 2007, Le Roux and Pouliot 2008, Rostand and Le Roux
2008, Le Roux 2012), including for discretizations in the compatible finite element
family. Much of the vocabulary we use in this section has been taken from that
work.
To discretize this equation in space using compatible finite elements, we pick

a two-dimensional discrete de Rham complex (V0
ℎ
,V1

ℎ
,V2

ℎ
), and choose D ∈ V1

ℎ
,

[ ∈ V2
ℎ
. Then the usual introduction of inner products with test functions and

integration by parts leads to the discrete formulation

〈F, DC〉 + 〈F, 5 D⊥〉 − 〈∇ · F, 6[〉 = 0 for all F ∈ V1
ℎ, (3.7)

〈U, [C + �∇ · D〉 = 0 for all U ∈ V2
ℎ . (3.8)

Since [C + �∇ · D ∈ V2
ℎ
, we may choose U = [C + �∇ · D in (3.8), concluding that

[C + �∇ · D = 0 in !2(Ω). (3.9)

This is a useful property that we will use later.

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


306 C. J. Cotter

3.2. Geostrophic balance

In large-scale atmosphere and ocean applications, it is very important that discret-
izations can preserve states of geostrophic balance well; this is usually tested on
the linear rotating shallow water equations as discussed here. Cotter and Shipton
(2012) proved that compatible finite element discretizationswill have exactly steady
geostrophic balanced solutions. To be precise, for any divergence-free velocity field
D with zero harmonic component D̄, there exists an [ such that (D, [) form a steady
solution in geostrophic balance. To show this, we just find k ∈ V0

ℎ
such that

D = ∇⊥k (possible from the discrete Helmholtz decomposition), and pick [ as the
!2 projection of k into V2 before multiplying by 6/ 5 . Then

〈∇ · F, 6[〉 = 〈∇ · F, 5 k〉 = −〈F, 5∇k〉 = 〈F, 5 D⊥〉 for all F ∈ V1
ℎ, (3.10)

where the first equality holds from the projection, since ∇ · F ∈ V2
ℎ
. The second

equality holds by integration by parts, which is exact because F ∈ �(div) and
k ∈ �1. The final equality follows from D = ∇⊥k.
What is not true is that for every [ there exists a k giving a steady-state solution.

This is because the !2 projection from V0
ℎ
to V2

ℎ
is not a bijection. However, this

does not hold in the C grid finite difference case either.
It is also important that discretizations correctly represent inertial oscillations.

In the linear rotating shallow water equations, the only solutions with [ = 0 are
the inertial oscillations with spatially constant D = D̄ rotating at frequency 5 . It
is important that discretizations are free of spurious additional inertial modes, i.e.
solutions with [ = 0 but with spatially varying D. Le Roux (2012) examined
spurious modes in various finite element discretizations, showing that when they
are present they lead to degraded error convergence rates. They have also been
observed to lead to problems in practical ocean model simulations, where they
can be excited by nonlinearity in baroclinic jets. This results in the formation
of spurious grid-scale oscillatory patterns that do not change the pressure/layer
depth (Danilov and Kutsenko 2019). In a closed bounded domain with boundary
condition D · = = 0, we do not expect inertial oscillations because the space of
harmonic vector fields only contains 0. However, it is possible for spurious inertial
oscillations to satisfy the boundary condition, leading to their excitation.

3.3. Inertial oscillations

Natale et al. (2016) showed that compatible finite element discretizations applied
to the rotating shallow water equations in the periodic plane have the following
property: the only time-varying solutions of (3.7)–(3.8) with [ = 0 have spatially
constant DC , corresponding to inertial oscillations oscillating with frequency 5 .
Any time-independent solutions are in the kernel of the discrete Coriolis operator,
i.e. D ∈ V1

ℎ
such that

〈F, D⊥〉 = 0 for all F ∈ V1
ℎ . (3.11)
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In other words, these discretizations are free from inertial oscillations. To see this,
first note that if [ = 0, then (3.9) implies that ∇ · D = 0, so that D = : + ∇⊥k for
: ∈ hℎ and k ∈ V0

ℎ
, from the discrete Helmholtz decomposition. Using F = ∇⊥W

in (3.7), we get

〈∇⊥W, DC〉 = − 5 〈∇⊥W, D⊥〉 = 5 〈W,∇ · D〉 = 0 for all W ∈ V0
ℎ . (3.12)

Hence DC is orthogonal to �:ℎ, i.e. DC ∈ hℎ. We know from the discrete Hodge–
Helmholtz decomposition that dim(hℎ) = dim(h) = 2 on the periodic plane; h is
the set of constant vector fields. In fact, since the constant vector fields are in V1

ℎ
,

they are divergence-free and in the kernel of Xℎ. Time-independent divergence-free
solutions satisfy

0 = 〈F, DC〉 = − 5 〈F, D⊥〉 for all F ∈ V1
ℎ, (3.13)

that is, they are in the kernel of the discrete Coriolis operator. Vector fields in
this kernel are referred to as ‘Coriolis modes’. They are the main downside of
compatible discretizations, but the dimension of this kernel is always found to be
finite and resolution-independent in analyses by Rostand and Le Roux (2008); in
fact this number is typically very small. These Coriolis modes are also always
found in C grid finite difference discretizations.

3.4. Inertia gravity waves

Cotter and Shipton (2012) also examined the discrete inertia–gravity waves that
correspond to solutions of theKlein–Gordon equation above. Writing D = ∇⊥k+Xq
for k ∈ V0 and q ∈ V2 (having already discarded the harmonic component since
it decouples), and choosing both F = ∇⊥W for W ∈ V0

ℎ
and F = XU for U ∈ V2

ℎ
, we

obtain

〈XU, XqC〉 − 5 〈XU,∇k〉 − 6〈XU, X[〉 = 0 for all W ∈ V2, (3.14)
〈∇W,∇kC〉 + 5 〈∇W, Xq〉 = 0 for all W ∈ V0

ℎ, (3.15)
〈q, [C + �∇ · Xq〉 = 0 for all q ∈ V2

ℎ . (3.16)

Using the definition of X, and the fact that the height equation holds in !2, we get

− 〈U,∇ · XqC〉 + 5
〈
U,∇2k

〉
+ 6〈U,∇ · X[〉 = 0 for all W ∈ V2, (3.17)

〈∇W,∇kC〉 − 5 〈W,∇ · Xq〉 = 0 for all W ∈ V0
ℎ, (3.18)

[C + �∇ · Xq = 0. (3.19)

We can recognize the operator ∇·X as the mixed approximation ∇̃2 of the Laplacian
defined by 〈

U, ∇̃2q
〉
− 〈U,∇ · f〉 = 0 for all U ∈ V2

ℎ . (3.20)

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


308 C. J. Cotter

After restricting to V2
ℎ, defined by

V
2
ℎ =

{
q ∈ V2

ℎ :
∫
Ω

q dG = 0
}
, (3.21)

this discretization is well known to be invertible, stable and convergent. Hence,
when 5 = 0, we can deduce

qCC − 6�∇̃2q = 0, (3.22)

i.e. the mixed approximation of the wave equation for q ∈ V2
ℎ.

When 5 ≠ 0, we have to introduce projection operators

%0 : V2
ℎ → V

0
ℎ, %2 : V0

ℎ → V
2
ℎ, (3.23)

defined by

〈∇W,∇%0q〉 = 〈∇W, Xq〉 for all W ∈ V0
ℎ, (3.24)〈

U,−∇̃2%2k
〉
≔ 〈XU, X%2k〉 = 〈XU,∇q〉 for all W ∈ V2

ℎ . (3.25)

%0 is well-posed since it just involves solving the usual Galerkin discretization of
the Laplacian on V0

ℎ, whilst %2 is well-posed since it involves solving the mixed
discretization as we have already discussed.
Using %0 and %2, we get

qC − 5 %2k + 6ℎ = 0, (3.26)
kC + 5 %0q = 0, (3.27)
[C + �∇̃2q = 0, (3.28)

from which we can deduce the discrete Klein–Gordon equation

qCC + 5 2%2%0q − 6�∇̃2q = 0. (3.29)

The behaviour of the numerical dispersion relation depends on the kernel of the
composition %2%0, for which a lower bound is obtained by considering the relative
sizes of V̄0

ℎ
and V̄2

ℎ
. For RT : on quadrilaterals, these two spaces have the same

dimension in the periodic domain, so this projection is not too harmful. For
RT : spaces on triangles, dim(V̄2) > dim(V̄0), so %2%0 is not surjective. In the
case of the C grid finite difference method on triangles, a similar issue arises,
causing high- and low-frequency branches of the numerical dispersion relation to
intertangle, leading to numerical noise when 5 is sufficiently large (Danilov 2010).
Further analysis is required to really pin down these issues in the compatible finite
element case. For BDM: spaces on triangles, we have the opposite situation,
dim(V̄2) < dim(V̄0), so there is at least the chance for %2%0 to be surjective
(although both projection operators will have checkerboard modes in their kernel
on structured meshes). This suggests that BDM spaces are more appropriate for
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geophysical fluid dynamics using triangular meshes, but further analysis of these
issues is needed to make these statements more precise.

3.5. Spectral gaps and zero group velocity

Staniforth, Melvin and Cotter (2013) and Melvin, Staniforth and Cotter (2014)
examined the numerical dispersion relation for the cases of RT0 and RT1 on quad-
rilaterals, motivated by building discretizations on the sphere using a cubed sphere
grid. This type of dispersion analysis allows one to focus on group (ml/m: , where
l is the frequency and : is the wavenumber) and phase velocity (l:/|: |2) for
numerical discretizations. For RT0, the numerical dispersion relation is very sim-
ilar to the C grid finite difference numerical dispersion relation on quadrilaterals,
with no turning points for the group velocity except at maximum wavenumbers.
For RT1, the numerical dispersion relation has two roots for each wavenumber,
corresponding to the resolution of higher wavenumbers in the gridcell. When these
are properly interpreted, the group velocity is mostly well-behaved except for a
jump in the dispersion relation at ΔG wavelengths where the group velocity goes to
zero before and after the jump. Remarkably, the jump is repairable by modifying
the coefficients in the mass matrix in such a way that the convergence rate is not
eroded. It is not really the jump itself which is the problem, but the repair also
makes the group velocity become non-zero through a L’Hôpital’s rule type cancel-
lation. This fix is independent of the value of 5 and �, so is useable in practice.
In numerical experiments, Melvin et al. (2014) showed that this modification leads
to propagation of a wave packet with ΔG wavelength which otherwise stays in the
same location, spuriously.
Eldred, Dubos and Kritsikis (2019) introduced an alternative approach to avoid-

ing these dispersion relation spectral gaps, in which the nodal variables are the
same as RT0 and DG0 on quadrilaterals, but a higher-order polynomial expansion
is constructed by using nodal variables from surrounding cells. This can be seen
as a form of spline, but does not increase the degree of continuity, just the poly-
nomial degree. The effect on the numerical dispersion relation is that there is only
one branch, so there cannot be jumps. The downside of this approach is that the
stencil of the operators is extended to more cells, and the standard approach of
finite element assembly becomes more complicated. Eldred and Le Roux (2018,
2019) examined the spectral gaps in RT : elements for larger : , and showed that
this spline approach also fixes the problem for higher : .

3.6. Rossby waves

Following the approach of Thuburn (2008), Cotter and Shipton (2012) also ex-
amined theRossbywave propagation properties of compatible finite element spaces.
Rossby waves occur in the situation where the Coriolis parameter 5 is spatially
varying (as is the case on the sphere under the ‘traditional approximation’, where
5 = 2Ω · =, with Ω being the rotational velocity of the sphere, and = being the
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normal to the sphere surface). To perform the analysis, we consider solutions on
an infinite plane, with 5 = 50 + VH, where 50 and V are constants. Then, if the
Rossby number Ro = */ 5 ! is small (where * is a typical velocity scale and ! is
a typical spatial scale), and also V!/ 50 = $(Ro), then we neglect DC and VHD⊥ in
the velocity equation. This gives the geostrophic balanced states (D, ℎ) = (D6, [6)
satisfying

50D
⊥
6 = −6∇[6, (3.30)

so that DC = 0, and [C = −�∇ · D = �∇ · ( 50∇⊥[) = 0, as we saw previously.
This is the main reason why it is important for the discretization to represent these
geostrophic balanced states. To obtain dynamics, we consider $(Ro) corrections
to (D, [), which we write as (Dag, [ag) (ageostrophic velocity and height). The
equations at the next order in $(Ro) then give

(D6)C + 50D⊥ag + VHD⊥6 + 6∇[ag = 0, ([6)C + �∇ · Dag = 0. (3.31)

Applying −∇⊥· to the first equation and using the second gives

− ∇2kC +
50
�

([6)C − VD6 · Ĥ = 0, (3.32)

where we used that ∇⊥D6 = 0, so D6 = ∇⊥k (having already eliminating inertial
oscillations which are fast), and Ĥ is the unit vector in the H-direction. Finally this
becomes (

5 2
0
6�
− ∇2

)
kC − V

mk

mG
= 0, (3.33)

which is the Rossby wave equation, which exhibits waves propagating westwards
when V > 0 (i.e. in the Northern Hemisphere).

Now we examine what happens with compatible finite element discretizations
in the low-Ro limit. At leading order in Rossby number, we obtain the geostrophic
balance equation 〈

F, 5 D⊥6
〉
− 6〈∇ · F, [6〉 = 0 for all F ∈ V1

ℎ, (3.34)

〈U, �∇ · D6〉 = 0 for all V2
ℎ . (3.35)

We have already seen that this has solutions D6 = ∇⊥k, ℎ = %2( 5 k)/ℎ for k ∈ V0
ℎ
.

At the next order we have

〈F, (D6)C〉 +
〈
F, 50D

⊥
ag + VHD6

〉
− 〈∇ · F, 6[ag〉 = 0 for all F ∈ V2

ℎ, (3.36)

〈U, ([6)C + �∇ · (D6)〉 = 0 for all U ∈ V1
ℎ . (3.37)

Choosing F = ∇⊥W with W ∈ V0
ℎ
, and integrating by parts in (3.36) (permissible

since W ∈ �1 and Dag ∈ �(div)) gives

〈∇W,∇k〉 − 〈W, 5∇ · Dag〉 − 〈W, V D6 · Ĥ︸︷︷︸
= mk/mG

〉 = 0 for all W ∈ V0
ℎ . (3.38)

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


Compatible finite element methods for geophysical fluid dynamics 311

Equation (3.37) implies that

50%2(k)/6 + �∇ · D6 = 0 in !2. (3.39)

Combining this with (3.38) then gives the discrete Rossby wave equation,

〈∇W,∇kC〉 +
〈
W,

5 2
0
6�

%2k

〉
−

〈
W, V

mk

mG

〉
= 0 for all W ∈ V0

ℎ . (3.40)

Without the %2 projection operator, this would just be a regular �1 finite element
approximation of the Rossby wave equation. With it, there is the possibility of
some projection errors altering the numerical dispersion relation, especially in
the case of BDM elements where dim(V0

ℎ
) > dim(V2

ℎ
). However, this will only

occur for high-wavenumber waves, where the dynamics is already dominated by
the Laplacian term, and the Rossby waves will have very slow phase and group
velocities in either case. Hence we do not believe that this causes a problem for
discrete Rossby wave propagation. A similar argument was made in Thuburn
(2008) when considering C grid discretizations on hexagons.
Rostand and Le Roux (2008) examined the wave propagation properties of the

RT0–DG0 and BDM1–DG0 compatible finite element discretizations (and RT0–
CG1 and BDM1–CG1 discretizations that are not compatible) using discrete dis-
persion relations computed through Fourier analysis. These dispersion relations
revealed the steady geostrophic modes for constant 5 , and two branches of the
dispersion relation for BDM1–DG0, a primary one attached to the origin (zero
frequency for zero wavenumber) and a secondary one which they described as
spurious. It is possible that this second branch can be interpreted as corresponding
to higher wavenumbers resolved in the cell, just as for RT1 on quadrilaterals as
explored by Staniforth et al. (2013), but doing these calculations is difficult on
triangles and more work is needed to clarify this. In their dispersion analysis,
Rostand and Le Roux (2008) identified ‘CD modes’ in the BDM1–DG0 discretiza-
tion, which are modes in the intersection of the Coriolis operator and the divergence
operator. These precisely correspond to the modes in the kernel of the %2 oper-
ator appearing in (3.40). In experiments with the linear rotating shallow water
equations with balanced initial data and 5 = 50 + VH, designed to examine Rossby
wave propagation, they observed accurate solutions on structured grids but very
noisy solutions on unstructured grids. The noise was attributed to interactions with
the CD modes. However, when we have repeated these experiments using mod-
ern automated finite element systems such as FEniCS and Firedrake, we have not
observed this noisy behaviour with BDM1 on unstructured grids. It seems likely
that Rostand and Le Roux (2008) had bugs in their implementation related to the
identification of the two nodal variables between two cells across each edge (since
no such problem arose with RT0, which only has one nodal variable per edge).
This is understandable, because the problem of how to systematically assemble
BDM1 and higher-order �(div) spaces on triangles was not solved until Rognes
et al. (2010); these things are very difficult to implement by hand. These results
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may have discouraged the adoption of the BDM family for atmosphere and ocean
modelling, but it seems like a good option for lowest-order spaces to avoid the
issues with spurious inertia–gravity wave propagation with RT0.

3.7. Consistent linear tidal response

Cotter and Kirby (2016) considered solutions of the linearized barotropic tide
equations, which take the form

DC + 5 D⊥ + 6∇(� + 1) = −2D + �, �C + �∇ · D = 0. (3.41)

These are the linear rotating shallow water equations with additional topography
1, spatiotemporal lunar forcing � and linear friction coefficient 2. They used the
Helmholtz equation to obtain an exponentially damping lower and upper bound on
the energy in the absence of forcing. In the presence of time-dependent forcing
(quasiperiodic forcing is appropriate for tidal models), they proved that the solution
converges at exponential rate to a time-dependent solution as C → ∞, independent
of the initial condition. This is the solution that is of interest when predicting
tides. When compatible finite element methods are used to discretize the tide equa-
tions, they proved that the continuous-time discrete-space solution also converges
exponentially to a time-dependent numerical solution, independent of the initial
condition. Finally they showed that this discrete attracting solution converges to the
unapproximated attracting solution as the mesh is refined. Cotter, Graber and Kirby
(2018) extended this analysis to a nonlinear model with 2D replaced by 2 |D |D, which
is the more realistic damping model that is actually used by oceanographers. This
nonlinear case is surprisingly subtle but they were able to prove long-time stability
of the system and obtain rates of damping in the unforced case. These were used
to prove error estimates for the discrete solution obtained using compatible finite
element methods. Kirby and Kernell (2021) used the compatible finite element
framework to design a preconditioner for the implicit solver for the tidal equations,
proving that the convergence rates are independent of mesh resolution. Cotter,
Kirby and Morris (2022) extended this approach to the multiple layer version of
this model.

3.8. Hydrostatic balance

Finally in this section, we discuss the discrete hydrostatic balance properties of
compatible finite element methods. Later, we shall introduce three-dimensional
geophysical fluid dynamics models with gravity and pressure gradient terms, so
that the velocity equation takes the form

mD

mC
+ · · · + ∇?︸︷︷︸

pressure gradient

= 1:̂︸︷︷︸
gravity

, (3.42)

in the case of the Boussinesq equations (typically used in ocean modelling), where
? is the pressure, 1 is the buoyancy and :̂ is the unit normal vector in the ‘up’
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direction. In the case of the compressible Euler equations (typically used in
atmosphere modelling), we have

mD

mC
+ · · · + 2? \∇Π︸︷︷︸

pressure gradient

= −6:̂︸︷︷︸
gravity term

, (3.43)

where \ is the potential temperature,Π is theExner pressure and 6 is the acceleration
due to gravity. In both cases we are concerned with states of hydrostatic balance,
which is when the vertical component of the pressure gradient term balances the
gravity term. Either we are considering hydrostatic models, where this balance is
enforced exactly in the model, or we are considering non-hydrostatic models where
it is important that these hydrostatic states can be accurately represented. In the
compatible finite element case, to study the vertical part of the velocity equation,
we restrict the test function in the velocity equation to W2,+

ℎ
(assuming a tensor

product discrete de Rham complex), the vertical part of the space W2
ℎ
containing

the discretized velocity D.
In the case of theBoussinesq equations, the discrete hydrostatic balance iswritten

(after integration by parts) as

− 〈∇ · F, ?〉 = 〈F · :̂ , 1〉 for all F ∈ W̊2,+
ℎ
, (3.44)

for pressure ? ∈ W3
ℎ
and buoyancy 1 ∈ W\

ℎ
, where W̊2,+

ℎ
is the subspace of the

vertical spaceW2,+
ℎ

requiring the boundary condition D · = = 0 at the top and the
bottom. Despite appearances, this is actually only defining the vertical part of the
pressure gradient term, since F ∈ W̊2,+

ℎ
always points in the vertical direction.

Given ?, there is a unique 1 that satisfies this hydrostatic balance. To see this, we
note that if the layers of the mesh are flat, then F · : ∈ W\

ℎ
for all F ∈ W2,+

ℎ
. If the

layers are not flat, i.e. for terrain-following coordinates, then there exists 0 ≤ ^ ≤ ∞
such that ^F · : ∈ W\

ℎ
for all F ∈ W2,+

ℎ
. After replacing F · : = ^−1W for W ∈ W\

ℎ
,

we recognize the right-hand side of (3.44) as a non-degenerate weighted !2 inner
product, hence 1 is unique.
To discuss the nature of the uniqueness of ?, we consider an alternative boundary

condition with D · = = 0 on the bottom, and ? = ?0 on the top (for some chosen ?0
which may depend on the horizontal coordinate). The equation after integration by
parts and use of the top boundary condition gives

− 〈∇ · F, ?〉 + 〈〈F · =, ?0〉〉 = 〈F · :̂ , 1〉 for all F ∈ W̊2,+
ℎ
, (3.45)

where W̊2,+
ℎ

is now the subspace with vanishing normal component on the bottom
only. To analyse this problem, Natale et al. (2016) introduced the following
formulation, defining (E, ?) ∈ W2,+

ℎ
×W3

ℎ
such that

〈F, E〉 − 〈∇ · F, ?〉 = 〈F · :̂ , 1〉 − 〈〈F · =, ?0〉〉 for all F ∈ W̊2,+
ℎ
, (3.46)

〈q,∇ · E〉 = 0 for all q ∈ W3
ℎ, (3.47)
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which we recognize as a mixed problem defined onW2,+
ℎ
×W3

ℎ
. Using the same

arguments as earlier, at the solution we have ∇ · E = 0 in !2. Since E · = = 0
on the bottom surface, and E points in the vertical direction, we conclude that
E = 0, and therefore ? solves (3.45). Natale et al. (2016) showed that this type of
vertical mixed problem has a unique solution (E, ?). Hence there is a one-to-one
correspondence between ? and 1, as required. If there are boundary conditions
D · = = 0 on both top and bottom surfaces, ? is only determined up to the value ?0
restricted to the upper surface, also as required.
In the case of the compressible Euler equations, taking boundary conditions

D · = = 0 on the bottom surface and Π = Π0 on the top surface, the discrete
hydrostatic balance is written (after integrating by parts) as

− 〈∇ · (\F),Π〉 = 〈F · :̂ , 6〉 − 〈〈F · =,Π0〉〉 for all F ∈ W̊2,+
ℎ
, (3.48)

for Π ∈ W3
ℎ
and \ ∈ W\

ℎ
. Using an extension of the techniques described for the

Boussinesq equation, Natale et al. (2016) proved similar results. This motivates the
use ofW\

ℎ
for temperature variables like 1 or \. Melvin, Benacchio, Thuburn and

Cotter (2018) showed through linear dispersion analysis applied to the compressible
Boussinesq equations that this choice does indeed lead to an absence of spurious
hydrostatic modes that would appear if \ ∈ W3

ℎ
orW0

ℎ
.

4. Transport and stabilization
Hopefully it is clear from Section 3 that it might be interesting to consider designing
a numerical atmosphere or ocean model using compatible finite element methods.
One very important aspect of these models is the choice of transport schemes, i.e.
the discretization of the advection operators. Since different fields are restricted
to different spaces from the discrete de Rham complex (or W\

ℎ
) with different

continuity constraints, we need to consider a diverse range of transport schemes,
some of which we briefly survey in this section.

4.1. Transport of �1 fields

For scalar fields inW0 or V0 (we will call it + here), we consider the discretization
of the advection equation

m@

mC
+ D · ∇@ = 0, (4.1)

for some specified D ∈ W2
ℎ
or V1

ℎ
, where we assume that D · = = 0 on exterior

boundaries. Since + is a continuous finite element space, we simply take the !2

inner product with a test function and integrate by parts to obtain the standard
continuous finite element approximation, seeking @ ∈ + such that〈

q,
m@

mC

〉
− 〈∇ · (Dq), @〉 = 0 for all q ∈ +. (4.2)
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As is well known, this discretization tends to produce spurious oscillations at
regions of rapid changes in @. One way to suppress these oscillations is to use the
streamline upwind Petrov–Galerkin (SUPG) method (Brooks and Hughes 1982,
Tezduyar, Glowinski and Liou 1988, Tezduyar 1989). In this approach, the test
function q is replaced by q + gD · ∇q, which biases it in the upwind direction; g
is some chosen stabilization parameter which depends on the mesh, D and other
parameters. This leads to〈
q + gD · ∇q, m@

mC

〉
− 〈∇ · (Dq), @〉 + 〈gD · ∇q, D · ∇@〉 = 0 for all q ∈ +. (4.3)

The final term performs diffusion along streamlines of D, which tends to reduce
spurious oscillations. By applying this modification in the m@/mC term as well as
the D · ∇@ term, we obtain a consistent approximation (i.e. substituting a smooth
exact solution of the unapproximated equation produces zero).
Another possibility is the edge stabilization approach proposed for advection

equations and analysed (when combined with diffusion) in Burman and Hansbo
(2004), resulting in the formulation〈

q,
m@

mC

〉
− 〈∇ · (Dq), @〉 + 〈〈Wℎ2 [[∇q]], [[∇@]]〉〉Γ = 0 for all q ∈ +, (4.4)

where

〈〈D, E〉〉Γ =
∫
Γ

D · E d(, (4.5)

Γ is the union of all interior facets 5 in the mesh (i.e. facets joining two cells),
[[E]] = E+=+ + E−=− for vector fields E, each facet 5 has been arbitrarily assigned
+ and − labels to its two sides, 0± indicates the restriction of the discontinuous
function 0 to the ± side of the facet, respectively, ℎ is a mesh edge length parameter,
and W is a (possibly D- or @-dependent) stabilization parameter. This term has a
diffusive effect across interior facets, penalizing jumps in @, without sacrificing
consistency as ℎ→ 0.

4.2. Transport of !2 fields

The spaces W3
ℎ
and V2

ℎ
have no continuity constraints, which allows for upwind

stabilization via a discontinuous Galerkin formulation. Here we consider the
continuity equation

�C + ∇ · (D�) = 0, (4.6)

where D is as above. We introduce the discretization by multiplying by a test
function and integrating over a single mesh cell 4,∫

4

q�C − ∇q · D� dG +
∫
m4

�̃D · =q d( = 0 for all q ∈ +(4), (4.7)
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where m4 is the boundary of 4 with outward-pointing normal =, + is the chosen
discontinuous space, and �̃ is the upwind value of �, which must be defined in
terms of the values of � on the inside and the outside of 4. When D · = > 0, then
�̃ is equal to � from inside 4, otherwise the outside value is used. If we sum over
all the cells 4 in the mesh, we obtain

〈q, �C〉 − 〈∇ℎq, D�〉 + 〈〈[[qD]], �̃〉〉Γ = 0 for all q ∈ +(Ω), (4.8)

where ∇ℎ indicates the cellwise ‘broken’ gradient,

∇ℎ |4� = ∇|4�, (4.9)

for each cell 4 in the mesh. An analysis of how this choice of upwind �̃ introduces
stabilization is provided in Brezzi, Marini and Süli (2004). This method is locally
conservative.

4.3. Transport of �(div) fields

In consideration of the (D ·∇)D term in the velocity equation of geophysical models,
and discretizations for vector advection equations of the form

mE

mC
+ (D · ∇)E = 0, (4.10)

for a vector field E in �(div) spaces W2,+
ℎ

or V1
ℎ
, D is again as above. When the

equation is solved on surface of the sphere, E is constrained to be tangential to
the sphere (or the mesh approximating the sphere in the discrete case). Then the
equation becomes

mE

mC
+ P(((D · ∇)E) = 0, (4.11)

where P( is the Euclidean projection into the tangent plane to the sphere.
Functions in �(div) spaces are only partially continuous (in the normal compon-

ent across facets), so we need to start by considering an upwind formulation on a
single cell again,∫

4

F · EC − ∇ · (D ⊗ F) · E dG +
∫
m4

= · DF · Ẽ d( = 0 for all F ∈ +(4), (4.12)

where (0 ⊗ 1)8 9 = 081 9 for vectors 0 and 1, Ẽ is the upwind value of E, � : � =∑
8 9 �8 9�8 9 for two matrices � and �, and + is the chosen �(div) space. Summing

up over all of the cells in the mesh gives∫
Ω

F · EC −∇ℎ · (D ⊗ F) · E dG +
∫
mΓ

[[D ⊗ F]] · Ẽ d( = 0 for all F ∈ +(Ω), (4.13)

where [[D ⊗ F]] = (=+ · D+)F+ + (=− · D−)F−. Since E ∈ + has continuous normal
components, Ẽ only differs from E in the tangential component. Hence the upwind
stabilization may be insufficient to adequately suppress oscillations, depending on
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the shape of the mesh cells and the direction of the velocity. On meshes approxim-
ating the sphere (and other manifolds), these formulae require modification when
=+ ≠ −=− on an edge. The modification rotates D̃ into the tangent plane of the cell
4, as described in Bernard et al. (2009). The projection of the advection equation
into the tangent to the sphere is naturally dealt with in (4.13), because F ∈ V2

ℎ
is

always tangential to the surface mesh.
The vorticity form is an alternative form of the vector advection equation,

given by
mE

mC
+ (∇ × E) × D + 1

2
∇(D · E) + 1

2
(
(∇E)>D − (∇D)>E

)
= 0, (4.14)

in three dimensions, where (∇E)>
8 9
= mD 9/mG8 . In two dimensions this is written as

mE

mC
+ (∇⊥ · E) · D⊥ + 1

2
∇(D · E) + 1

2
(
(∇E)>D − (∇D)>E

)
= 0, (4.15)

where

F⊥ = (−F2, F1), l = ∇⊥ · F ≔ −mF2
mG1
+ mF1
mG2

(4.16)

for a vector field F in planar geometry. On the sphere, with outward-pointing
normal :̂ = G/|G | (and G is the three-dimensional coordinate with origin at the
centre of the sphere), we have F⊥ = :̂ × F and ∇⊥ · F = :̂ · ∇ × F, where ∇ is
now the projection of the gradient into the tangent to the mesh surface; see Rognes,
Ham, Cotter and McRae (2013) for implementation details.
When E = D, we have the ‘vector-invariant’ form

mD

mC
+ (∇ × D) × D︸       ︷︷       ︸

or (∇⊥ ·D)D⊥

+1
2
∇|D |2 = 0, (4.17)

which is particularly useful on the surface of the sphere because it avoids the need
to rotate upwinded vectors. To see this, we multiply by a test function F ∈ + and
integrate over one cell, integrating by parts to get∫
4

F · mD
mC
−∇⊥(F ·D⊥) ·D−∇ ·F 1

2
|D |2 dG +

∫
m4

F ·D⊥=⊥ · D̃ d( = 0 for all F ∈ +.
(4.18)

Here no rotation is required because the tangent to the edge between cells agrees on
both sides: it is just the facet normal (the normal to the cell edge that is tangential
to the cell surface) that can change on manifold meshes. Summing over all of the
cells in the mesh gives∫

Ω

F · mD
mC
− ∇⊥(F · D⊥) · D − ∇ · F 1

2
|D |2 dG −

∫
Γ

[[F · D⊥]] · D̃⊥ d( = 0, (4.19)

where for scalars q, [[q]] = q+=+ + q−=−. This upwinded vector-invariant form
for �(div) spaces first appeared in Natale and Cotter (2018) for the incompressible

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


318 C. J. Cotter

Euler equations, andwas used for the rotating shallowwater equations on the sphere
in Gibson et al. (2019).

The polynomial spaces for lowest-order RT elements do not span all linear vector
fields. This means that if we use the above scheme then it will only be first-order
accurate. Bendall and Wimmer (2023) looked at using an auxiliary field @ ∈ V0

ℎ

with @ = −X0E, that is, @ approximates ∇⊥ · E if the solution domain Ω has no
boundary. Then we can use this in an approximation of (4.15):〈

F,
mE

mC

〉
+ 〈F, @D⊥〉 − 1

2
〈∇ · F, D · E〉 + � ′(E;F) for all F ∈ V1

ℎ . (4.20)

This was inspired by the energy–enstrophy conserving schemes that we discuss in
Section 7. Here, � ′ represents the discretization of the last two terms on the left-
hand side of (4.15), which we do not go into here (standard upwind discontinuous
Galerkin approaches were used, similar to those above). To obtain the dynamics
for @, we can select F = −∇⊥W for W ∈ V0

ℎ
, and substitute into (4.20) to obtain〈

W,
m@

mC

〉
− 〈∇W, @D〉 − � ′(E;∇⊥W) for all W ∈ V0

ℎ . (4.21)

We recognize the first two terms as the standard continuous finite element approx-
imation of m@/mC + D · ∇@. As we discussed above, some method of stabilization is
usually needed to suppress oscillations in this approximation. Modifying the test
function according to the SUPG approach is ungainly here, because of the surface
terms in � ′. Instead, Bendall and Wimmer (2023) used a residual-based approach,
writing 〈

W,
m@

mC

〉
− 〈∇W, @∗D〉 − � ′(E;∇⊥W) for all W ∈ V0

ℎ, (4.22)

where

@∗ = @ − g
(
m@

mC
+ ∇ · (D@) + 1

2
∇⊥ℎ

(
(∇ℎE)>D − (∇ℎD)>E

))
, (4.23)

where g is a stabilization parameter. We note that this change preserves the
consistency of the discretization since the quantity in the brackets is just the curl
(∇⊥·) of (4.15). Then the equation for E becomes〈

F,
mE

mC

〉
+ 〈F, @∗D⊥〉 − 1

2
〈∇ · F, D · E〉 + � ′(E;F) for all F ∈ V1

ℎ . (4.24)

Bendall andWimmer (2023) showed in numerical experiments (including a nonlin-
ear rotating shallow water equation test case on the sphere) that this discretization
produces second-order accurate solutions using lowest-order RT quadrilateral ele-
ments on a cubed sphere grid, whilst (4.19) only produces first-order accurate
solutions. A predecessor of this scheme was considered in Kent, Melvin and
Wimmer (2023), but without the consistent definition of @ and D.
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Transport schemes for W1
ℎ
are discussed in Wimmer and Tang (2022) in the

context of magnetohydrodynamics, using similar ideas to those discussed in this
section forW2

ℎ
.

4.4. Temperature space transport schemes

The temperature space W\ produces similar challenges, since it is continuous in
the vertical and discontinuous in the horizontal. Yamazaki et al. (2017) combined
an upwind discontinuous Galerkin discretization in the horizontal with an SUPG
discretization in the vertical, with the modification of test functions W ↦→ W +
g:̂ · D mg/mI, producing a second-order scheme when the RT1 discrete de Rham
complex is used, so that temperature is continuous quadratic in the vertical and
discontinuous linear in the horizontal.
In staggered grid weather models, it is standard practice to collocate thermo-

dynamic tracers such as moisture, etc., with temperature. This makes it easier to
localize thermodynamic processes that alter, and depend on, the temperature (see
e.g. Bush et al. 2020). Hence we need to use W\

ℎ
transport schemes for those

tracers as well. For many of these tracers (moisture, chemical species, etc.) it is
important to avoid numerical over- and undershoots leading to negative humidity,
for example. Hence it is important to be able to incorporate limiters intoW\

ℎ
trans-

port schemes. Cotter and Kuzmin (2016) proposed such a scheme for the vertically
quadratic, horizontally linear W\

ℎ
also considered by Yamazaki et al. (2017). In

that scheme, at the beginning of the time-step, the vertical continuity conditions are
relaxed, and an upwind discontinuous Galerkin transport scheme is applied over
one time-step in Ŵ\

ℎ
, the corresponding discontinuous space. A slope limiter, such

as the one in Kuzmin (2013), can then be used to avoid under- and overshoots in
this step. Then an element-based flux-corrected remapping is used to transform \

back to the vertically continuous spaceW\
ℎ
. The flux correction switches between

a high-order and low-order mapping in order to maximize the use of the high-order
solution unless under- or overshoots would otherwise occur.

4.5. Recovered space schemes

The lowest-order RT de Rham complex on hexahedra is attractive because it allows
storage of field values at the same grid locations as for the C grid finite difference
approximation. This is why this de Rham complex is being used for the Met Office
‘GungHo’ dynamical core (Melvin et al. 2019). However, as we have already
mentioned above, standard upwind finite element schemes on these spaces are only
first-order accurate, because only W0

ℎ
has element shape functions that span the

complete linear polynomial space;W8
ℎ
, 8 = 1, 2, 3, andW\

ℎ
do not. Bendall, Cotter

and Shipton (2019) chose to address this by using recovery operators to construct
higher-order approximations of the solution based on averaging cell values around
vertices. If the original low-order solution is obtained by interpolating a smooth

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


320 C. J. Cotter

function, this recovery step produces a higher-order continuous finite element
solution (Georgoulis and Pryer 2018). Following Cotter and Kuzmin (2016), they
then relaxed the continuity of the higher-order recovered solution and applied a
discontinuousGalerkin transport scheme step before remapping back to the original
low-order finite element spaces. This was demonstrated in numerical experiments
to produce second-order convergence of solutions. Bendall and Wimmer (2023)
introduced modifications to extend this approach to the sphere.
This recovery process also allows the introduction of limiters to prevent over-

and undershoots. This was done in Bendall et al. (2020), applied to compress-
ible Euler solutions with moisture, where limiters are critical for stability. This
produced the first atmospheric simulations using compatible finite elements with
moist physics. Bendall, Wood, Thuburn and Cotter (2022) then showed how to
achieve this framework whilst conserving mass and total moisture.

5. Example discretizations and iterative solution strategies
In this sectionwe survey some compatible finite element discretizations of geophys-
ical fluid dynamics models, concentrating on approaches that can be considered
as evolutions of existing approaches using more ‘traditional’ discretizations. More
advanced structure preserving discretizations are discussed in Sections 6–9.

5.1. Rotating shallow water equations on the sphere

We start with the rotating shallow water equations on the sphere, written as

mD

mC
+ P(((D · ∇)D) + 5 D⊥ + 6∇(� + 1) = 0, (5.1)

m�

mC
+ ∇ · (�D) = 0, (5.2)

where D is the horizontal velocity tangential to the sphere, � is the depth of the
fluid layer and 1 is the height of the bottom surface.

Gibson et al. (2019) introduced a spatial discretization built around the vector-
invariant formulation (4.19) for velocity advection D, and the discontinuous Galer-
kin formulation (4.8) for depth �. This leads to a spatial discretization seeking
(D, �) ∈ V1

ℎ
× V2

ℎ
such that〈

F,
mD

mC

〉
−

〈
∇⊥ℎ (F · D⊥), D

〉
+ 〈〈[[F · D⊥]], D̃⊥〉〉Γ

−∇ · F
(

1
2
|D |2 + 6(� + 1)

)
dG = 0 for all F ∈ V1

ℎ, (5.3)

〈q, �C〉 − 〈∇ℎq, D�〉 + 〈〈[[qD]], �̃〉〉Γ = 0 for all q ∈ V2
ℎ . (5.4)
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They used a semi-implicit time-stepping scheme, which is best described as some
form of iteration towards the fully implicit time-stepping scheme

〈
F, D=+1 − D=

〉
− ΔC

〈
∇⊥ℎ (F · D̄⊥),

(
D=+1/2

)⊥〉
+ΔC

〈〈
[[F · D̄⊥]],

(
D̃=+1/2

)⊥〉〉
Γ

−ΔC∇ · F
(

1
2
|D̄ |2 + 6(�̄ + 1)

)
dG = 0 for all F ∈ V1

ℎ, (5.5)

〈q, �C〉 − ΔC〈∇ℎq, D̄�〉 + ΔC〈〈[[qD̄]], �̃〉〉Γ = 0 for all q ∈ V2
ℎ, (5.6)

where D=+1/2 = D̄ = (D=+1 + D=)/2. This mixture of two symbols for the same thing
is introduced to describe an iteration based around this implicit discretization.
We write E0 = D=, E1, E2, . . . and �0 = �=, �1, �2, . . . as a sequence of iterative
approximations to D=+1 and D=, respectively. For each iteration : , we write D̄ =
(D= + E:)/2, �̄ = (�= + �:)/2, solving (5.5)–(5.6) for D=+1 and �=+1 using those
values of D̄ and �̄. Then we use the linearization about the state of rest to compute
iterative corrections (ΔD,Δ�), according to

〈F,ΔD〉 + ΔC
2
〈F, 5ΔD⊥〉

− ΔC
2
〈∇ · F, 6Δ�〉 = −'D [F] ≔ −

〈
F, D=+1 − D=

〉
for all F ∈ V1

ℎ, (5.7)〈
q,Δ� + �ΔC

2
∇ · ΔD

〉
= −'� [q] ≔ −

〈
q, �=+1 − �=

〉
for all q ∈ V2

ℎ . (5.8)

We will discuss the solution of this linear system later. The time integration
scheme applies a fixed number of iterations of this type (typically 2 ≤ :max ≤ 4).
We then take (D=+1, �=+1) = (E:max , �:max) before moving to the next time-step.
It is not intended to converge to the solution of the implicit midpoint rule but
just to produce a second-order semi-implicit scheme that is stable conditional on
the advective Courant number |D |ΔC/ΔG, but unconditionally in the wave Courant
number

√
6�ΔC/ΔG. A probably more stable approach is to use the form (4.15)

for the velocity equation, substituting D̄ for D and D for E. This was done using
quadrilateral RT0 elements in Bendall and Wimmer (2023). Another approach is
to replace the implicit midpoint rule update for D=+1 and �=+1 given D̄, instead
using an explicit transport step (or several substeps). This can facilitate more
sophisticated transport schemes with limiters that are hard to implement in implicit
schemes. This was also done using quadrilateral RT0 elements in Bendall and
Wimmer (2023).
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5.2. Rotating incompressible Boussinesq equations

For ocean models, the most common setting is the incompressible Boussinesq
equations,

mD

mC
+ (D · ∇)D + 2Ω × D + ∇? − 1:̂ = 0, (5.9)

m1

mC
+ (D · ∇)1 = 0, (5.10)

∇ · D = 0, (5.11)

where Ω is the Earth’s rotation rate, ? is the pressure and 1 is the buoyancy. Here
we limit discussion to the rigid lid approximationwith boundary conditions D ·= = 0
on all boundaries. In full ocean models there are generally two thermodynamic
tracers, the potential temperature \ and the salinity (, which are both transported
by advection equations as 1 is above, and 1 is then a specified function of \ and (
via an equation of state. However, here we keep things to the simple formulation
above. Further, many models make the hydrostatic approximation, but we do not
discuss that here. Finally, these equations are extended in operational models to
include mixing parametrizations and representations of other physical processes;
we do not discuss those either.
Yamazaki et al. (2017) introduced a hybrid approach for velocity advection in

the vertical slice setting (the velocity is three-dimensional but all fields are inde-
pendent of H, so the equations can be solved on a two-dimensional mesh in the G− I
plane), with (4.19) as the transport scheme for the G − I components of velocity,
and a standard upwind discontinuous Galerkin scheme for the H component. For
buoyancy 1 (represented in W\ ), the hybrid scheme with upwind discontinuous
Galerkin in the horizontal and SUPG in the vertical was used. This spatial dis-
cretization was combined with a time-stepping scheme similar to the one above,
resulting in a linear system of the form

〈F,ΔD〉 + ΔC
2
〈F, 2Ω × ΔD〉

− ΔC
2
〈∇ · F,Δ?〉 − 〈F, 1:̂〉 = −'D [F] for all F ∈ W2

ℎ, (5.12)

〈W,Δ1〉 + ΔC
2
〈W,ΔD · :̂�I〉 = −'1 [W] for all W ∈ W\

ℎ , (5.13)

〈q,∇ · ΔD〉 = 0 for all q ∈ W3
ℎ, (5.14)

where �I is the vertical derivative of a reference buoyancy profile, to compute the
iterative linear corrections to D=+1, ?=+1 (actually an approximation to pressure at
time level C=+1/2) and 1=+1, analogously to (5.7)–(5.8).

Equations (5.12)–(5.14) were solved by eliminating Δ1. This is possible without
introducing errors on an extruded mesh with flat layers when �I is constant, since
Δ1:̂ ∈ W2,+

ℎ
. When that is not the case, the errors from the approximate elimination
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can be removed by using the elimination as a preconditioner for a Krylov method
on (5.12)–(5.14). At the time, the equations were modified by setting Ω to zero on
the left-hand side (which prevented the iterative solver from being robust to large
values of Ω), and using GMRES applied to the coupled system〈
F,ΔD + ΔC

2

4
:̂ :̂ΔD�I

〉
+ ΔC

2
〈F, 2Ω × ΔD〉

− ΔC
2
〈∇ · F,Δ?〉 − 〈F, 1:̂〉 = −'̃D [F] for all F ∈ W2

ℎ, (5.15)

∇ · ΔD = 0. (5.16)

This was preconditioned by an �(div) block preconditioner, which we do not
describe here. However, it is much better to precondition (5.15)–(5.16) using a
hybridized solver, which we describe later in this section.
Yamazaki et al. (2017) showed that this suite of discretization and solver choices

produces a scheme that can resolve fronts in the Eady vertical slice frontogenesis
problem to a similar degree as C grid finite difference methods used previously.
After this paper was published, the authors experimented with replacing the hybrid
advection scheme for velocity with a full vector-invariant form in all three compon-
ents of velocity. In this case, oscillations in the velocity field quickly emerge when
the front sharpens. These oscillations do not appear when (4.13) is used instead.
It is possible that this is related to the Hollingsworth instability associated to the
vector-invariant form used with C grid finite difference methods (Hollingsworth,
Kållberg, Renner and Burridge 1983), but this requires further investigation.

5.3. Rotating compressible Euler equations

For global atmosphere models, a standard approach is to solve the rotating com-
pressible Euler equations, given by

DC + (D · ∇)D + 2Ω × D + 2?\∇Π + 6:̂ = 0, (5.17)
\C + D · ∇\ = 0, (5.18)

�C + ∇ · (D�) = 0, (5.19)
Π = �(\, �), (5.20)

where \ is the potential temperature, Π is the Exner pressure, � is now the density
for three-dimensional models, 2? is the specific heat at constant pressure (a constant
parameter in the ideal gas law) and � is a prescribed function describing the thermal
equation of state relating Π, � and \. This form of the equations is known as the
‘theta-Pi’ formulation. Other thermodynamic formulations make use of pressure
and temperature directly, or other combinations of variables, but we do not discuss
them here. For simplicity we consider boundary conditions D · = = 0 on the
bottom and top boundaries of the domain, although representations of the top of
the atmosphere can be rather more complicated (since the real atmosphere has a
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density that decreases with height until it is so low that assumptions underlying the
fluid dynamics model do not hold).
A compatible finite element formulation of the compressible Euler equations

uses D ∈ W2
ℎ
, � ∈ W3

ℎ
and \ ∈ W\

ℎ
. Either Π is solved as an independent variable

inW3
ℎ
, with the equation of state being projected intoW3

ℎ
, orΠ can just be replaced

by �(\, �) in the velocity equation, leading to a system for D, \ and �.
Natale et al. (2016) proposed a formulation using (4.19) as the transport scheme

for velocity, upwind discontinuous Galerkin for density transport and the hybrid
scheme for potential temperature used in Yamazaki et al. (2017). The main addi-
tional challenge is the discretization of the pressure gradient term −\∇Π (which is
scaled by 2?). In Yamazaki et al. (2017), the pressure gradient ∇? was integrated
by parts, but this is more complicated in the compressible Euler case because of
the presence of \ ∈ W\

ℎ
, which can have discontinuities in the horizontal direction

across vertical facets. We need to integrate by parts because Π is discontinuous,
whether it is an independent variable in W3

ℎ
or the evaluation of �(�, \) (since

� ∈ W3
ℎ
is discontinuous). Natale et al. (2016) proposed applying integration by

parts separately in each cell 4 for this term, obtaining∫
4

∇ · (F\)Π dG −
∫
m4

\F · ={Π} d( for all F ∈ W2
ℎ(4), (5.21)

where {Π} is the average value of Π between the inside and the outside of 4 (since
Π takes two values on m4). Summing this over all cells gives

〈∇ℎ · (F\),Π〉 − 〈〈[[F\]], {Π}〉〉Γ for all F ∈ W2
ℎ(Ω), (5.22)

where {Π} is nowdefined as (Π++Π−)/2. Again, analogously to (5.7)–(5.8), a semi-
implicit time-stepping scheme can be used, this time built around a linearization
about a state of rest with D = 0, \ = \̄ and Π = Π̄. These reference profiles vary
in the vertical only, or – following the ENDGame approach (Wood et al. 2014)
– the values of \̄ and Π̄ can be used from \ and Π at the previous time-step,
but whilst neglecting their horizontal derivatives in the linearization to facilitate
efficient solution. Finally, we neglect horizontal derivatives of Δ\ appearing in
the Δ\∇Π̄ term, for the same reason. This results in the following linear iteration,
presented in Gibson (2019) (and used for the numerical results in Natale et al.
2016):

〈F,ΔD〉 + ΔC
2
〈F, 2Ω × ΔD〉

−
2?ΔC

2
〈∇ℎ · (\̄F),ΔΠ〉 +

2?ΔC

2
〈〈[[\̄F]], {ΔΠ}〉〉Γ

−
2?ΔC

2
〈∇ · (:̂Δ\\F · :̂), Π̄〉 = −'D [F], F ∈ W2

ℎ, (5.23)

〈W,Δ\〉 + ΔC
2

〈
W,
m\̄

mI
ΔD · :̂

〉
= −'\ [W], W ∈ W\

ℎ , (5.24)
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〈q,Δ�〉 − ΔC
2
〈∇ℎq, �̄ΔD〉 +

ΔC

2
〈〈[[qΔD]], {�̄}〉〉Γ = −'� [q], q ∈ W3

ℎ, (5.25)

ΔΠ =
m�

m\
Δ\ + m�

m�
Δ�, (5.26)

for the iterative updates (ΔD,Δ\,Δ�) ∈ W2
ℎ
× W\

ℎ
× W3

ℎ
to (D=+1, \=+1, �=+1).

Alternatively, as was done in Melvin et al. (2019), we can add ΔΠ ∈ W3
ℎ
to the list

of independent variables and replace (5.26) with

〈U,ΔΠ〉 =
〈
U,
m�

m\
Δ\ + m�

m�
Δ�

〉
for all U ∈ W3

ℎ . (5.27)

Melvin et al. (2019) adopted a hybrid approach, using finite volume methods to
approximate the transport terms in a discretization otherwise built using compatible
finite element methods.

5.4. Iterative solver strategies

Now we focus on the iterative solver strategies for these linear implicit systems.
In all of the strategies we discuss here, the temperature Δ\ is first (approximately)
eliminated following our description of the approach to incompressible Boussinesq
equations discussed above. This leads to the system

〈F,ΔD〉 + ΔC
2
〈F, 2Ω × ΔD〉

−
2?ΔC

2
〈∇ · (\̄F),ΔΠ〉 +

2?ΔC

2
〈〈[[\̄F]], {ΔΠ}〉〉Γ

−
2?ΔC

2
〈∇ · (:̂Δ\\F · :̂), Π̄〉 = −'D [F], F ∈ W2

ℎ, (5.28)

〈q,Δ�〉 − ΔC
2
〈∇ℎq, �̄ΔD〉 +

ΔC

2
〈〈[[qΔD]], {�̄}〉〉Γ = −'� [q], q ∈ W3

ℎ, (5.29)

Δ\ = −ΔC
2
\̄ΔD · :̂ + A\ , (5.30)

ΔΠ =
m�

m\
Δ\ + m�

m�
Δ�, (5.31)

for (ΔD,Δ�) ∈ W2
ℎ
×W3

ℎ
, where A\ ∈ W\

ℎ
such that

〈A\ , W〉 = '\ [W] for all W ∈ W\
ℎ . (5.32)

In other words, A\ is the !2 Riesz representer of '\ . Mitchell and Müller (2016)
proposed solving this reduced system using GMRES with a Schur complement
preconditioner, using an approximate Schur complement formed from the lumped
velocity mass matrix (and setting Ω = 0). This was incorporated into a horizontal
multigrid scheme (coarsening the mesh in the horizontal but not the vertical) using
line smoothers (direct solves neglecting horizontal coupling between columns) for
the approximate Schur complement on the levels. This combination of horizontal

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


326 C. J. Cotter

multigrid and vertical line smoothers is necessary because of the small aspect ratio
of the atmosphere, and scalable parallel performance was observed over a large
range of resolutions. This solve approach was successfully implemented in the
Met Office system by Maynard, Melvin and Müller (2020), using the discretization
approach of Melvin et al. (2019).

There is an alternative solution approach that has been applied to compatible
discretizations of elliptic problems since the mid-twentieth century: hybridization.
In hybridization, the continuity constraints of the �(div) space are relaxed, and
enforced through Lagrange multipliers as part of the solution formulation. The
Lagrange multiplier space Tr, known as the trace space since it is supported only
on cell facets, is chosen to match the �(div) space when restricted to a facet and
dotted with the normal component. This means that it is discontinuous between
facets that meet at a vertex in two dimensions, or at an edge or vertex in three
dimensions. For example, the hybridizable formulation of (5.7)–(5.8) seeks

(ΔD,Δ�, _) ∈ V̂1
ℎ × V

2
ℎ × Tr

(
V1
ℎ

)
(5.33)

such that

〈F,ΔD〉 + ΔC
2
〈F, 5ΔD⊥〉

− ΔC
2
〈∇ · F, 6ΔD〉 + 〈〈[[F]], _〉〉Γ = −'̃D [F] for all F ∈ V̂1

ℎ, (5.34)〈
q,Δ� + �ΔC

2
∇ · ΔD

〉
= −'� [q] for all q ∈ V2

ℎ, (5.35)

〈〈W, [[ΔD]]〉〉Γ = 0 for all W ∈ Tr(V1
ℎ), (5.36)

where
'̃D [F] = 'D [F] for all F ∈ V1

ℎ . (5.37)

To see that this is an equivalent formulation to (5.7)–(5.8), note that V̂1
ℎ
⊂ V1

ℎ
,

so we may choose F ∈ V1
ℎ
in (5.34). In that case, the _ term vanishes because

[[F]] = 0, and we recover 5.7. Further, (5.36) ensures that D ∈ V1
ℎ
at the solution,

since taking W = [[ΔD]] implies that [[ΔD]] = 0 in !2(Γ); we note that

V1
ℎ(Ω) =

{
D ∈ V̂1

ℎ(Ω) : ‖ [[D]] ‖!2(Γ) = 0
}
. (5.38)

The advantage of this formulation is that ΔD and Δ� can now both be eliminated
elementwise, leading to a sparse system for _; the reduced system is referred to as
the hybridized system. This is possible because we can take F and q supported
in only one cell, and then given _, we can solve for ΔD and Δ� independently
in each cell (this is referred to as the local solver). Material discussing the well-
posedness of the hybridized system is surveyed in Boffi et al. (2013), along with
postprocessing techniques for obtaining improved approximations using _. A
non-rigorous intuitive explanation for this is that _ gives an approximation of
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Δ� evaluated on facets, and hence the hybridized equation has properties of an
approximation to the Helmholtz equation satisfied byΔ� after eliminatingΔD from
the linear PDE. This idea is built upon in Cockburn and Gopalakrishnan (2004),
which provides an explicit weak form characterization of the hybridized method
(including the non-symmetric term here containing Ω × D is a straightforward
extension of that work). This idea was used to demonstrate smoothing properties
of standard iterative methods in Gopalakrishnan (2003) and a convergent multigrid
scheme in Gopalakrishnan and Tan (2009). Gibson, Mitchell, Ham and Cotter
(2020) applied the hybridization technique to the linear compressible Boussinesq
equations, which are aminormodification of the linearization of the incompressible
Boussinesq equations described above, incorporating linear acoustic waves.
This strategy cannot be applied to (5.28)–(5.31), because the averaging {ΔΠ}

of Π on facets couples the values of ΔΠ between cells (and so there is no local
solver). Gibson (2019) proposed a modification to address this, in which we seek
(ΔD,Δ�, _) ∈ Ŵ2

ℎ
×W3

ℎ
× Tr(W2

ℎ
) such that

〈F,ΔD〉 + ΔC
2
〈F, 2Ω × ΔD〉

−
2?ΔC

2
〈∇ℎ · (\̄F),ΔΠ〉 +

2?ΔC

2
〈〈[[\̄F]], _〉〉Γ

−
2?ΔC

2
〈∇ · (:̂Δ\\F · :̂), Π̄〉

+
2?ΔC

2
〈〈[[ :̂Δ\\F · :̂]], {Π}〉〉Γ�︸                                 ︷︷                                 ︸

★

= −'D [F], F ∈ Ŵ2
ℎ, (5.39)

〈q,Δ�〉 − ΔC
2
〈∇q, �̄ΔD〉 + ΔC

2
〈〈[[qΔD]], {�̄}〉〉Γ = −'� [q], q ∈ W3

ℎ, (5.40)

〈〈W, [[D]]〉〉Γ = 0, W ∈ Tr(W2
ℎ), (5.41)

Δ\ = −ΔC
2
\̄ΔD · :̂ , (5.42)

ΔΠ =
m�

m\
Δ\ + m�

m�
Δ�, (5.43)

where Γ� is the set of horizontal faces between cells in the same vertical column.
Here, the idea is that _ is an approximation of 2?ΔCΔΠ/2 on mesh facets. This
system is not equivalent to (5.28)–(5.31), though. Note the addition of the term
indicated with ★. This term vanishes when F ∈ W2

ℎ
, so it does not change

the solution, but it was found that without it, iterative solvers do not perform
well; it appears to be required for the coercivity of the solution. This system has
not been analysed yet, but it was demonstrated to produce comparable results to
standard test cases when applied to the full nonlinear compressible Euler equations.
Scalable multigrid behaviour for the hybridized system was also demonstrated.
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Bendall et al. (2020) extended this solver approach to the compressible Euler
equations with moisture, where the mass lumping approach was found not to
work well when RT1 spaces were used. Betteridge et al. (2022) showed that this
hybridization approach produces scalable results for the Met Office formulation of
Melvin et al. (2019).

5.5. Computing hydrostatic balanced states

The hybridization approach also provides a useful way to solve for hydrostatic
balanced states, satisfying

− 〈∇ · (\F),Π〉 = 〈F · :̂ , 6〉 − 〈〈F · =,Π0〉〉 for all F ∈ W̊2,+
ℎ
. (5.44)

Following the technique of Natale et al. (2016) previously discussed, for given
\ ∈ W\

ℎ
, we seek (E, �) ∈ W2

ℎ
×W3

ℎ
such that

〈F, E〉 − 〈∇ · (\F),Π〉 = 〈F · :̂ , 6〉 − 〈〈F · =,Π0〉〉 for all F ∈ W̊2,+
ℎ
, (5.45)

〈q,∇ · E〉 = 0 for all q ∈ W3
ℎ, (5.46)

Π = �(\, �), (5.47)

which is independent between columns. An equivalent hybridizable formulation
seeks (E, �) ∈ W2

ℎ
×W3

ℎ
such that

〈F, E〉 − 〈∇ · (\F),Π〉
+ 〈〈[[F]], _〉〉Γ = 〈F · :̂ , 6〉 − 〈〈F · =,Π0〉〉 for all F ∈ Ŵ2,+

ℎ
, (5.48)

〈q,∇ · E〉 = 0 for all q ∈ W3
ℎ, (5.49)

〈〈W, [[E]]〉〉Γ = 0 for all W ∈ Tr
(
W2,+
ℎ

)
, (5.50)

Π = �(\, �), (5.51)

where Γ now includes the bottom boundary (but not the top), and Tr(W2,+
ℎ

) is only
supported on horizontal facets between neighbouring cells in the same column.
This can be solved using Newton’s method, with solution of the Jacobian system
via the hybridized system for X_.

5.6. Monolithic solvers

One more recent solver approach has been investigated in numerical experiments
in Cotter and Shipton (2022), who used a similar suite of discretizations to that
of Natale et al. (2016), with the exception of using edge stabilization for potential
temperature instead of vertical SUPG. In this work, the fully nonlinear implicit
midpoint rule is solved using Newton’s method, and GMRES is applied to the
coupled system for ΔD,Δ\,Δ� without elimination. The system is preconditioned
by an additive Schwarz method, computing exact solutions of the Jacobian system
restricted to overlapping columnar patches; each patch consists of the cells sur-
rounding one vertical edge (excluding degrees of freedom attached to the vertical
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facets on the side boundaries of the patch). This scheme also requires further ana-
lysis, but was shown to produce mesh independent iteration counts in numerical
experiments.

6. Variational discretizations
Variational discretizations are discretizations that are derived from a discrete
Hamilton’s principle. They were originally introduced in the setting of ordinary
differential equations (ODEs), taking the name ‘variational integrators’, surveyed in
Marsden andWest (2001). The idea behind variational discretizations is that rather
than discretizing the equations directly, we instead discretize the action functional
from which the equations are derived. In the case of ODEs, this means replacing
the time integral with a discrete quadrature rule involving the solution at discrete
points in time. The discretization of the equations is then obtained by finding
stationary points of the discretized Lagrangian.
The advantage of variational discretizations is that if the discretized action has

symmetries, then these symmetries give rise to corresponding conserved quantities
via (the discrete) Noether’s theorem. In the context of variational integrators for
mechanical systems, this yields discrete conservation of momentum and angular
momentum, for example. Further, after Legendre transformation the discrete time-
stepping map is symplectic, leading to the conservation (up to exponentially small
terms in ΔC) of a modified energy/Hamiltonian obtained through backward error
analysis (Hairer, Wanner and Lubich 2006, Hairer, Lubich and Wanner 2003,
Leimkuhler and Reich 2004, Sanz-Serna 1992).
In principle, the variational discretization approach can be extended directly to

partial differential equations by simply discretizing the action functional in space
as well as in time (or one may consider spatial semidiscretization by discretizing in
space only, as we shall mostly do here). For fluid dynamics, the situation is more
challenging, because the underlying variational principle is defined in terms of the
Lagrangian flow map rather than the Eulerian quantities. This is discussed in the
following subsection.

6.1. Hamilton’s principle for fluid dynamics: continuous theory

The Lagrangian flow map is treated formally (we avoid discussions of smoothness,
etc.) as a diffeomorphism j(·, C) : Ω0 → Ω, mapping labels in a configuration space
Ω0 to fluid particle locations at time C in the physical domain Ω. We have a time-C
family of maps.2 The variational formulation then follows by writing an action as
an integral overΩ0, and variations in j are considered subject to the usual endpoint
conditions in time plus the requirement that j be a diffeomorphism. Working with
these Lagrangian flowmaps is difficult both for theory and numerical computation;

2 Here we use the notation j(·, C) to indicate the function G ↦→ j(G, C) for given C.
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this was addressed by Arnold’s geometric formulation in Eulerian variables for the
incompressible Euler equations (Arnold 1966). For each (G, C) ∈ Ω× [0, )], where
) is the time interval over which the equations are being solved, D(G, C) is a vector
tangent to G at Ω.3 For each C, we say that D(·, C) ∈ X(Ω), the space of vector fields
on Ω.
The formulation stems from the observation that the Eulerian velocity D satisfies

m

mC
j = D ◦ j, (6.1)

where for functions of (G, C) we write (D ◦ j)(G, C) = D(j(G, C), C). To construct
Hamilton’s principle, we need to consider perturbations to j that are still diffeo-
morphisms for each C. If we consider such a continuous two-parameter family
of perturbed maps j̃(G, C, n), with j̃(G, C, n = 0) = j(G, C), then there exists a
continuous family of vector fields F̃(·, C, n) ∈ X(Ω) such that

m

mn
j̃ = F̃ ◦ j̃, (6.2)

where we now extend the ◦ notation to the case of two parameters, n and C, writing
(F̃ ◦ j̃)(G, C, n) = F̃(j̃(G, C, n), C, n). Differentiating with respect to n and evaluating
at n = 0, we get the infinitesimally perturbed j,

Xj ≔
m

mn

���
n= 0

j̃ = F ◦ j, (6.3)

where F(G, C) ≔ F̃(G, C, n = 0). Here Xj depends on the direction of perturbation in
the parameter n , so we always consider Xj being defined with respect to a particular
choice of F. By differentiating (6.1) with respect to n , we obtain

X
m

mC
j = (∇D) ◦ j · Xj + XD ◦ j

= (∇D) ◦ j · F ◦ j + XD ◦ j, (6.4)

where

XD ≔
m

mn

���
n= 0

m

mC
j ◦ j−1. (6.5)

Similarly, by differentiating (6.3) with respect to C, we obtain

m

mC
Xj = (∇F) ◦ j · m

mC
j + m

mC
F ◦ j

= (∇F) ◦ j · D ◦ j + m
mC
F ◦ j. (6.6)

By subtracting (6.4) and (6.6), noting the symmetry of second derivatives and

3 We have D(G, C) ∈ R# for the case where Ω is an #-dimensional subset of R# , but in geophysical
fluid dynamics we are also interested in solving problems where Ω is the surface of a sphere.
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composing with j−1, we obtain

XD =
m

mC
F + D · ∇F − F · ∇D︸              ︷︷              ︸

= [D,F ]

. (6.7)

Hence we have successfully related infinitesimal perturbations (‘variations’) in D to
variations in j entirely in terms of the Eulerian quantities D andF. Arnold used this
calculation to derive the incompressible Euler equations by seeking D ∈ Xvol(Ω)
(the subspace of X(Ω) containing divergence-free vector fields), that extremize the
reduced action functional

( =

∫ )

0

∫
Ω

1
2
|D |2 dG dC, (6.8)

subject to endpoint conditions D |C=0 = D0, D |C=) = D) (for some chosen D0 and
D) ), and the boundary conditions D · = = 0 on the boundary mΩ of the domain Ω,
where = is the outward-pointing normal to mΩ. If we perturb D subject to these
conditions, this implies that FC=0 = FC=) = 0.
Taking variations gives

0 = X( =
∫ )

0

∫
Ω

XD · D dG dC

=

∫ )

0

∫
Ω

(
m

mC
F + [D, F]

)
· D dG dC

=

∫ )

0

∫
Ω

F ·
(
− m
mC
D − ∇ · (D ⊗ D) − (∇D)>D︸  ︷︷  ︸

= 1
2 |D |2

)
dG dC

+
∫ )

0

∫
mΩ

D · =︸︷︷︸
= 0

F · D d( dC

+
[∫
Ω

D · F︸︷︷︸
= 0

dG
] C=)
C=0

for all F ∈ Xvol(Ω), (6.9)

where (D ⊗ D)8 9 = D8D 9 , and (∇D)8 9 = mD8/mG 9 . This formally implies that

P

(
m

mC
D + D · ∇D

)
= 0, (6.10)

where P is the !2 projection onto divergence-free vector fields. In other words,
there exists a pressure ? such that

m

mC
D + D · ∇D + ∇? = 0, (6.11)

which is the familiar form of the incompressible Euler equation (together with the
divergence-free constraint ∇ · D = 0).
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Besides the usual translational and rotational symmetries (assuming appropri-
ate boundary conditions), the variational formulation has an additional particle
relabelling symmetry, meaning that we can replace j with j ◦ k for any diffeo-
morphism k : Ω0 → Ω0 and the action remains invariant (in fact the value of D
does not change). Physically this corresponds to the fact that the fluid physics is
independent of the choice of label for a fluid particle (the label for a fluid particle
at time C and position G0 being j−1(G), i.e. j(G0, C) = G). As discussed in many
places (e.g. Morrison 1982, Salmon 1998, Shepherd 1990), this symmetry leads to
conservation of circulation

d
dC

∫
�(C)

D · dG = 0, (6.12)

for closed loops �(C) that are being transported by the fluid velocity D.
The reduction from the flow map j to the Eulerian velocity by Arnold was

characterized in Holm, Marsden and Ratiu (1998) as Euler–Poincaré reduction
by symmetry. In that work, this framework was extended to quantities that are
advected by the flow, including densities solving the continuity equation, tracers
solving the advection equation, etc., leading to the derivation of the full family of
geophysical fluid dynamics models and beyond: quasigeostrophic approximations
(Holm and Zeitlin 1998), complex fluids (Holm 2002, Gay-Balmaz and Ratiu
2009), vertical slice models (Cotter and Holm 2013b), pseudocompressible and
anelastic approximations (Cotter and Holm 2014), the Boussinesq-alpha model
(Badin, Oliver and Vasylkevych 2018) and models with moisture and irreversible
processes (Gay-Balmaz 2019). The derivation of conservation laws associated
with particle relabelling symmetries through Noether’s theorem applied to this
framework was presented in Cotter and Holm (2013a) and Cotter and Cullen
(2019).

6.2. Koopman representation: continuous theory

The difficulty with adapting Hamilton’s principle, as described above, to discretiz-
ations is that there does not exist a finite-dimensional subspace of flow maps that
closes appropriately under composition. A solution to this, proposed by Pavlov
et al. (2011), is to use the Koopman representation of flow maps. We shall only
briefly describe their approach here, butwill providemore detail about the extension
to compatible finite elements shortly.
In the Koopman framework, flow maps j in the group Diff(Ω) of diffeomorph-

isms on Ω are represented by elements of �!(!2(Ω)), the invertible linear maps
from !2(Ω) to !2(Ω). In particular, flow maps j represented by linear maps
dj ∈ �!(!2(Ω)) are defined by dj · 0 ≡ dj(0) = 0 ◦ j−1. Of course, there are
many maps in �!(!2(Ω)) that cannot be written in this way, so there is not an
isomorphism. In fact, the map defines a subgroup of �!(!2(Ω)), which we call
�(!2(Ω)), which is isomorphic to the group Diff(Ω).
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To specialize to incompressible flows, we use �!0(!2(Ω)), defined as

�!0(!2(Ω)) =
{
d ∈ �!(!2(Ω)) : (d · 0, d · 1)Ω = (0, 1)Ω
for all 0, 1, ∈ !2(Ω), and d · 2 = 2 for all 2 ∈ R

}
. (6.13)

The dj representation defines an isomorphism of a subgroup of �!0(!2(Ω)),
which we call �0(!2(Ω)), to the group of volume preserving diffeomorphisms
Diffvol(Ω). The group �0(!2(Ω)) was approximated in numerical discretizations
of the incompressible Euler equations in Pavlov et al. (2011); the extension to the
full diffeomorphism group was used in the extension to compressible models of
geophysical fluid dynamics in Desbrun, Gawlik, Gay-Balmaz and Zeitlin (2014),
Bauer and Gay-Balmaz (2017), Brecht et al. (2019) and Bauer and Gay-Balmaz
(2019).
The Koopman representation also provides an isomorphism between the Lie

algebraX(Ω), corresponding to vector fields onΩ, and a subspace of the Lie algebra
gl(!2(Ω)), which we call g(!2(Ω)). For a one-parameter family jB ∈ Diff(!2(Ω))
of maps with j0 = Id and

d
dB

���
B = 0

jB = E, (6.14)

we have
d
dB

���
B = 0

djB0 =
d
dB

���
B = 0

(
0 ◦ j−1

B

)
≔ −!E0 = E · ∇0, (6.15)

where !E is called the Lie derivative. Corresponding definitions follow for the
restrictions Diff(Ω)→ Diffvol(Ω) and �!(!2(Ω)) to �!0(!2(Ω)).

6.3. Previous work on variational discretizations using Koopman representation

Pavlov et al. (2011) used theKoopman representation to derive a discrete variational
principle that considered finite subspaces �!(+), where + is the space of cellwise
constant functions defined on a mesh. The subset �ℎ ⊂ �!(+) approximating the
flow maps was identified as being generated by maps that only allow instantan-
eous fluxes between neighbouring cells (thus approximating the diffeomorphism
property). These fluxes can be described within the framework of discrete exterior
calculus (DEC) (Hirani 2003). The difficulty with trying to discretize this struc-
ture is that it is not possible to find a subset �ℎ that can be generated by a finite
subspace of gl(+). This was addressed by introducing a non-holonomic constraint
on the time derivative of the flow map (and corresponding Koopman representat-
ive of �!(+)). Remarkably, Hamilton’s principle under these constraints is still
reducible (i.e. the �!(+) elements can be eliminated in favour of their generating
vector fields), leading to a discretization that can be solved entirely in terms of
Eulerian velocities, yielding a spatial discretization that corresponds to a known
marker-and-cell scheme when a structured grid of square cells is used. This spatial
discretization is then combined with quadrature approximation in time to produce
a fully discrete variational integrator for fluid dynamics.
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The principal goal of the variational discretization is to obtain schemes with
discrete conservation laws. Before time discretization, the discrete action is invari-
ant under time translations, leading to conservation of energy. Time discretization
breaks this symmetry, but there is the potential to apply backward error analysis to
obtain exponentially accurate conservation of a modified energy. Whilst numerical
results from these variational schemes do exhibit long-time approximate energy
conservation, as would be expected from this backward error analysis, it has not yet
been adapted to the type of non-holonomic constraints occurring in this framework.
The variational scheme also contains an echo of the circulation theorem. Instead
of considering loops, we consider currents. These are objects dual to velocities,
defined by the duality pairing

2[E] =
∫
Γ

E · dG for all E ∈ X(Ω), (6.16)

for some curve Γ. Currents are transported by a flow map j via 2 ↦→ ((∇j)2) ◦
j−1, allowing Kelvin’s circulation theorem to be reformulated (in the case of
incompressible Euler equations) as

d
dC
(
((∇j)2) ◦ j−1)[D] = 0. (6.17)

There is a discrete analogue of this formula when currents are approximated by
objects dual to velocity fields on the discrete grid. These discrete currents can
be considered to be loops that have been smoothed out over a finite area. This
can be used to define a discrete circulation that is conserved along the solution,
including the discrete-time solution. However, since the approximation of a discrete
current to a continuous current corresponding to an advected loop gets noisier as
time progresses, it is not clear how or whether these discrete conservation laws
constrain the discrete fluid dynamics in the same way that circulation conservation
does in the continuous case (which occurs through the link to Casimirs on the
Hamiltonian side). This is another important open question about this framework.

6.4. Compatible finite element variational discretization of incompressible flow

Inspired by the observation of Dmitry Pavlov that one could extend this framework
to other discretization methods by simply selecting a discrete space for velocity
fields and a discrete approximation of their Lie group action on scalar fields, and
noting the links between DEC and FEEC, Natale and Cotter (2018) developed such
an extension to compatible finite element methods for the incompressible Euler
case. In this case, we use the space of velocity fields ,̊A

ℎ
defined by

,̊A
ℎ =

{
D ∈ ,A

ℎ : ∇ · D = 0, D · =|mΩ = 0
}
, (6.18)

where ,A
ℎ
is a degree A BDM or RT space (they both have the same divergence-

free subspace so the distinction is not important here). For the discrete Koopman
representation of the flows generated by these velocity fields, we select+ B

ℎ
, the space

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


Compatible finite element methods for geophysical fluid dynamics 335

of discontinuous piecewise polynomials of degree B. Following the discrete Lie
derivative framework (the Eulerian version in particular) of Heumann and Hiptmair
(2011), given D ∈ ,̊A

ℎ
, we define the discrete advection operator -D ∈ gl(+ Bℎ)

defined by

〈-D0, 1〉 = −〈0,∇ · (D1)〉 + 〈〈[[0D]], {1}〉〉Γ for all 0, 1 ∈ + Bℎ , (6.19)

where {1} = (1++1−)/2. This is a centred approximation of the advection operator
on + B

ℎ
, meaning that -D is linear in D (an upwinded approximation would break

this).
To develop the non-holonomic constraint that enforces a dynamics that converges

to fluid motion by diffeomorphism, we seek a Koopman representation of a time-
dependent flow map ĵ(·, C) ∈ �(+ B

ℎ
) that transports advected tracers according to

0 = ĵ · 00. If we require that all such advected tracers satisfy the equation

d
dC
0 + -D00 = 0, (6.20)

for some time-dependent velocity field D ∈ ,̊A
ℎ
, then we obtain the non-holonomic

constraint on ĵ that

d
dC
ĵℎ · 0 + -D ĵ · 0 = 0 for all 0 ∈ +ℎ, (6.21)

for some -D ∈ gl(+ Bℎ), that is,

d
dC
ĵ + -D ĵ = 0. (6.22)

This constraint describes the approximation ĵ ∈ �ℎ to the Koopman representation
ĵ ∈ �(!2(Ω)) of the flow map j. It is non-holonomic because it constrains the
time derivative of ĵ, not ĵ itself, and this constraint cannot be integrated to obtain
such a constraint �(ĵ) = 0. This is because the subspace (A

ℎ
(+ B
ℎ

) ⊂ gl(+ B
ℎ

) defined
by the image of the map D ∈ ,̊A

ℎ
↦→ -D is not closed under Lie brackets. In other

words [-D , -E ] is not guaranteed to be in (Aℎ(+ B
ℎ

) for all -D , -E ∈ (Aℎ(+ B
ℎ

).
Natale and Cotter (2018) proved that if A ≥ B, then the map between D ∈ ,A

ℎ
and

-D ∈ (Aℎ(+ B
ℎ

) ⊂ gl(+ B
ℎ

) is an isomorphism. Gawlik and Gay-Balmaz (2021b) took
this further, by considering the extension of -D to the whole of �(div) ∩ ! ?(Ω)=
(with some ? > 2; this technicality ensures the existence of traces on individual
facets), using the same formula (6.19). They considered the space (̂ℎ(+ B

ℎ
) ⊂ gl(+ B

ℎ
),

defined by
(̂ℎ(+ Bℎ) = {-D : D ∈ �(div) ∩ ! ?(Ω)=}, (6.23)

and proved that (̂ℎ(+ B
ℎ

) is isomorphic to RT2A (via the isomorphism D ↦→ -D). This
shows that subspaces of RT2A are a necessary choice for,A

ℎ
. When discontinuous

finite element spaces are chosen for + , the compatible finite element framework is
thus a necessity rather than a choice.
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To continue the derivation of the discrete incompressible Euler equations, we
need to form the Lagrangian, which is just the kinetic energy. Defined in terms of
the original flow map, the undiscretized Lagrangian is∫

Ω

1
2
|D |2 dG. (6.24)

In the finite element framework, we need to write this Lagrangian as a functional
of -D ∈ (ℎ(+ B

ℎ
), but we need to be able to recover D from -D to substitute into the

kinetic energy. As proposed by Dmitry Pavlov, Natale and Cotter (2018) obtained
an approximation to this Lagrangian by applying -D to each of the Cartesian
coordinates, that is,

D = -D =

#∑
8=1

-D(G8)48 , (6.25)

where 48 is the unit vector in the direction of increasing coordinate G8 .4 This
presentation assumes a Cartesian metric, and suitable changes need to be made for
solution of the equations on manifolds such as the surface of a sphere.
To properly define Hamilton’s principle, we need to define the Lagrangian on

the whole tangent bundle )�ℎ(+) of �ℎ(+), consisting of pairs ((m/mC)ĵ, ĵ) with
ĵ ∈ �ℎ(+). Thus we extend the definition of the ‘overbar map’ (6.25) to the whole
of gl(+ℎ),

b =

#∑
8=1

48b · G8 for all b ∈ gl(+ℎ), (6.26)

and write the Lagrangian !ℎ : )�ℎ(+)→ R as

!ℎ =

∫
Ω

1
2





( m

mC
ĵ ◦ ĵ−1

)



2
dG. (6.27)

We can write this as a reduced Lagrangian on gl(+ B
ℎ

):

ℓℎ [-] =
∫
Ω

1
2
‖- ‖2 dG. (6.28)

The Lagrange–D’Alembert principle (Hamilton’s principle with non-holonomic
constraints) seeks ĵ with (m/mC)ĵ satisfying (6.22) such that

X

∫ )

0
!ℎ

(
m

mC
ĵ, ĵ

)
dC = 0, (6.29)

for all variations Xĵ satisfying

Xĵ + -F ĵ = 0, (6.30)

4 In fact, this was used to prove the isomorphism between -D and D.
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for some time-dependent F ∈ ,̊A
ℎ
. If we have a Lagrangian (such as (6.27)) that is

reducible by right action, that is,

!ℎ

(
m

mC
ĵ, ĵ−1

)
= ℓℎ

(
m

mC
ĵ ◦ ĵ−1

)
, (6.31)

then we can perform Euler–Poincaré reduction, taking care with the non-holonomic
constraint. This proceeds much as in the unapproximated case described above, as
follows. If we have 6 such that

m

mC
ĵ + - ĵ = 0, X ĵ + . ĵ = 0, (6.32)

for -,. ∈ gl(+ B
ℎ

), then calculations identical to the above lead to

(X-)ĵ + -. ĵ − m

mC
. ĵ − .- ĵ = 0, (6.33)

that is,

X- =
m

mC
. + [-,. ], (6.34)

where [-,. ] = -. − .- is the usual commutator for linear operators. Thus
the Lagrange–D’Alembert principle can be reduced to the corresponding reduced
D’Alembert principle, as follows. Find - ∈ gl(+ B

ℎ
) subject to the constraint

- = -D , (6.35)

for some D ∈ ,̊A
ℎ
, such that

X

∫ )

0
ℓℎ(-) dC = 0, (6.36)

for variations of the form (6.34) for all time-dependent . ∈ gl(+ B
ℎ

), subject to the
constraint . = -F for some time-dependent F ∈ ,̊A

ℎ
. The non-closure of (A

ℎ
(+ B
ℎ

)
under Lie brackets together with the appearance of the Lie bracket in (6.34) is
the reason why we defined a Lagrangian )�ℎ(+) and not just for ĵ satisfying
the constraint.5 From this reduced principle, we can derive the Euler–Poincaré–
D’Alembert equation 〈

d
dC
X;ℎ

X-
,.

〉
+

〈
X;ℎ

X-
, [-,. ]

〉
= 0, (6.37)

for all . satisfying (6.34), where〈
X;ℎ

X-
,.

〉
≔ X;ℎ [-; X-] = lim

n→0

! [- + nX-] − ! [-]
n

. (6.38)

5 In fact, it is only necessary to define the reduced Lagrangian ℓℎ for - = -D and - = [-D , -E ] for
D, E ∈ ,̊A

ℎ
. This is how the problem was approached for the discrete exterior calculus formulation

Pavlov et al. (2011). However, the finite element framework and the bar map makes it easy enough
to extend to the whole of gl(+ B

ℎ
).
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For our reduced Lagrangian (6.28), we have〈
Xℓℎ

X-
, X-

〉
= Xℓℎ [-; X-] = 〈X-̄, -̄〉 = 〈 ¯X-, -̄〉 for all X- ∈ gl(+ Bℎ). (6.39)

This means that solving (6.37) is equivalent to finding �ℎ ∈ (Aℎ(+ℎ) such that〈
d
dC
�̄ℎ, �̄ℎ

〉
Ω

+
〈
�̄ℎ, [�ℎ, �ℎ]

〉
Ω
= 0, (6.40)

for all �ℎ ∈ (Aℎ(+ℎ), where [·, ·] is the commutator bracket for linear operators.
Natale and Cotter (2018) then showed that (6.37) is equivalent to finding D ∈ ,̊B
such that 〈

m

mC
D, E

〉
Ω

+ 〈-DD, E〉 = 0 for all E ∈ ,̊A
ℎ , (6.41)

where -D : ,̊A
ℎ
→ ,̊A

ℎ
is defined as

〈-D0, 1〉 = 〈0,∇ℎ × (D × 1) − D∇ · 1〉 + 〈〈{D}, [[= × (D × 1)]]〉〉Γ. (6.42)

Surprisingly, given all of the complexity in the formulation, this takes the form of
a conventional finite element approximation without ever needing to calculate -D .
Some further manipulation shows that this discretization is in fact identical to the
centred flux discretization described in Guzmán, Shu and Sequeira (2017), which
emerged around the same time (but without the variational derivation).

6.5. Compatible finite element discretization for compressible fluids

The framework was extended to compressible fluid equations in Gawlik and Gay-
Balmaz (2021b), which applied the programme of Desbrun et al. (2014) and Bauer
and Gay-Balmaz (2019) to the compatible finite element case. This involves the
introduction of advected quantities such as temperature (which satisfies a scalar
advection equation) and density (which satisfies a continuity equation). In the
unapproximated equations, this enables us to treat Lagrangians of the form

!

(
mj

mC
, j

)
= ℓ(D, 01, 02, . . . , 0=), (6.43)

where 08 are advected quantities satisfying
m

mC
08 + LD08 = 0, (6.44)

where LD is a Lie derivative of an appropriate type, e.g. for advected scalars 0,

LD0 = D · ∇0, (6.45)

as before, whilst for advected densities �,

LD� = ∇ · (D�). (6.46)
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In that case, Hamilton’s principle leads to the Euler–Poincaré equation with advec-
ted quantities (Holm et al. 1998)

m(X;/XD)
mC

+ D · ∇ X;
XD
+ (∇D)>

X;

XD
=

∑
8

08 �
X;

X08
, (6.47)

where the diamond operator � is defined by〈
08 �

X;

X08
, F

〉
= −

〈
LF08 ,

X;

X08

〉
, (6.48)

for all vector fields F. This allows for the relaxation to arbitrary diffeomorphisms
instead of volume preserving ones, and enables the variational derivation of the
full range of compressible fluid models arising in geophysical fluid dynamics and
beyond. In particular, the incompressible Euler equation can be recovered by
introducing a Lagrange multiplier (the pressure) to enforce constant density �.

In the Koopman operator framework, discrete advected densities � ∈ + B
ℎ
are

treated by defining their transport equation as being dual to that of scalar functions
5 ∈ + B

ℎ
, that is, if 5 = ĵ 50 ∈ + Bℎ ,

〈�, 5 〉 = 〈�0, 50〉. (6.49)

Hence

0 =
m

mC
〈�, 5 〉 =

〈
m

mC
�, 5

〉
+

〈
�,

m

mC
5

〉
=

〈
m

mC
�, 5

〉
− 〈�, - 5 〉. (6.50)

Therefore we conclude that〈
m

mC
�, q

〉
− 〈-∗�, q〉 = 0 for all q ∈ + Bℎ , (6.51)

where

- =

(
m

mC
6

)
◦ 6−1 ∈ gl

(
+ Bℎ

)
. (6.52)

When - satisfies the non-holonomic constraint - = -D for some D ∈ ,A
ℎ
, this

becomes〈
m

mC
�, q

〉
= 〈-∗D�, q〉 = 〈�, -Dq〉

= −〈∇ℎ · (D�)q〉 + 〈〈[[�D]], {q}〉〉Γ

= 〈D · ∇ℎq, �〉 +
∫
Γ

D ·
(

1
2

(�+=+ + �−=−)(q+ + q−)

− =+�+q+ − =−�−q−
)

d(
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= 〈D · ∇ℎq, �〉 +
∫
Γ

D ·
(

1
2

(−�+=+q+ + �+=+q−+

�−=−q+ − �−=−q−)
)

d(

= 〈D · ∇ℎq, �〉 +
∫
Γ

D ·
(

1
2

(−�+=+q+ − �+=−q−−

�−=+q+ − �−=−q−)
)

d(

= 〈D · ∇ℎq, �〉 − 〈〈[[Dq]], {�}〉〉Γ, (6.53)

which is the standard discontinuous Galerkin centred flux scheme for the continuity
equation for advected densities.
Similarly, by considering X〈�, 5 〉 = 0, we obtain

X� − . ∗� = 0, (6.54)

where . is such that Xĵ + . ĵ = 0.
We can again use the overbar map to build Lagrangians with advected quantities

defined on the whole of �!(+ B
ℎ
, + B
ℎ

). For example, the shallow water equations
(with flat topography) have the (reduced) Lagrangian

ℓ =

∫
Ω

�
|D |2
2
− 6�

2

2
dG. (6.55)

The discrete Lagrangian can then be written as

!

(
m

mC
ĵ, ĵ

)
=

∫
Ω

(ĵ∗�0)
|(m/mC)ĵ ◦ ĵ−1 |2

2
− 6(ĵ∗�0)2

2
dG. (6.56)

This has discrete reduced Lagrangian

ℓℎ [�, -] =
∫
Ω

�
|- |2

2
− 6�

2

2
dG. (6.57)

The reduced Hamilton’s principle with non-holonomic constraints becomes

X

∫ )

0
ℓℎ(-, �) dC = 0, (6.58)

with variations

X- =
m

mC
. + [-,. ], X� = . ∗, (6.59)

and constraints - = -D for some D ∈ ,A
ℎ
, and . = .F for all F ∈ ,A

ℎ
.

This gives the equation〈
d
dC

X;

X-D
, -F

〉
−

〈
X;

X-D
, [-, -F ]

〉
+

〈
X;

X-D
, -∗F�

〉
for all F ∈ ,A

ℎ , (6.60)
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which can be written as
d
dC

X;

X-D
+ ad∗-D

X;

X-D
− X;

X�
� � ∈ ((Aℎ)∗, (6.61)

where 〈
ad∗- ., /

〉
= −〈., [-, /]〉, −〈- �., /〉 = 〈-,. ∗/〉, (6.62)

and ((A
ℎ
)∗ is the dual space to (A

ℎ
in gl(+ℎ). This is the discrete analogue of (6.47).

6.6. Compatible finite element variational discretizations: discrete conservation
laws

The goal of variational discretizations is to derive numerical methods that provide
discrete analogues of conservation laws of the unapproximated equations. Noether’s
theorem can still be applied to non-holonomic variational principles without
change, provided that the constraints are invariant under the relevant symmetry
as well as the Lagrangian. The discrete variational principles discussed here are
invariant under time translation, leading to the conservation of energy as usual.
This is straightforward to check directly in the incompressible case of Natale and
Cotter (2018) since the energy is

� = 〈�̄ℎ, �̄ℎ〉, (6.63)

so the energy equation is obtained in (6.37) by taking �̄ℎ = �̄ℎ and using antisym-
metry of the bracket.
Regarding Kelvin’s circulation theorem, Natale and Cotter (2018) demonstrated

the same ‘echo’ in (6.17) for the compatible finite element case, which also emerges
from Gawlik and Gay-Balmaz (2021b) in the case where the Lagrangian depends
only on velocity and density, as expected. In the incompressible case, the conser-
vation law takes the form

d
dC

〈
D, ĵ-2 ĵ

−1
〉
= 0, (6.64)

for all time-independent 2 ∈ ,̊A
ℎ
.

Gawlik and Gay-Balmaz (2021b) further extended the framework by introducing
advected tracers (which can represent potential temperature, and salinity in the
ocean), which are discretized as elements \ of +ℎ that can be acted on by velocity
via -D\ as above. This unlocks the variational discretization of all of the main vari-
ational models of geophysical fluid dynamics. The framework was further extended
in Gawlik and Gay-Balmaz (2021a) to accommodate advected transported fluxes
represented in,A

ℎ
, leading to variational discretizations ofmagnetohydrodynamics.

6.7. Variational time integrators

So far in the this section we have only discussed the variational discretization in
space, leading to a system that is still continuous in time. As set out in the original

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


342 C. J. Cotter

vision of Pavlov et al. (2011), the idea is to also discretize Hamilton’s principle
in time. Variational integrators arising from time discretization in Hamilton’s
principle have a long history, with the programme being formally set out inMarsden
andWest (2001). Variational time integration using a finite difference discretization
in time was investigated in Gawlik and Gay-Balmaz (2021b). Since the kinetic
energy is a nonlinear function of both the coordinate in+ℎ and its rate of change, any
variational integrator will result in a system that requires the solution of an implicit
nonlinear system (using Newton’s method, for example). This contrasts with
the case of classical mechanics, where the Lagrangian !(I, (m/mC)I) splits into a
kinetic energy depending only on (m/mC)I and a potential energy depending only on
I. This split makes explicit variational integrators possible in that case. Following
Pavlov et al. (2011), Gawlik and Gay-Balmaz (2021b) made the choice of replacing
�(C) = (m/mC)ĵ ĵ−1 with �: = g−1(ĵ:+1 ĵ−1

:
)/ΔC, where g : gl(+ℎ)→ �(+ℎ) is the

Cayley transform

g(�) =
(
� − �

2

)−1(
� + �

2

)
, (6.65)

with other possibilities for g being discussed in Bou-Rabee and Marsden (2009).
After this replacement, the variational integrator is derived by finding the station-
ary point of the resulting discrete action principle depending on ĵ:+1 and ĵ: . It
was found through numerical experiments that the resulting scheme is only condi-
tionally stable, requiring the condition XC < �ℎ. This is disappointing given that
intensive computation is required to advance the solution by a small step. The
nature of this stepsize requirement is an open problem in the area, as is the ques-
tion of whether a variational integrator can be found that allows larger time-steps.
Natale and Cotter (2018) used the implicit midpoint rule to discretize the semi-
discrete variational discretization. The implicit midpoint rule is not known to be a
variational integrator for such systems, but does have the property that it preserves
any quadratic invariants of the time-continuous system, which includes the energy
in the incompressible case.

7. Almost-Poisson brackets
An alternative, but related, route to structure preserving discretizations is found via
Poisson bracket formulations.
Poisson brackets are bilinear skew-symmetric maps that take pairs of functionals

on some space where the solutions of the PDE reside, which also satisfy the Jacobi
identity,

{�, {�,�}} + {�, {�, �}} + {�, {�, �}} = 0, (7.1)

for all functionals �, �, �. In the process of discretization of Poisson brackets
for fluid dynamics, the Jacobi identity is lost, for similar reasons that the non-
holonomic constraints are required for the variational discretizations of Section 6.
Poisson brackets without the Jacobi identity are called ‘almost-Poisson brackets’,
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but we shall just use the term Poisson bracket in the rest of this article for brevity.
Poisson brackets can have special functionals called Casimirs, which make the
Poisson bracket vanish, that is, � is a Casimir if {�,�} = 0 for all functionals �.
Then Casimirs are conserved by the dynamics since

m

mC
� = −{�, �} = 0. (7.2)

The goal of building discretizations using Poisson brackets is that they automatically
conserve the Hamiltonian, and if any Casimirs survive the discretization process
then they will be conserved as well. We shall discuss specific examples later.
The aim of building structure preserving discretizations for fluid PDEs using

Poisson brackets was introduced in Morrison (1982) and Salmon (1983), although
in fact the energy–enstrophy preserving discretizations in Arakawa (1966) are the
first instance of a Poisson bracket discretization (but not presented that way), which
was extended to the rotating shallow water equations and beyond in subsequent
work by Arakawa, Sadourny and others (Sadourny, Arakawa and Mintz 1968,
Sadourny 1972, 1975, Arakawa and Lamb 1977, 1981, Arakawa and Hsu 1990).
In the 2000s, when attention was focusedmuchmore on triangular and polygonal

grids to provide a more uniform coverage of the sphere, the idea of using Poisson
brackets was revived to produce energy conserving schemes (or to at least guide
the design of practical schemes that are as energy-consistent as possible). This
took place in a number of groups (Ringler, Thuburn, Klemp and Skamarock 2010,
Skamarock et al. 2012, Eldred and Randall 2017, Gassmann and Herzog 2008,
Gassmann 2013, Tort, Dubos and Melvin 2015, Dubos et al. 2015). There was
also work on extending Poisson brackets to Nambu brackets in pursuit of additional
conserved quantities in the method (Sommer and Névir 2009).
There have also been some interesting studies about the relevance of conser-

vation for geophysical models. Dubinkina and Frank (2007) demonstrated the
benefits of using energy–enstrophy conserving schemes to obtain correct statistical
equilibria, and Thuburn, Kent and Wood (2014b) demonstrated that energy con-
servation is important to obtain realistic backscatter in under-resolved simulations
of two-dimensional turbulence (provided that enstrophy is dissipated at the small
scale). Dubinkina (2018) demonstrated that conserving both energy and enstrophy
is important in the context of data assimilation. Even when structure preserving
discretizations lead to systems of equations that are challenging to solve efficiently,
it is useful to consider how they relate to more standard discretizations to see where
conservation errors are being committed, and to see when they are likely to be large
or small.
In this section we describe how Poisson brackets can be used to construct energy

(and enstrophy) conserving schemes. This work has been heavily informed by
previous works using finite difference methods, such as those cited above. We shall
start by briefly discussing the two-dimensional incompressible Euler equations,
the rotating shallow water equations and then vertical slice and three-dimensional
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models. We initially assume that we are solving the equations on a closed manifold
(the surface of the sphere, or periodic boundary conditions, for example), and will
return to the treatment of boundary conditions later.

7.1. Incompressible Euler equations: continuous theory

Returning to Arnold’s variational formulation for incompressible flow in (6.9), we
can reformulate as〈

m<

mC
, E

〉
+

〈[
X�

X<
, E

]
, <

〉
= 0 for all E ∈ Xvol(Ω), (7.3)

where
�(<) = 〈<, D〉 − ℓ(D), (7.4)

and we take < = X;/XD ∈ Xvol(Ω), now inverting the relationship so that D is
considered as an operator applied to <. Here we use the variational derivative
X�/XD ∈ Xvol(Ω) defined by〈

X�

XD
, E

〉
= lim
n→0

1
n

(� [D + nE] − � [D]). (7.5)

Equation (7.3) is equivalent to the Poisson formulation

m

mC
� [<] + {�, �} = 0, (7.6)

for arbitrary functionals � : Xvol(Ω)→ R, with Poisson bracket

{�, �} =
∫
Ω

[
X�

X<
,
X�

X<

]
· < dG. (7.7)

Since the Poisson bracket is antisymmetric, this leads immediately to conservation
of the Hamiltonian,

d
dC
� = −{�, �} + m�

mC
= 0, (7.8)

provided that � has no explicit dependence on time C.
For the two-dimensional incompressible Euler equations, a clear path towards

deriving enstrophy conservation requires modification of the bracket (7.7) by chan-
ging variables < → D. This produces the equivalent Poisson formulation

m

mC
� [D] + {�, �}[D] = 0, (7.9)

for all functionals � : Xvol(Ω)→ R, where

{�, �} =
∫
Ω

l

(
X�

XD

)
· X�
XD

⊥
dG, (7.10)
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l = ∇⊥ · D, and

� =
1
2

∫
Ω

|D |2 dG. (7.11)

The derivation of this bracket formulation from (7.7) is discussed in Morrison
(1982) and Marsden and Weinstein (1983). Here, we just directly demonstrate that
it leads to the incompressible Euler equations by computation. First, we compute
X�/XD = D. For a linear functional � [D] = 〈D, F〉 withF ∈ Xvol(Ω), (7.9) becomes

〈DC , F〉 + 〈l, F · D⊥〉 = 0 for all F ∈ Xvol(Ω), (7.12)

which is a weak formulation of the equation

DC + lD⊥ + ∇% = 0, (7.13)

where % is some potential chosen so that DC ∈ Xvol(Ω) (because we only test against
functions fromXvol(Ω) in (7.13), so the equation is projected intoXvol(Ω)). Writing
% = 1

2 |D |
2 + ?, we obtain

DC + D⊥∇⊥ · D + ∇
1
2
|D |2 + ∇? = 0, (7.14)

which becomes recognizable as the incompressible Euler equations after recalling
the identity

(D · ∇)D = lD⊥ + 1
2
∇|D |2. (7.15)

Returning to the Poisson bracket (7.10), we find that it has an infinite number of
Casimirs of the form

�= [D] =
∫
Ω

l= dG, = = 1, 2, . . . (7.16)

To verify that �= is a Casimir, we compute〈
X�=

XD
, E

〉
= =

∫
Ω

l=−1∇⊥E dG for all E ∈ Xvol(Ω)

=

∫
Ω

∇⊥(−=l=−1) · E dG, (7.17)

having integrated by parts (we assume for now that there are now boundaries and
so may ignore the surface term). Hence we conclude formally that

X�=

XD
= −=∇⊥l=−1. (7.18)

Inserting into the Poisson bracket then gives

{�,�=} = −=
∫
Ω

l
X�

XD
· (∇⊥l=−1)⊥ dG

= =

∫
Ω

l
X�

XD
· ∇l=−1 dG
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= (= − 1)
∫
Ω

X�

XD
· ∇l= dG

= −(= − 1)
∫
Ω

l= ∇ · X�
XD︸ ︷︷ ︸

= 0

dG = 0, (7.19)

having integrated by parts again, for any functional � on Xvol(Ω). We have

∇ · X�
XD

= 0 (7.20)

since
X�

XD
∈ Xvol(Ω). (7.21)

Hence �= is a conserved quantity for the Poisson dynamics from any Hamiltonian.
In particular, �1 is the total vorticity, whilst �2 is the enstrophy, both of which
provide strong constraints on two-dimensional incompressible turbulence.

7.2. Incompressible Euler equations: compatible finite element discretization

To make our compatible finite element discretization, we restrict D and F to the
divergence-free subspace Zℎ of some chosen �(div) finite element space V1

ℎ
(such

as Raviart–Thomas or Brezzi–Douglas–Marini on triangles). We have to make
a further approximation since ∇⊥ · D is not defined for �(div) spaces, and so we
define lℎ ∈ V0

ℎ
, such that

〈W, lℎ〉 = −〈∇⊥W, D〉 for all W ∈ V0
ℎ, (7.22)

that is, lℎ is defined from the approximated weak curl of D, the dual of the ∇⊥
operator restricted to V0

ℎ
and V1

ℎ
. Note that this is where we have used the absence

of boundary, otherwise there would be a boundary term causing complications that
we shall discuss later. Having defined lℎ, we write the discrete Poisson bracket as

{�, �} =
∫
Ω

lℎ
X�

XD
· X�
XD

⊥
dG, (7.23)

where � and � are now functionals on V1
ℎ
. With the same Hamiltonian (7.11)

now restricted to V1
ℎ
, the Poisson formulation implies the following dynamics for

D ∈ Zℎ:
〈F, DC〉 + 〈lℎF · D⊥〉 = 0 for all F ∈ Zℎ . (7.24)

The discrete Hamiltonian is conserved as usual through the antisymmetry of the
bracket and the time-independence of �. Concerning Casimirs of the bracket, we
can repeat the earlier calculation for functionals �= computed with lℎ substituted
for l, that is,

�=,ℎ [D] =
∫
Ω

l=ℎ dG. (7.25)
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Following (7.17), we obtain〈
X�=,ℎ

XE

〉
=

∫
Ω

∇⊥(−=l=−1) · E dG for all E ∈ Zℎ, (7.26)

but now can only conclude that
X�=,ℎ

XE
= %1

(
−=∇⊥l=−1), (7.27)

where %1 is the !2 projection into Zℎ, which prevents us from showing that �=,ℎ is
a Casimir for = > 2. However, when = = 1, we obtain that X�1,ℎ/XE = 0 (so �1,ℎ
is trivially conserved, just as �1 is for the unapproximated case). When = = 2, we
have ∇⊥l ∈ V1

ℎ
by the embedding property of the discrete de Rham complex, and

then a calculation identical to (7.19) shows that {�2,ℎ, �} = 0 for any functional
� on Zℎ, and hence the numerical enstrophy �2,ℎ is a Casimir and is conserved for
dynamics generated from any Hamiltonian. Hence this scheme conserves energy,
total vorticity, and enstrophy.
To make a practical implementation of the scheme, one can follow two ap-

proaches. The main hurdle is that the scheme is defined on Zℎ, and not the whole
of V1

ℎ
. Since ∇· maps from V1

ℎ
onto V2

ℎ
, the divergence-free subspace Zℎ is

equivalently represented as

Zℎ =

{
D ∈ V1

ℎ :
∫
Ω

q∇ · D dG = 0 for all q ∈ V2
ℎ

}
. (7.28)

Hence we can equivalently write the following system for (l, D, %) ∈ V0
ℎ
×V1

ℎ
×V2

ℎ

such that

〈W, l〉 − 〈∇⊥W, D〉 = 0 for all W ∈ V0
ℎ, (7.29)

〈F, DC〉 + 〈F, lD⊥〉 − 〈∇ · F, %〉 = 0 for all F ∈ V1
ℎ, (7.30)

〈q,∇ · D〉 = 0 for all q ∈ V2
ℎ . (7.31)

It can easily be checked that the solution satisfies ∇ · D = 0 in !2. Selecting
F ∈ Zℎ ⊂ V1

ℎ
makes the % term disappear and we recover (7.24). This formulation

builds a bridge to the shallow water and compressible systems that we shall look at
later.
On the other hand, for D ∈ Zℎ we can directly parametrize D = ∇⊥k for k ∈ V0

ℎ

and choose F = ∇⊥V in (7.24) for all V ∈ V0
ℎ
, and we obtain

〈W, l〉 + 〈∇W,∇k〉 = 0 for all W ∈ V0
ℎ, (7.32)

〈∇V,∇kC〉 + 〈∇V, l∇⊥k〉 = 0 for all V ∈ V0
ℎ, (7.33)

which is a discretization of the incompressible Euler equation in vorticity–stream-
function form,

lC + ∇ · (l∇⊥k) = 0, −∇2k = l. (7.34)
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This formulation was presented in Liu and E (2001), where it was analysed in
the viscous case, but the energy conservation of the inviscid equations did form
an important part of the proof. A related scheme was presented in Liu and Shu
(2000), but with the vorticity in a discontinuous space, with appropriate jump terms
defining the fluxes between cells. With an average flux, the energy and enstrophy
are both conserved. If a Lax–Friedrichs flux is used, then energy is still conserved
but enstrophy is dissipated (as is appropriate for long-time simulations of cascading
two-dimensional vortex dynamics). It is possible to modify the Poisson bracket so
that enstrophy is dissipated in this way, with the antisymmetric formulation still
conserving energy, as we shall see later. Liu and Shu (2000) proved convergence
for both types of fluxes. This formulation and analysis was extended by Bernsen,
Bokhove and van der Vegt (2006) to the quasigeostrophic model of large-scale
rotating geophysical fluid dynamics, including the case with islands in the flow
(considering the fluid as an ocean).
To extend the conservation properties to a fully discrete method, one can use the

implicit midpoint rule, which conserves all quadratic invariants of the continuous-
time system. This includes energy and enstrophy (or just energy where enstrophy
is dissipated) in the incompressible Euler case.

7.3. Rotating shallow water equations: continuous theory

Moving on to the rotating shallow water equations, it is tempting to continue work-
ing with the vorticity–streamfunction formulation above. However, this places
a limitation on the possibilities of extension to three-dimensional models, com-
plicates the boundary conditions, and is not preferred by practitioners since the
prognostic variables are not quantities that are directly measurable. Hence we must
address the challenge of finding a compatible finite element discretization of the
rotating shallow water equations using velocity D and layer depth �.
We start from the Lie–Poisson formulation of the rotating shallow water equa-

tions given by

� =

∫
Ω

1
2�
|< |2 + 6�

(
�

2
+ 1

)
dG, (7.35)

{�, �} =
〈[
X�

X<
,
X�

X<

]
, <

〉
+

〈
X�

X�
,∇ ·

(
�
X�

X<

)〉
−

〈
X�

X�
,∇ ·

(
�
X�

X<

)〉
, (7.36)

where < is defined by∫
Ω

< · E dG =
∫
Ω

�(D + ') · E dG for all E ∈ X(Ω), (7.37)

where ∇⊥ · ' = 5 , the Coriolis parameter. These equations emerge from the
reduced Hamilton’s principle with advected density � after applying the Legendre
transform as described in Holm et al. (1998). Following the incompressible case,
if we want enstrophy conservation to emerge then we need to change variables to
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(D, �); this leads to the equivalent Poisson bracket formulation

� =
1
2

∫
Ω

�‖D‖2 + 6�
(
�

2
+ 1

)
dG, (7.38)

{�, �} =
〈
@,
X�

XD
· X�
XD

⊥〉
−

〈
∇ · X�

XD
,
X�

X�

〉
+

〈
∇ · X�

XD
,
X�

X�

〉
, (7.39)

where @ = (∇⊥ · D + 5 )/� is the potential vorticity. After computing the variational
derivatives

X�

XD
= �D, (7.40)

X�

X�
=

1
2
‖D‖2 + 6(� + 1), (7.41)

and substituting into the Poisson bracket equation �C + {�, �}, we formally obtain

DC + @�D⊥ + ∇
(

1
2
|D |2 + 6(� + 1)

)
= 0, (7.42)

�C + ∇ · (D�) = 0, (7.43)

which we recognize as the rotating shallow water equations in vector-invariant
form. We define functionals �= (which will turn out to be Casimirs) by

�= [D, �] =
∫
Ω

�@= dG. (7.44)

To compute the variational derivatives, given n > 0 and (E, q) ∈ �(div) × !2,
writing � n = � + nq, Dn = D + nE, we define @ n ∈ �1 such that

〈W, � n @ n 〉 = −〈∇⊥W, Dn 〉 + 〈W, 5 〉 for all W ∈ �1, (7.45)

noting that @ n |n= 0 = @ (after integrating by parts and using the lack of surface term
in a domain without boundary). Then〈

X�=

XE
, E

〉
+

〈
X�=

X�
, q

〉
= lim
n→0

1
n

(�= [D + nE, � + nq] − �= [D, �])

=

∫
Ω

lim
n→0

� n @
=
n − �@=
n

dG

=

∫
Ω

d
dn

���
n= 0

� n @
=
n dG

=

〈
@=−1
n

��
n= 0,

d
dn

���
n= 0

� n @ n

〉
+

〈
(= − 1)@=−2

n

��
n= 0

d
dn

���
n= 0

@ n , � n @ n

〉
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= =

〈
@=−1
n

��
n= 0,

d
dn

���
n= 0

� n @ n

〉
−

〈
(= − 1)@=n

��
n= 0,

d
dn

���
n= 0

� n

〉
, (7.46)

From (7.45) we have〈
W,

d
dn

���
n= 0

� n @ n

〉
= −〈∇⊥W, E〉 for all W ∈ �1 (7.47)

(correcting a typographic error in equation 58 of McRae and Cotter (2014)), and
hence we have〈

X�=

XE
, E

〉
+

〈
X�=

X�
, q

〉
= =〈∇⊥@=−1, E〉 − 〈(= − 1)@=, q〉, (7.48)

that is,
X�=

XE
= =∇⊥@=−1,

X�=

X�
= −(= − 1)@=. (7.49)

Then, inserting into the Poisson bracket (7.39), we obtain

{�=, �} =
〈
=@∇⊥@=−1︸      ︷︷      ︸
= (=−1)∇⊥@=

,
X�

XD

⊥〉
−

〈
∇ · =∇⊥@=−1︸         ︷︷         ︸

= 0

,
X�

X�

〉
+

〈
(= − 1)@=,∇ · X�

XD

〉
=

〈
(= − 1)∇@=, X�

XD

〉
−

〈
(= − 1)@=,∇ · X�

XD

〉
= 0, (7.50)

where the last line is obtained by integrating by parts, and hence �= is a Casimir
of the bracket (7.39), and so it is a conserved quantity of the dynamics for any
Hamiltonian. Another, more simple, Casimir is the mass

" [D, �] =
∫
Ω

� dG, (7.51)

with variational derivatives
X"

XD
= 0,

X"

X�
= 1, (7.52)

and hence

{",�} =
〈
∇ · X�

XD
, 1

〉
=

∫
Ω

∇ · X�
X�

dG = 0, (7.53)

using the divergence theorem (assuming no boundary currently), so mass is also a
Casimir of the bracket and is conserved for any Hamiltonian.
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7.4. Rotating shallow water equations: Poisson bracket discretization

To produce a discretization of this structure, McRae and Cotter (2014) simply took
the structure (7.38)–(7.39), restricted (D, �) to V1

ℎ
× V2

ℎ
, and replaced @ with the

discrete approximation @ ∈ V0
ℎ
, with

〈W, �@〉 = −〈∇⊥W, D〉 + 〈W, 5 〉 for all W ∈ V0
ℎ, (7.54)

following the exposition for the discretization for incompressible Euler equations
above. Then we obtain 〈

F,
X�

XD
− �D

〉
= 0 for all F ∈ V1

ℎ, (7.55)〈
q,
X�

X�
− 1

2
|D |2 − 6(� + 1)

〉
= 0 for all q ∈ V2

ℎ, (7.56)

that is,

X�

XD
= %1(�D),

X�

X�
= %2

(
1
2
|D |2 + 6(� + 1)

)
, (7.57)

where %1 and %2 are the !2 projections into V1
ℎ
and V2

ℎ
, respectively. To derive

the equations of motion, we take � [D, �] = 〈F, D〉 + 〈q, �〉 for F, q ∈ V1
ℎ
× V2

ℎ
,

so that
X�

XD
= F,

X�

X�
= q, (7.58)

and substitute into the Poisson dynamics to obtain

〈F, DC〉 + 〈q, �C〉 =
m

mC
�

= −{�, �}

= −〈@, F · %1(�D)⊥〉 +
〈
∇ · F, %2

(
1
2
|D |2 + 6(� + 1)

)〉
− 〈∇ · %1(�D), q〉

= −〈@, F · %1(�D)⊥〉 +
〈
∇ · F, 1

2
|D |2 + 6�

〉
− 〈∇ · %1(�D), q〉

(7.59)

for all F, q ∈ V1
ℎ
× V2

ℎ
, where we were able to drop the %2 since the result of the

projection was in an !2 inner product with ∇ · F ∈ %2 (so the discrete de Rham
complex is crucial here). Writing < = %1(�D), we put everything together as
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(D, �, @, <) ∈ V1
ℎ
× V2

ℎ
× V0

ℎ
× V1

ℎ
, such that

〈F, DC〉 + 〈@F, <⊥〉 −
〈
∇ · F, 1

2
|D |2 + 6(� + 1)

〉
= 0 for all F ∈ V1

ℎ, (7.60)

〈q, �C + ∇ · <〉 = 0 for all q ∈ V2
ℎ, (7.61)

〈W, @�〉 + 〈∇⊥W, D〉 − 〈W, 5 〉 = 0 for all W ∈ V0
ℎ, (7.62)

〈E, < − D�〉 = 0 for all E ∈ V1
ℎ . (7.63)

This is a set of coupled equations whichmust be solved together, but since equations
(7.62)–(7.63) do not contain time derivatives, @ and < may be reconstructed at any
time from D and �. Since the equations are derived from a Poisson bracket formu-
lation, we can immediately deduce that they conserve the Hamiltonian. Concerning
the Casimirs, we make the same calculations for mass " as for the undiscretized
case, obtaining

X"

XD
= 0,

X"

X�
= %1(�) = 1. (7.64)

For �=, we can only make use of (7.45) when = = 1 (so that W = 1) or = = 2 (so
that W = @ n ), leading to

X�=

XD
= =(∇⊥@=−1),

X�=

X�
= −(= − 1)%2(@=). (7.65)

(7.50) then follows but only for = = 1, 2,

{�=, �} =
〈
=@∇⊥@=−1,

X�

XD

⊥〉
−

〈
=∇ · ∇⊥@=−1︸       ︷︷       ︸

= 0

,
X�

XD

〉
+

〈
%2((= − 1)@=),∇ · X�

XD

〉
=

〈
=@∇⊥@=−1,

X�

XD

⊥〉
+

〈
(= − 1)@=,∇ · X�

XD

〉
= 0, (7.66)

where we may integrate by parts since X�/XD ∈ V1
ℎ
⊂ �(div) and @= ∈ V0

ℎ
⊂ �1.

Hence �= is a Casimir for = = 1 (total vorticity) and = = 2 (enstrophy).
McRae and Cotter (2014) verified these conservation properties in numerical

experiments, and showed second-order convergence with ℎ for the scheme with the
BDFM1–DG1 finite element spaces on triangles (BDFM1 is a slightly more exotic
variant which has an intermediate number of degrees of freedom between BDM1
and RT1, which results in a 2:1 ratio of velocity to pressure degrees of freedom).
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The Poisson bracket approach has been extended to other compatible spaces
with various motivations. Eldred et al. (2019) used finite element spaces built
around splines to form higher-order discrete de Rham complexes. These spaces
have the same degrees of freedom as the lowest-order &1–RT0–DG0 complex on
quadrilaterals, and achieve higher order by making use of degrees of freedom from
a patch of neighbouring cells. The advantage is that this removes the jump in the
dispersion relation for gravity waves in higher-order spaces on quadrilaterals, as
discussed in Section 3.5. The price to be paid is that there is increased interelement
coupling, and that there are some technicalities at the boundaries between patches
of structured quadrilaterals, for example at the edges and vertices of the cube upon
which a cubed sphere mesh is constructed. Since Hamiltonian and the Poisson
brackets are the same, the only thing that has changed is the finite element spaces,
which still satisfy the discrete de Rham complex, so energy–enstrophy conservation
follows directly.
Lee et al. (2018) extended themethod tomixedmimetic spectral elements, which

are a variant of mixed elements using spectral element histopolation functions
to construct high-order spaces. The usual spectral element technique of using
incomplete quadrature then leads to diagonal mass matrices for the continuous
space V0

ℎ
without losing the discrete de Rham complex property. Again, since

the Hamiltonian and Poisson brackets are the same (excepting some details on
quadrature rules, where care must be taken), and the new finite element spaces still
satisfy the discrete de Rham complex, the energy–enstrophy conservation follows
directly. Lee and Palha (2018) extended these spaces to the surface of the sphere.

7.5. Poisson integrators

To extend these conservation properties to a fully discretemethod after time discret-
ization, we need to look beyond the implicit midpoint rule into the more general
case of Poisson integrators. To make this generalization, we write the Poisson
bracket as

{�, �} = �
(
X�

XI
,
X�

XI
; I
)
, (7.67)

where I ∈ , comprises the dynamic fields (i.e. I = (D, �) and , = V1
ℎ
× V2

ℎ

for the case of the shallow water equations). We use this notation to express that
Poisson brackets are bilinear in (X�/XI, X�/XI) but with possibly arbitrary ad-
ditional dependence on I, which acts as a coefficient. When there is no explicit
dependence on I, we obtain linear dynamics, and the I dependency encodes non-
linear dynamics. From the properties of the Poisson bracket, � is bilinear and
antisymmetric in X�/XI and X�/XI. To derive one particular Poisson integrator,
we write I(B) = I= + B(I= − I=+1), and seek I=+1 such that∫ ΔC

0

(
m

mC
� [I(B)] + �

(
X�

XI
[I(B)], X�

XI
[I(B)]; I=+1/2

))
V(B) dB = 0, (7.68)
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for all linear functions V(B). In other words, we replace the bracket {�, �} by

{�, �} = �
(
X�

XI
,
X�

XI
; I=+1/2

)
, (7.69)

where I=+1/2 = (I= + I=+1)/2, and project the equation onto linear dynamics in
time. We observe energy conservation since taking � = � and V = 1 leads to

� [I=+1] − � [I=]
ΔC

=

∫ ΔC

0

m

mB
� [I(B)] dB

= −
∫ ΔC

0
�

(
X�

XI
[I(B)], X�

XI
[I(B)]; I=+1/2

)
︸                                     ︷︷                                     ︸

= 0

dB = 0, (7.70)

by antisymmetry.
This formulation leads to a practical method since taking � [I] = 〈F, I〉 for

F ∈ , and V = 1 gives

〈
F, I=+1 − I=

〉
+ �

(
F,

∫ ΔC

0

X�

XI
[I(B)] dB; I=+1/2

)
= 0, (7.71)

by linearity in the second argument. This scheme was introduced along with
higher-order variants as a larger set of Poisson integrators in Hairer (2010) and
Cohen and Hairer (2011). The easiest way to obtain implementable formulae for
the scheme is to choose a quadrature rule for the time integral in (7.71) such that
the integral is exact. This is possible whenever the Hamiltonian is polynomial. For
example, when the Hamiltonian is quadratic, X�/XI is linear, and the midpoint rule∫ ΔC

0

X�

XI
[I(B)] dB = 1

2

(
X�

XI

[
I= + 1

2
(
I=+1 − I=

)])
(7.72)

(evaluated at B = 1/2 with weight 1) is exact; the scheme is then equivalent to the
implicit midpoint rule.
For the rotating shallowwater equation scheme described above, theHamiltonian

is cubic, so a two-point quadrature must be used to compute the time integral
involving the quadratic derivatives of the Hamiltonian exactly. We obtain the
scheme〈
F, D=+1

〉
+

〈
q, �=+1

〉
= 〈F, D=〉 + 〈q, �=〉

− ΔC�
(

(F, q),
(
X�

XD
,
X�

X�

)
;
(
D=+1/2, �=+1/2

))
(7.73)
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for all (F, q) ∈ V1
ℎ
× V2

ℎ
, where

X�

XD
= %1

[
<=+1/2

]
= %1

1
3

(
�=D= + 1

2
�=D=+1 + 1

2
�=+1D= + �=+1D=+1

)
, (7.74)

X�

X�
= %2

(
c=+1/2

)
= %2

(
1
6
(
|D= |2 + D= · D=+1 + |D=+1 |2

)
+ 6

2
(
�=+1 + �=

)
+ 1

)
. (7.75)

This can be implemented as(
D=+1, �=+1, @=+1/2, <=+1/2

)
∈ V1

ℎ × V
2
ℎ × V

0
ℎ × V

1
ℎ (7.76)

such that〈
F, D=+1 − D=

〉
+ ΔC

〈
F, @=+1/2

(
<=+1/2

)⊥〉
−ΔC

〈
∇ · F, c=+1/2

〉
= 0 for all F ∈ V1

ℎ, (7.77)〈
q, �=+1 − �=

〉
+ ΔC

〈
q,∇ · <=+1/2

〉
= 0 for all q ∈ V2

ℎ, (7.78)〈
W, �=+1/2@=+1/2

〉
+

〈
∇⊥W, D=+1/2

〉
−

〈
W, 5

〉
= 0 for all W ∈ V0

ℎ, (7.79)〈
E, <=+1/2 − <=+1/2

〉
= 0 for all E ∈ V1

ℎ, (7.80)

with <=+1/2, c=+1/2 defined as above. This scheme is similar, but not identical, to
the implicit midpoint rule, but results in energy conservation. Cohen and Hairer
(2011) showed that this class of Poisson integrators also preserves Casimirs that
are at most quadratic functions of the state space variables. This covers mass and
total vorticity but not enstrophy, which is a non-polynomial function of D and �.
Finding Poisson integrators that preserve enstrophy for this discrete formulation of
the rotating shallow water equations is an open problem.

7.6. Enstrophy conservation on domains with boundaries

Something that we have neglected from our discussion so far is the case when the
domain Ω has an exterior boundary. This is important when extending these tools
to ocean applications (where there are coastlines). When boundaries are present,
we consider the subcomplex

�̊1 ∇⊥−−−−−→ �̊(div) ∇·−−−−−→ !2yc0
yc1

yc2

V̊0
ℎ

∇⊥−−−−−→ V̊1
ℎ

∇·−−−−−→ V2
ℎ
,

(7.81)
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where

�̊1 = {q ∈ �1 : trmΩ q = 0}, (7.82)
V̊0
ℎ =

{
q ∈ V0

ℎ : trmΩ q = 0
}
, (7.83)

�̊(div) = {D ∈ �(div) : trmΩ D · = = 0}, (7.84)
V̊1
ℎ =

{
D ∈ V1

ℎ : trmΩ D · = = 0
}
, (7.85)

and where tr is the boundary trace operator. When a boundary is present, we must
modify (7.54) to incorporate a boundary integral,

〈W, �@〉 = −〈∇⊥W, D〉 + 〈〈W, =⊥ · D〉〉 + 〈W, 5 〉 for all W ∈ V0
ℎ, (7.86)

where 〈〈·, ·〉〉 is the usual !2 inner product on mΩ. This is necessary because @
does not vanish on the boundary in general. One can then try to proceed using this
modified definition of @ in the Poisson bracket, now defined over V̊1 × V2

ℎ
. The

proof of enstrophy conservation then fails because although ∇⊥@ ∈ V1
ℎ
, in general

∇⊥@ ∉ V̊1, because @ is not constant on the boundary. One possible solution is to
restrict @ ∈ V̊0

ℎ
, and use (7.54) with test functions in V̊0

ℎ
, so that ∇⊥@ ∈ V̊1

ℎ
. This

recovers enstrophy conservation, but at the expense of consistency as it commits a
first-order error in forcing @ to be zero on the boundary.
An alternative solution presented in Bauer and Cotter (2018) is to split V0

ℎ
=

V̊0
ℎ
⊕ (V̊0

ℎ
)⊥, where (V̊0

ℎ
)⊥ is the !2-orthogonal complement of V̊0

ℎ
in V0

ℎ
. We then

extend the solution space to (D, �, / ′) ∈ V̊1
ℎ
× V2

ℎ
× (V̊0

ℎ
)⊥, and define the bracket

{�, �} =
〈
@,
X�

XD
· X�
XD

⊥〉
−

〈
∇ · X�

XD
,
X�

X�

〉
+

〈
∇ · X�

XD
,
X�

X�

〉
+

〈
∇ X�
X/ ′

, @
X�

XD

〉
−

〈
∇ X�
X/ ′

, @
X�

XD

〉
, (7.87)

with the same Hamiltonian, where @ ∈ V0
ℎ
such that

〈W, @�〉 − 〈W, 5 + /̊ + / ′〉 = 0 for all W ∈ V0
ℎ, (7.88)

〈W, /̊〉 − 〈∇⊥W, D〉 = 0 for all W ∈ V̊0
ℎ . (7.89)

Here, / ′ represents the contribution to the vorticity from the boundary, which
would normally be given by

〈W, / ′〉 = −〈∇⊥W, D〉 + 〈〈W, =⊥ · D〉〉 + 〈W, 5 〉 for all W ∈ (V̊0
ℎ)⊥. (7.90)

However, here we just ensure that / ′ satisfies this condition initially, and that at
future times / ′ has its own dynamics consistent with the potential vorticity equation
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as we shall see later (and see Section 8 for further discussion of this). Since the
Hamiltonian does not depend on / ′, we have X�/XD and X�/X� as before, and
X�/X/ ′ = 0. Thus the DC and �C equations are unchanged, and we have

〈
W, / ′C

〉
=

〈
∇W, @ X�

XD

〉
= 〈∇W, <@〉 for all W ∈ (V̊0

ℎ)⊥. (7.91)

The bracket is antisymmetric, so the Hamiltonian is conserved.
To check whether this has repaired the Casimirs, we recompute the derivatives

of �= for this extended phase space, writing � n = � + nq for q ∈ V2
ℎ
, Dn = D + nE

for E ∈ V̊1
ℎ
, / ′n = / ′ + nW′ for W′ ∈ (V̊0

ℎ
)⊥, and defining @ n ∈ V0

ℎ
and /̊ ∈ V̊0

ℎ
such

that

〈W, @ n� n 〉 − 〈W, 5 + / ′n + /̊n 〉 = 0 for all W ∈ V0
ℎ, (7.92)

〈W, /̊n 〉 − 〈∇⊥W, Dn 〉 = 0 for all W ∈ V̊0
ℎ . (7.93)

Then, for = ∈ (1, 2),

X�= =

〈
X�=

XD
, E

〉
+

〈
X�=

X�
, q

〉
+

〈
X�=

X/ ′
, W′

〉
= lim
n→0

1
n

(�= [D + nE, � + nq, / ′ + nW′] − �= [D, �])

=

∫
Ω

d
dn

���
n= 0

� n @
=
n dG

=

〈
@=−1
n

��
n= 0,

d
dn

���
n= 0

� n @ n

〉
+

〈
(= − 1)@=−2

n

��
n= 0

d
dn

���
n= 0

@ n , � n @ n

〉
= =

〈
@=−1
n

��
n= 0,

d
dn

���
n= 0

� n @ n

〉
−

〈
(= − 1)@=n

��
n= 0,

d
dn

���
n= 0

� n

〉
= =

〈
@=−1, W′ + d

dn

���
n= 0

/̊n

〉
− 〈(= − 1)@=, q〉

= =
〈
%̊⊥0 @

=−1, W′
〉
+ =

〈
%̊0@

=−1,
d
dn

���
n= 0

/̊n

〉
− 〈(= − 1)@=, q〉

= =
〈
%̊⊥0 @

=−1, W′
〉
+ =

〈
∇⊥%̊0@

=−1, E
〉
− 〈(= − 1)@=, q〉, (7.94)

where %̊⊥0 is the !2 projection onto the orthogonal subspace to V̊0
ℎ
. Hence

X�=

XD
= =∇⊥%̊0@

=−1,
X�=

X/ ′
= =%̊⊥0 @

=−1,
X�=

X�
= −(= − 1)%2(@=) (7.95)
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for = ∈ (1, 2). Then

{�=, �} =
〈
@, =∇⊥

(
%̊0@

=−1) · X�
XD

⊥〉
−

〈
∇ · =∇⊥

(
%̊0@

=−1)︸                ︷︷                ︸
= 0

,
X�

X�

〉
+

〈
∇ · X�

XD
,−(= − 1)%2(@=)

〉
+

〈
∇=%̊⊥0 @

=−1, @
X�

XD

〉
−

〈
∇ X�
X/ ′

, =∇⊥
(
%̊0@

=−1)〉
=

〈
@, =∇

(
%̊0@

=−1 + %̊⊥0 @
=−1)︸                   ︷︷                   ︸

= @=−1

·X�
XD

〉

−
〈
∇ · =∇⊥@=−1︸         ︷︷         ︸

= 0

,
X�

X�

〉
+

〈
∇ · X�

XD
,−(= − 1)%2(@=)

〉
+

〈
∇⊥ · ∇ X�

X/ ′︸       ︷︷       ︸
= 0

, =
(
%̊0@

=−1)〉

= −
〈
(= − 1)∇@=, X�

XD

〉
+

〈
∇ · X�

XD
,−(= − 1)@=

〉
=

〈
(= − 1)@=,∇ · X�

XD

〉
−

〈
∇ · X�

XD
, (= − 1)@=

〉
= 0, (7.96)

where we have repeatedly used @= ∈ V0
ℎ
for = ∈ (1, 2). The surface integral

vanished in the penultimate line since %̊0@
=−1 ∈ V̊0

ℎ
vanishes on the boundary,

and the surface integral vanished in the final line since the normal component
of X�/XD ∈ V̊1

ℎ
vanishes on the boundary. Hence the total vorticity �1 and the

enstrophy �2 are both Casimirs and are conserved by the dynamics.
Bauer and Cotter (2018) demonstrated through numerical experiments that this

scheme produces convergent solutions. This idea is closely related to the approach
ofKetefian and Jacobson (2009), who introduced vorticity variables at the boundary
to make an energy–enstrophy conserving staggered finite difference method.

7.7. Thermal shallow water equations

The thermal shallow water equations provide a useful stepping stone between the
rotating shallow water equations and three-dimensional models. This is because
they incorporate an additional advected tracer, the temperature, whilst remaining
in the two-dimensional setting. Additionally, they provide an interesting reduced
model for describing some atmospheric processes, especially when further aug-
mented with a moisture variable, as discussed in the excellent book by Zeitlin
(2018). The variational derivation of these equations originates from Ripa (1993),
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and can be placed in the framework of Euler–Poincaré equations by treating the
buoyancy B as an additional advected quantity satisfying

BC + D · ∇B = 0. (7.97)

Then the equations take the form

mD

mC
+ D · ∇D + 5 D⊥ + B∇(� + 1) + �

2
∇B = 0, (7.98)

m�

mC
+ ∇ · (�D) = 0, (7.99)

mB

mC
+ D · ∇B = 0, (7.100)

where D is the horizontal velocity and � is the layer thickness as before. Instead
of B, one can work with the buoyancy density ( = B�, which satisfies

(C + ∇ · (D() = 0. (7.101)

As a consequence of the variational derivation, these equations have Poisson bracket
formulations. When ( is used as the prognostic variable, the equations can be
obtained from the Poisson bracket

{�, �}( = {�, �}0 +
〈
X�

X(
,∇ ·

(
B
X�

XD

)〉
−

〈
X�

X(
,∇ ·

(
B
X�

XD

)〉
, (7.102)

where {·, ·}0 is the Poisson bracket presented in (7.39), combined with the Hamilto-
nian

� =

∫
Ω

� |D |2
2
+ (

(
�

2
+ 1

)
dG. (7.103)

This Poisson bracket formulation has Casimirs of the form

� [�, D, (] =
∫
Ω

�@�

(
(

�

)
+ ��

(
(

�

)
dG, (7.104)

where � and � are arbitrary functions.
Alternatively, when B is used as the prognostic variable, we have the following

Poisson bracket formulation:

{�, �}B = {�, �}0 −
〈
∇X�
XB
, B
X�

XD

〉
+

〈
∇X�
XB
, B
X�

XD

〉
, (7.105)

� =

∫
Ω

� |D |2
2
+ �B

(
�

2
+ 1

)
dG. (7.106)

Similarly, this Poisson bracket formulation has Casimirs of the form

� [�, D, B] =
∫
Ω

�@�(B) + ��(B) dG. (7.107)
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The advantage of the ( formulation is that conservation of total buoyancy,

� =

∫
Ω

( dG, (7.108)

is naturally incorporated, and local conservation is possible when choosing ( ∈ V2
ℎ
.

In both cases, for a conforming discretization, B ∈ �1 is required, that is, we should
take B ∈ V0

ℎ
. In the case of the ( formulation, following the approach to @ in

McRae and Cotter (2014), Eldred et al. (2019) proposed introducing B ∈ V0
ℎ
as a

diagnostic quantity defined by∫
Ω

W�B dG =
∫
Ω

W( dG for all B ∈ V0
ℎ . (7.109)

Alternatively, a non-conforming discretization can be obtained by introducing
additional facet terms into the Poisson bracket; we shall discuss this further in
Section 7.13.
In the case of the conforming ( formulation with ( ∈ V2

ℎ
and prognostic B ∈ V0

ℎ
,

the variational derivatives of � with respect to D ∈ V1
ℎ
, � ∈ V2

ℎ
and ( ∈ V2

ℎ

become
X�

XD
= < ≔ %1(D�),

X�

X�
= %2(|D |2/2) + (/2, X�

X(
=
�

2
+ 1. (7.110)

Picking � = 〈D, F〉 + 〈q, �〉 + 〈(, U〉 and using the Poisson bracket (7.102) then
gives the system of equations

〈F, DC〉 + 〈F, @<⊥〉

−
〈
∇ · F, |D |

2

2
+ (

2

〉
−

〈
�

2
+ 1,∇ · (BF)

〉
= 0 for all F ∈ V1

ℎ, (7.111)

〈q, �C〉 + 〈q,∇ · <〉 = 0 for all q ∈ V2
ℎ, (7.112)

〈U, (C〉 + 〈U,∇ · (B�)〉 = 0 for all U ∈ V2
ℎ, (7.113)

〈W, @�〉 − 〈∇⊥W, D〉 − 〈W, 5 〉 = 0 for all W ∈ V0
ℎ, (7.114)

〈V, B�〉 − 〈V, (〉 = 0 for all V ∈ V0
ℎ . (7.115)

The introduction of the thermal variable breaks the symmetry that makes �= a
Casimir for = > 1 for the shallow water equations. However, straightforward
calculations show that mass " , total buoyancy � and total vorticity / are all
Casimirs for this discrete bracket.
A similar conforming discretization obtained from the Poisson bracket (7.105)

also preserves all three of these quantities, with the variation that now � is a
quadratic functional

� =

∫
Ω

B� dG, (7.116)

so requires a time integrator that preserves quadratic Casimirs.
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Eldred et al. (2019) introduced these formulations plus a number of non-
conforming versions with facet integrals. They introduced time integration meth-
ods that conserve the relevant Casimirs and demonstrated all of these schemes in
convergence tests and other benchmarks.

7.8. Rotating compressible Euler equations

Using the approaches described in this section, Poisson bracket discretizations are
possible for any variational fluid model with a Hamiltonian being a function of
velocity D, density � and a thermal field \ (as well as extensions to magnetic
flux �, for example). In this section we briefly discuss such discretizations for
the compressible Euler equations that are the basis for atmospheric dynamical
cores in weather and climate models. These equations are given (in the ‘\-Π’
formulation) by

DC + (D · ∇)D + 2Ω × D + 2?\∇Π = −6Î, (7.117)
\C + D · ∇\ = 0, (7.118)

�C + ∇ · (D�) = 0, (7.119)

Π(1−^)/^ =
'

?0
�\, (7.120)

where D is the velocity, Ω is the rotation vector for the Earth, \ is the potential
temperature (a scaling of temperature that absorbs the changes in temperature due
to changes in pressure),Π is the Exner function, 6 is the acceleration due to gravity,
Î is the unit vector pointing away from the centre of the Earth, � is the density,
^ = '/2?, ' is the ideal gas constant, 2? = ' + 2E is the specific heat at constant
pressure, 2E is the specific heat at constant volume and ?0 is a reference pressure
used to define \.

One Poisson bracket formulation for these equations based around the three-
dimensional vorticity vector l = ∇ × D + 2Ω is

{�, �} =
〈
X�

XD
, l × X�

XD

〉
+

〈
X�

X�
,∇ · X�

XD

〉
+

〈
1
�

X�

X\
∇\, X�

XD

〉
−

〈
X�

X�
,∇ · X�

XD

〉
−

〈
1
�

X�

X\
∇\, X�

XD

〉
, (7.121)

with Hamiltonian

� =

∫
Ω

� |D |2
2
+ �6I + 2E�\Π︸  ︷︷  ︸

thermal energy

dG, (7.122)

where I is the height above some reference altitude. Other Poisson bracket formu-
lations are also possible, notably with Θ = �\ instead of \, but we do not intend
to be encyclopaedic here.
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Similarly to the treatment of the thermal shallow water equations, a conforming
discretization requires that \ ∈ �1, that is, we should take \ ∈ W0

ℎ
. We take

D ∈ W2
ℎ
, � ∈ W3

ℎ
. The discrete variational derivatives of � are then

X�

XD
= < ≔ %2(�D), (7.123)

X�

X�
= %3

(
1
2
|D |2 + 6I + 2?\Π

)
, (7.124)

X�

X\
= 2?%0(�Π), (7.125)

where the derivatives of the internal energy, the third term in �, require a little
algebra. Using the Poisson bracket (7.121) as the basis for a discretization requires
an approximation of ∇ × D sinceW2

ℎ
is not a curl-conforming space. Analogously

to (7.54), we approximate l ∈ W1
ℎ
such that

〈E, l〉 − 〈∇ × E, D〉 = 0 for all E ∈ W1
ℎ, (7.126)

for the case of a domain without boundaries. When boundaries are present, as
indeed they must be since the gravitational potential energy term �6I does not
work if the domain is periodic in the vertical, then we must again define W̊1

ℎ
as

W̊1
ℎ =

{
l ∈ W1

ℎ : l × = = 0 on mΩ
}
, (7.127)

where = is the outward-pointing normal to Ω. Then the state space must be
extended to include / ′ ∈ (W̊1

ℎ
)⊥, the !2-orthogonal complement to W̊1

ℎ
in W1

ℎ
,

which represents vorticity components on the boundary which have their own
dynamics consistent with the conservation of total vorticity. We ignore this aspect
for now, but return to it in Section 8.6.
This construction leads to the discretization

〈F, DC〉 + 〈F, l × <〉

−
〈
∇ · F, 1

2
|D |2 + 6I + 2?\Π

〉
−

〈
F,

1
�
B∇\

〉
= 0 for all F ∈ W2

ℎ, (7.128)

〈q, �C + ∇ · <〉 = 0 for all q ∈ W3
ℎ, (7.129)

〈W, \C〉 +
〈
W

1
�
U∇\, <

〉
= 0 for all W ∈ W0

ℎ, (7.130)

〈A, < − D�〉 = 0 for all A ∈ W2
ℎ, (7.131)

〈E, l〉 − 〈∇ × E, D〉 = 0 for all E ∈ W1
ℎ, (7.132)

〈U, B − 2?�Π〉 = 0 for all U ∈ W0
ℎ, (7.133)

Π(1−^)/^ =
'

?0
�\. (7.134)
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In this formulation, there is no approximation in the definition of Π. The equations
have non-polynomial terms due to the fractional powers in the definition of Π,
which cannot be integrated exactly. This can be dealt with by replacing the exact
integral in the definition of the variational derivatives with a quadrature rule. Care
must be taken to use this quadrature rule consistently in all of the terms to obtain
an energy conserving formulation. In contrast to X�/X�, it is not possible to
remove the projection %\ in the definition of X�/X\ from the equations, because
X�/X\ does not appear in an inner product with a function from V0

ℎ
. Hence we

have to introduce a third auxiliary variable B. Lee and Palha (2021) used a related
formulation to build a discretization using mimetic spectral elements.
Focusing on the approximation of the pressure gradient term 2?\∇Π, the relevant

terms are

− 〈∇ · F, 2?\Π〉 −
〈
F,

1
�
B∇\

〉
= −〈∇ · (\F), 2?Π〉 +

〈
F,

(
2?Π −

1
�
B

)
∇\

〉
,

(7.135)

which is a consistent approximation to 2?\∇Π since B/� only differs from 2?Π by
multiplication by �, projection toW0

ℎ
and division by � again.

As discussed earlier in this article, it can be preferable to use the temperature
space W\ for \, which is more compatible with hydrostatic balance. Since W\

allows discontinuities in the horizontal direction, we need to modify the Poisson
bracket formulation to incorporate the non-conforming discretization. This is done
by focusing on the following term in the Poisson bracket:〈

1
�

X�

X\
∇\, X�

XD

〉
=

〈
X�

X\
,

1
�

X�

XD
· ∇\

〉
, (7.136)

which leads to the term in (7.130) approximating D · ∇\. To adapt this to the
partially discontinuous space W\ , we replace it with the discontinuous Galerkin
discretization

!

[
X�

XD
,
X�

X\
; \

]
= −

〈
∇ℎ ·

(
1
�

X�

XD

X�

X\

)
, \

〉
+

〈〈[[
1
�

X�

XD

X�

X\

]]
, {\}

〉〉
Γ

, (7.137)

using the discontinuous Galerkin notation as introduced in Section 4. Here we
have chosen a centred flux {\} but will discuss upwind fluxes in Section 7.13. As
usual, this is a consistent approximation with the facet integrals vanishing when D,
�, \, etc., are all smooth functions. Then we use ! in a modified Poisson bracket,

{�, �} =
〈
X�

XD
, l × X�

XD

〉
+

〈
X�

X�
,∇ · X�

XD

〉
+ !

[
X�

XD
,
X�

X\
; \

]
−

〈
X�

X�
,∇ · X�

XD

〉
− !

[
X�

XD
,
X�

X\
; \

]
. (7.138)
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This leads to the modified velocity equation

〈F, DC〉 + 〈F, l × <〉 −
〈
∇ · F, 1

2
|D |2 + 6I + 2?\Π

〉
+

〈
∇ℎ ·

(
1
�
FB

)
, \

〉
−

〈〈[[
1
�
FB

]]
, {\}

〉〉
Γ

= 0 for all F ∈ W2
ℎ,

(7.139)

in which we recognize another consistent approximation of the pressure gradient
term. This concept for introducing any chosen \ advection scheme into a Pois-
son bracket formulation was introduced in Gassmann and Herzog (2008), with
application to a global finite difference model in Gassmann (2013).
Here we should note that formulating a Poisson time integrator for this system is

challenging, because the integrands are non-polynomial. As noted to us by Chris
Eldred, and implemented inWimmer, Cotter and Bauer (2021), a Poisson integrator
must be approximated by using an incomplete quadrature rule in the time-averaged
variational derivatives. This can be done to high order at the expense of a more
complicated assembly.

7.9. Upwinding for incompressible Euler: SUPG

One of the interesting and useful features of the Poisson bracket formulation is
that it can be modified to incorporate stabilization of the transport schemes whilst
remaining antisymmetric and hence energy conserving. In the context of two-
dimensional incompressible turbulence (and geostrophic turbulence), this is useful
because energy cascades to large scales (where functions can be well approximated
by finite element functions) whilst enstrophy cascades to small scales (where they
cannot). In energy–enstrophy conserving schemes, vorticity features pile up at the
gridscale, leading to unphysical noise, when really they should be cascading to
scales below the gridscale. Here a scheme that conserves energy whilst dissipating
enstrophy at the small scale through upwind stabilization is appropriate. In three-
dimensional isotropic turbulence, energy is also cascading towards small scales,
and so additional dissipative gridscale closures or parametrizations are necessary.
If these are added to a Poisson bracket formulation with upwind stabilization,
we know that there are no spurious energy transfers between scales and between
potential, kinetic and internal energy, and the only energy changes are due to
the additional dissipative closures and parametrizations. If desired, the energy
dissipated from those terms can be collected and recycled into subgrid closures, as
is done in Gassmann (2013).
First we discuss energy conserving upwinding techniques for the advection term

in the velocity equation. For incompressible quasigeostrophic models, Sadourny
and Basdevant (1985) proposed a subgrid closure within the Arakawa Jacobian
finite difference formulation by replacing @ → @ − gD · ∇D in the Poisson bracket,
where g is a chosen timescale. This provides upwinding by approximating the

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


Compatible finite element methods for geophysical fluid dynamics 365

value of @ taken upstream along the streamline passing through the gridpoint,
hence the name anticipated potential vorticity method (APVM). This was included
in a rotating shallow water formulation by Arakawa and Hsu (1990), and has been
included in more recent unstructured grid formulations in Ringler et al. (2010) and
Chen, Gunzburger and Ringler (2012).
When regarded as a numerical scheme instead of a turbulence closure, this

modification appears as a $(g) consistency error. Instead, in the context of in-
compressible Euler, one can replace l → l − g(lC + D · ∇l). Here, the idea
is that this term vanishes when the approximation of the solution is accurate and
smooth, since then the vorticity equation lC + D · ∇l = 0 is well approximated.
Hence the approximation is consistent. Following this idea, we can modify the
incompressible Euler bracket (7.23) to become

{�, �} =
∫
Ω

(l − g(lC + D · ∇l))
X�

XD
· X�
XD

⊥
dG, (7.140)

where l is obtained from (7.22) as usual. The discretization becomes

〈F, DC〉 + 〈(l − g(lC + D · ∇l))F, D⊥〉 = 0 for all F ∈ Zℎ . (7.141)

Writing D = ∇⊥k, F = ∇⊥q for k, q ∈ V0
ℎ
, we get

〈∇q,∇kC〉︸      ︷︷      ︸
=−〈q,lC 〉

+〈(l − g(lC + D · ∇l))∇q, D〉 = 0 for all q ∈ V0
ℎ, (7.142)

which we rewrite as

〈q + gD · ∇q, lC〉 + 〈q + gD · ∇q, D · ∇l〉 = 0 for all q ∈ V0
ℎ, (7.143)

after integrating by parts in the term −〈l∇q, D〉, which is permissible since l, q ∈
�1(Ω) and D ∈ �(div). This is the SUPG discretization of the incompressible Euler
equation, which is obtained by replacing the test function q with q + gD · ∇q. The
additional term leads to streamwise diffusion of the vorticity l without harming
the consistency of the scheme.
Since the scheme as written here is derived from a Poisson bracket formulation,

it conserves energy by construction. Regarding Casimirs �=, we now get

{�,�=} = −=
∫
Ω

(l + gD · ∇l)
X�

XD
·
(
∇⊥l=−1)⊥ dG

= =

∫
Ω

(l + gD · ∇l)
X�

XD
· ∇l=−1 dG

= (= − 1)
∫
Ω

X�

XD
· ∇l= dG − =g

∫
Ω

D · ∇lX�
XD
·
(
∇⊥l=−1)⊥ dG, (7.144)

and this latter term only vanishes when = = 1, hence we have conservation of total
vorticity but not enstrophy. By substituting q = l into (7.143), we can obtain the
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enstrophy dynamics
d
dC

∫
Ω

1
2
l2 dG = 〈l, lC〉

= 〈(l − g(lC + D · ∇l))∇l, D〉 = 0

=

〈
D,

1
2
∇l2

〉
︸       ︷︷       ︸

= 0

−g〈lC , D · ∇l〉 − g〈D · ∇l, D · ∇l〉, (7.145)

where the first term in the last line vanishes after integration by parts and noting
that D is divergence-free. The last term is negative semidefinite, and corresponds
to diffusion of enstrophy along streamlines, as occurs in APVM. The middle term,
which is what we get if we change from APVM to SUPG to ensure consistency
of the scheme, is indefinite. However, it only contains one derivative, so it is a
lower-order term compared to the streamwise diffusion, and hence the streamwise
component of l is kept smooth.

7.10. Upwinding for incompressible Euler: vorticity-free formulation

An alternative Poisson bracket with upwinding for the two-dimensional incom-
pressible Euler equations stems from the variational formulation of Natale and
Cotter (2018), discussed in the previous section. Since that discretization conserves
energy, it should not come as a surprise that it has a Poisson bracket formulation,
given by

{�, �} = −
〈
D,∇⊥

(
X�

XD

⊥
· X�
XD

)〉
+

〈〈
{D},

[[
=⊥ ·

(
X�

XD

⊥
· X�
XD

)]]〉〉
Γ

, (7.146)

� =
1
2

∫
Ω

|D |2 dG. (7.147)

This formulation can be thought of as an alternative way to obtain an approximation
to l when D ∈ V1

ℎ
. Instead of using an auxiliary equation to define l, here we

integrate the curl by parts in each cell and choose an approximation to D on the
facets. This approximation is necessary because although D has continuous normal
components, it does not have continuous tangential components; the tangential
component of D is multivalued on the boundary. The variational derivation leads
to a centred approximation {D}, but we can equally take an upwind approximation
D̃ (where D̃ is the value of D on the upwind side of the facet). This leads to

〈F, DC〉 − 〈D,∇⊥(F⊥ · D)〉 + 〈〈{D}, [[=⊥ · (F⊥ · D)]]〉〉Γ = 0 for all F ∈ Z⊥. (7.148)

It is more difficult to diagnose the enstrophy budget for this scheme than it
was for the SUPG scheme. However, numerical experiments in Natale and Cotter
(2018) showed that this scheme does indeed tend to reduce enstrophy whilst exactly
conserving energy. They also proved convergence of the upwinded scheme, albeit at
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a suboptimal rate; numerical experiments showed convergence at the rate expected
given the degree of the polynomials (i.e. second-order !2 convergence for BDM1).

7.11. Scale selective dissipation

Natale and Cotter (2017) investigated the ability of the schemes in Sections 7.9
and 7.10 to produce energy backscatter from small to large scales consistently with
two-dimensional turbulence in the forced dissipative setting.
For the scheme of Section 7.10 they provided a multiscale interpretation of the

discretization, in the case of the BDM1 space (the approach is general for BDM
spaces, but discussion is simplified by just describing the lowest-order case). Since
V1
ℎ
= BDM1 contains V1,;

ℎ
= P12 (the space of vector-valued continuous piecewise

linear functions) as a subspace, we can write an !2 orthogonal decomposition,

V1
ℎ = V

1,;
ℎ
⊕ V1,B

ℎ
, (7.149)

where V1,B
ℎ

is the !2 orthogonal complement of V1,;
ℎ

in V1
ℎ
. Since V1,;

ℎ
is a

continuous finite element space and therefore contains functions that are smoother
than V1,B

ℎ
, we can consider V1,;

ℎ
to be a subspace of larger-scale fields whilst

V1,B
ℎ

contains the small scales. This decomposition is not compatible with the
decomposition V1

ℎ
= Z ⊕ Z⊥, so we have to use the mixed formulation where the

divergence-free condition is enforced explicitly via the pressure gradient term. The
formulation may be written as

〈E, DC〉 + 0(D; D, E) + B(D; D, E) − 〈%,∇ · E〉 = 0 for all E ∈ V1
ℎ, (7.150)

〈∇ · D, q〉 = 0 for all q ∈ V0
ℎ, (7.151)

where

0(D̂; D, E) = 〈D̂⊥,∇(D⊥ · E)〉 − 〈〈{D̂⊥} · =+ [[D⊥ · E]]〉〉Γ, (7.152)
B(D̂; D, E) = −〈〈2+ [[D̂⊥]] · =+ [[D⊥ · E]]〉〉Γ, (7.153)

noting that we use D̂ = D in (7.150), and where 2+ is equal to 1 if D · =+ ≥ 0 and 0
otherwise.
If we now write D = D; + DB, with D; ∈ V1,;

ℎ
and DB ∈ V1,B

ℎ
, we observe that

B(D; D, D;) = −〈〈2+ [[D⊥]] · =+, [[D⊥ · D;]]〉〉Γ
= −〈〈2+ [[D⊥]] · =+, [[D⊥]] · D;〉〉Γ
= −〈〈2+ [[D⊥ · =+]], [[D⊥ · =+]]=+ · D;〉〉Γ
= −〈〈2+ [[D⊥ · =+]]=+, =+ [[D⊥ · =+]]=+ · D;〉〉Γ
= −〈〈2+ [[D⊥]], [[D⊥]]=+ · D;〉〉Γ
= −〈〈2+ [[D]], [[D]]=+ · D;〉〉Γ, (7.154)
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wherewe used [[D⊥]] = [[D⊥ ·=+]]=+ since D⊥ has continuous tangential components.
Consequently,

B(D; D, DB) = −〈〈2+ [[D⊥]] · =+, [[D⊥ · DB]]〉〉Γ
= −〈〈2+ [[D⊥]] · =+, [[D⊥]] · (D − D;)〉〉Γ
= 〈〈2+ [[D⊥]] · =+, [[D⊥]] · D;〉〉Γ − 〈〈2+ [[D⊥]] · =+, [[D⊥ · D]]︸    ︷︷    ︸

= 0

〉〉Γ

= 〈〈2+ [[D]], [[D]]=+ · D;〉〉Γ. (7.155)

Since 〈D;, DB〉 = 0, we can obtain equations for the evolution of � ; = ‖D; ‖2/2 and
� B = ‖DB ‖/2 by setting E = D; and E = DB, respectively:

d� ;

dC
+ 0

(
D; D, D;

)
−

〈
?,∇ · D;

〉
=

〈〈
2+D

; · =+ [[D]], [[D]]
〉〉
Γ
, (7.156)

d� B

dC
+ 0(D; D, DB) − 〈?,∇ · DB〉 = −

〈〈
2+D

; · =+ [[D]], [[D]]
〉〉
Γ
. (7.157)

Since 2+D; · =+ ≥ 0, the upwinding creates an energy transfer from small to large
scales.

Natale and Cotter (2017) demonstrated that this leads to energy backscatter in
practice, by using the analysis technique of Thuburn et al. (2014b). This technique
involves simulating two-dimensional incompressible turbulence with Newtonian
damping and wavenumber 16 forcing. The instantaneous rate of change of local
energy is computed, and then Fourier-transformed to obtain (m/mC)�(:), the rate
of change of energy at wavenumber � . Then the same solution is filtered by
removing all wavenumbers above a cut-off :) , and the rate of change of energy is
recomputed using this filtered solution, to obtain (m/mC)�) (:). Then the rate of
change of subgrid energy �SG(:) = (m/mC)�(:) − (m/mC)�) (:) is computed. This
shows the rate of change of energy at wavenumber : due to wavenumbers > :) .
This can then be compared with a high-resolution reference solution that has a
much larger range of scales from which to support backscatter. This computation
is then repeated using enstrophy instead of energy, obtaining /SG(:). Natale and
Cotter (2017) examined the upwind scheme of Natale and Cotter (2018), together
with the SUPG scheme (7.141), using this technique, as well as comparing the
upwind momentum flux formulation of Guzmán et al. (2017), which does not
conserve energy. The experiments showed that all three schemes exhibit the trough
in /SG(:) near : = :) , which demonstrates that enstrophy is being transported
to smaller scales, consistent with the enstrophy cascade. However, the upwind
momentum flux formulation showed no peak at low : in �SG(:) that is indicative
of the energy inverse cascade in the reference solution. Both the Natale and Cotter
(2018) and SUPG schemes showed such a peak, although it is stronger and closer
to the reference solution for the SUPG scheme. When the upwinding is replaced

https://doi.org/10.1017/S0962492923000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000028


Compatible finite element methods for geophysical fluid dynamics 369

by centred approximation in the Natale and Cotter (2018) scheme, and when the g
parameter is set to zero in the SUPG scheme, no statistical equilibrium is reached
and the implicit solvers for the systems eventually fail. Hence we conclude that
energy conservation and some form of stabilization by upwinding or SUPG are both
critical to obtaining these important features in two-dimensional forced dissipative
turbulence.

7.12. Upwinding for rotating shallow water equations using potential vorticity

Following Arakawa and Hsu (1990), McRae and Cotter (2014) demonstrated that
an energy conserving, enstrophy dissipating scheme for the rotating shallow water
equations is possible using the APVM technique where @ is replaced by @− gD · ∇@
in (7.39), extending the APVM idea discussed above to the rotating shallow water
equations. This was demonstrated to have a beneficial effect on the smoothness
of the solution whilst still preserving energy. Natale and Cotter (2018) proposed
replacing @ in (7.39) by @−g((�@)C+∇·(<@))/� (or equivalently by @−g(@C+<·∇@),
since �C + ∇ · < = 0 in !2) in order to obtain streamwise stabilization within a
consistent scheme, since smooth solutions of the rotating shallow water equations
satisfy (�@)C + ∇ · (�D@) = 0. This leads to the system

〈F, DC〉 + 〈(@ − g(@C + < · ∇@)F, <⊥〉

−
〈
∇ · F, 1

2
|D |2 + 6(� + 1)

〉
= 0 for all F ∈ V1

ℎ, (7.158)

〈q, �C〉 + 〈∇ · <〉 = 0 for all q ∈ V2
ℎ, (7.159)

〈W, @�〉 + 〈∇⊥W, D〉 − 〈W, 5 〉 = 0 for all W ∈ V0
ℎ, (7.160)

〈E, < − D�〉 = 0 for all E ∈ V1
ℎ . (7.161)

To obtain the enstrophy dynamics, we use F = ∇⊥@ in (7.158) and substitute with
W = @ in (7.160) to obtain

d
dC

∫
Ω

1
2
@2� dG = 〈(@ − g(@C + < · ∇@)), < · ∇@〉

= −〈g(@�)C< · ∇@〉 − 〈∇ · (@<)), < · ∇@〉, (7.162)

where we again have an indefinite consistency term and a streamwise diffusion term
that is always ≤ 0. The energy conservation and stabilization of enstrophy, with
decay of enstrophy when gridscale features arise through vortex stretching, was
demonstrated for this upwind stabilized rotating shallow water scheme in Bauer
and Cotter (2018) using numerical experiments.
The enrichment of this schemewith upwind stabilization presents an opportunity

for a stability analysis which seems attainable at the time of writing but is currently
open. In particular, it would be interesting to consider the stability of a backward
Euler step for these equations.
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7.13. Upwind discontinuous Galerkin methods for active tracers

Inspired by the observation of Gassmann and Herzog (2008) that upwinding for
advected quantities (such as layer depth, density, temperature, etc.) can be incorpor-
ated into an energy conserving scheme by simply ensuring that the antisymmetry
is maintained in the bracket, Wimmer, Cotter and Bauer (2020, 2021) examined
energy conserving tracer upwinding using upwind discontinuous Galerkin schemes
and SUPG schemes, respectively. Wimmer et al. (2020) considered upwind dis-
continuous Galerkin schemes for the rotating shallow water equations, applied to
both the layer depth (which is inV2

ℎ
, thus allowing arbitrary discontinuities between

cells) and the velocity (which is in V1
ℎ
, and hence allows discontinuity in the tan-

gential components, which is sufficient to allow for some dissipation of small-scale
enstrophy).
The goal is to obtain an energy conserving formulation for which the layer depth

equation takes the upwind discontinuous Galerkin form

〈q, �C〉 − 〈∇q, �D〉 + 〈〈[[qD]], �̃〉〉Γ = 0 for all q ∈ V2
ℎ . (7.163)

To do this, we have to realize it as a modification of the component of the Poisson
bracket given by 〈

X�

X�
,∇ · X�

XD

〉
, (7.164)

where X�/XD = q and X�/XD = %1(�D). The problem is that D explicitly appears
in (7.163), whilst X�/XD involves a projection of D�. Wimmer et al. (2020) solved
this problem by introducing a recovery operator U : (�, <) ∈ V2

ℎ
× V1

ℎ
→ D ∈ V1

ℎ

defined by
〈�E, D〉 = 〈E, <〉 for all E ∈ V1

ℎ, (7.165)

which is well-defined provided that � > 0 (breaking this condition will cause the
scheme to fail in any case). Note in particular that if < = %1(�F) for any F ∈ V1

ℎ
,

then U(�, <) = F.
Thus we can rewrite (7.163) as〈
X�

X�
, �C

〉
−

〈
∇ X�
X�

, �U
(
�,
X�

XD

)〉
+

〈〈[[
X�

X�
U
(
�,
X�

XD

)]]
, �̃

〉〉
Γ︸                                                                     ︷︷                                                                     ︸ = 0 (7.166)

for all X�/X� ∈ V2
ℎ
, with the term marked by the underbrace replacing (7.164).

In order to keep the bracket antisymmetric, we also make the same substitutions in
the corresponding term with � and � exchanged, and the Poisson bracket becomes

{�, �} =
〈
X�

XD
, @
X�

XD

⊥〉
−

〈
∇ X�
X�

, �U
(
�,
X�

XD

)〉
+

〈〈[[
X�

X�
U
(
�,
X�

XD

)]]
, �̃

〉〉
Γ

+
〈
∇ X�
X�

, �U
(
�,
X�

XD

)〉
−

〈〈[[
X�

X�
U
(
�,
X�

XD

)]]
, �̃

〉〉
Γ

. (7.167)
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The velocity upwinding used is a development of the Natale and Cotter (2018)
scheme, which does not require an auxiliary potential vorticity variable. To achieve
this, we apply the modification in the @ term of the Poisson bracket,〈

X�

XD
, @
X�

XD

〉
↦→

〈
X�

XD
,

1
�
∇⊥ · D X�

XD

⊥〉
+

〈
X�

XD
,
5

�

X�

XD

⊥〉
. (7.168)

Following a discontinuous Galerkin methodology, we then integrate by parts sep-
arately in each cell, and select D̃, the value of D from the upwind side, in the
corresponding facet integral, to obtain

−
〈
D,∇⊥

(
X�

XD
· 1
�

X�

XD

⊥)〉
+

〈〈
D̃,

[[
=⊥ ·

(
X�

XD
· 1
�

X�

XD

⊥)]]〉〉
Γ

. (7.169)

Since we are already using U in the layer depth terms, we might as well avoid
additional projections and use it to replace (X�/XD)/�. Putting all of this together
gives

{�, �} = −
〈
D,∇⊥

(
�U

(
�,
X�

XD

)
· U

(
�,
X�

XD

)⊥)〉
+

〈〈
D̃,

[[
=⊥ ·

(
�U

(
�,
X�

XD

)
· U

(
�,
X�

XD

)⊥)]]〉〉
Γ

−
〈
∇ X�
X�

, �U
(
�,
X�

XD

)〉
+

〈〈[[
X�

X�
U
(
�,
X�

XD

)]]
, �̃

〉〉
Γ

+
〈
∇ X�
X�

, �U
(
�,
X�

XD

)〉
−

〈〈[[
X�

X�
U
(
�,
X�

XD

)]]
, �̃

〉〉
Γ

. (7.170)

Now, if we use this Poisson bracket to generate the dynamical equations for �
and D, we get

〈F, DC〉 − 〈D,∇⊥(�U(�, F) · D⊥)〉
+ 〈〈D̃, [[�=⊥ · (U(�, F) · D⊥)]]〉〉Γ

+
〈
∇ X�
X�

, �U(�, F)
〉
−

〈〈[[
X�

X�
U(�, F)

]]
, �̃

〉〉
Γ

= 0 for all F ∈ V1
ℎ, (7.171)

〈q, �C〉 − 〈∇q, �D〉 + 〈〈[[qD]], �̃〉〉Γ = 0 for all q ∈ V2
ℎ, (7.172)

which conserves energy by construction, despite the presence of the upwind terms.
As written, it is not clear how to implement this scheme, due to the presence of
the application of U to the test function F. It is not scalable to compute and store
U(�, F) for each test function F, since U(�, F) is globally supported in general.
Wimmer et al. (2020) solved this problem by introducing an auxiliary variable
A ∈ V1

ℎ
such that

〈A, �E〉 = −〈D,∇⊥(�E · D⊥)〉
+ 〈〈D̃, [[�=⊥ · (E · D⊥)]]〉〉Γ for all E ∈ V1

ℎ . (7.173)
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Then

〈A, F〉 = 〈A,U(�, F)�〉
= −〈D,∇⊥(�U(�, F) · D⊥)〉
+ 〈〈D̃, [[�=⊥ · (U(�, F) · D⊥)]]〉〉Γ for all F ∈ V1

ℎ, (7.174)

as required. Hence we obtain the three coupled equations for(
D, A, �,

X�

X�

)
∈ V1

ℎ × V
1
ℎ × V

2
ℎ × V

2
ℎ, (7.175)

where

〈F, DC〉 − 〈�F, A〉 = 0 for all F ∈ V1
ℎ, (7.176)

〈A, E〉 − 〈D,∇⊥(�E · D⊥)〉 + 〈〈D̃, [[�=⊥ · (E · D⊥)]]〉〉Γ

+
〈
∇ X�
X�

, �E

〉
−

〈〈[[
X�

X�
E

]]
, �̃

〉〉
Γ

= 0 for all E ∈ V1
ℎ, (7.177)

〈q, �C〉 − 〈∇q, �D〉 + 〈〈[[qD]], �̃〉〉Γ = 0 for all q ∈ V2
ℎ, (7.178)〈

B,
X�

X�
− 1

2
|D |2 − 6�

〉
= 0 for all B ∈ V2

ℎ . (7.179)

Note that the use of upwinding in the � equation has altered the X�/X� term in the
D equation, and it now appears in terms other than an inner product with ∇ ·F. This
means we have to solve for the projection to V1

ℎ
in an additional equation, which

complicates the solution of this system after discretization with an implicit Poisson
integrator (which is necessary for exact energy conservation for the fully discrete
scheme). Wimmer et al. (2020) addressed the solution by using a Picard iteration on
(D, �), keeping the standard linearization about a state of rest as an update equation
and forming the nonlinear residual by first computing X�/X� and A and substituting
them into the residuals for D and �. The linear system can then be solved for using
hybridization techniques as described in Section 5. Another possible approach is
to apply Newton’s method to the full four-component system. Then, when solving
the Jacobian linear system for the update, XA and X(X�/X�) can be eliminated as
part of a Schur complement preconditioner; the Schur complement in D and � can
then be approximated by the corresponding Schur complement arising from a more
standard discretization such as those discussed in earlier sections.
Wimmer et al. (2020) demonstrated that this scheme combined with a Poisson

integrator produces relative energy conservation error of size 10−9 after four Picard
iterations, when applied to a standard test case used in the development of numerical
schemes for numerical weather prediction (the flow over a mountain test case 5
from Williamson et al. (1992)). In fact, similar-sized energy errors were even
obtained when using the implicit midpoint rule (also approximated using four
Picard iterations), showing that the most important aspect of energy conservation
is in the spatial discretization, at least for this test problem. Additionally, if a
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midpoint rule is used then there is no need for the additional auxiliary variable A
above. This is an example where the reduction in energy error through space and
time discretization tricks is lost due to the energy error from doing a finite number
of nonlinear iterations.6

7.14. SUPG methods for active tracers

Wimmer et al. (2021) examined similar approaches when SUPG schemes are
applied to the advected quantities. Themotivation for this is that an SUPG scheme is
required to stabilize the vertical transport of temperature when it is approximated in
theW\

ℎ
space proposed in Section 2. SUPG schemes have additional complications

as they modify the test function throughout the equation, including in the time
derivative term. Wimmer et al. (2021) addressed this problem as follows. First,
we adopt the notation that SUPG makes the modification W ↦→ W + g((D; W) to
the test function W ∈ W\

ℎ
. This general notation is to cover different possibilities;

for standard SUPG for continuous finite element spaces the modification takes the
form

((D; W) = D · ∇W. (7.180)

We note that ((D; W) will always be linear in the test function W, but we do not
require linearity in the other variables. Then, if the plain version of the discrete
transport equation takes the form

〈W, \C〉 + !(D, \; W) = 0 for all W ∈ W\
ℎ , (7.181)

then the SUPG version takes the form

〈B + g((D; B), \C〉 + !(D, \; B + g((D; B)) = 0 for all B ∈ W\
ℎ . (7.182)

For example, with a standard continuous Galerkin approximation, we would have

!(D, \; W) = −〈∇W, D\〉 for all W ∈ W\
ℎ . (7.183)

We then define B(D; W) ∈ W\
ℎ
according to

〈B(D; W) + g((D; B(D, W)), f〉 = 〈W, f〉 for all f ∈ W\
ℎ . (7.184)

Wimmer et al. (2021) proved the well-posedness of this definition. Our SUPG
transport equation then becomes

〈W, \C〉 + !(D, \; B(D; W) + g((D; B(D; W))) = 0 for all W ∈ W\
ℎ . (7.185)

Following the principle of Gassmann and Herzog (2008) again, we substitute this
form into the relevant terms in the Poisson bracket, which are

{�, �} = · · · −
〈

1
�

X�

X\
∇\, X�

XD

〉
+

〈
1
�

X�

X\
∇\, X�

XD

〉
. (7.186)

6 Thanks to Golo Wimmer for pointing out this observation.
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Since we know that (X�/XD)/� = D in the unapproximated case, the substitution
gives

{�, �} = · · · − !
(

1
�

X�

XD
, \; B

(
D;
X�

X\

)
+ g(

(
D; B

(
D;
X�

X\

)))
+ !

(
1
�

X�

XD
, \; B

(
D;
X�

X\

)
+ g(

(
D; B

(
D;
X�

X\

)))
. (7.187)

This produces dynamical equations of the form〈
W + g(

(
1
�

X�

XD
; W

)
, \C

〉
+ !

(
1
�

X�

XD
, \; W + g(

(
1
�

X�

XD
; W

))
= 0, W ∈ W\ ,

(7.188)

〈F, DC〉 + · · · − !
(

1
�
F, \; B

(
D;
X�

X\

)
+ g(

(
D; B

(
D;
X�

X\

)))
= 0, F ∈ W1

ℎ,

where ‘· · · ’ represents the terms coming from the other parts of the Poisson bracket.
The latter term in the DC equation is an approximation of the term

− 2?\∇Π, (7.189)

in the case of the compressible Euler equations. To replace (X�/XD)/� in the
\C equation back with D again, Wimmer et al. (2021) also used the U operator as
described above for the shallow water equations, but we will not incorporate that
additional complexity here.
Wimmer et al. (2021) demonstrated robust upwind stabilization combined with

energy conservation in various test problems using this method. For the thermal
shallow water equations, the upwinded version demonstrated much smoother tem-
perature fields than in the standard energy conserving version. This is significant
because the thermal shallow water equations exhibit very fine structures in the
temperature field which lead to the accumulation of numerical noise at the grid-
scale, if upwinding is not used. For the compressible Euler equations in a vertical
slice formulation in a falling bubble configuration, they showed that the energy
conserving form of the upwinded scheme leads to the appearance of secondary
Kelvin–Helmholtz vortices that appear in much higher-resolution simulations of
the same problem (but do not appear with upwinding schemes on the same resolu-
tion that do not conserve energy). This latter result seems to suggest that the energy
conserving formulation is transferring potential energy dissipated from the upwind
transport scheme and injecting it into the kinetic energy in a manner that is con-
sistent with subscale processes in the higher-resolution simulation. Wimmer et al.
(2021) also developed formulae that showed that the energy conservation is indeed
maintained by the transfer of dissipated potential energy into kinetic energy. Since
the potential energy dissipation occurs at the gridscale, this raises the concern that
the energy conservation leads to the production of noise in the velocity field. By
careful measurement of the gridscale component of the velocity field in numerical
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experiments, it was shown that the energy injection is at a larger scale, similar to
what was observed by Natale and Cotter (2017). The naïve intuition that the en-
ergy conserving formulation balances upwinding diffusion with antidiffusion in the
velocity term is incorrect, as the additional terms are not second-order derivatives
in velocity.

8. Consistent vorticity and potential vorticity transport
Another subtopic in structure preserving schemes is that of schemes that have
consistent vorticity transport. This means that although potential vorticity or
vorticity is not one of the prognostic variables, the discretized dynamics imply a
discretization for the (potential) vorticity transport equation. This is useful because
it can imply additional control on the smoothness of the velocity field, especially
when upwinding is incorporated into the implied vorticity dynamics. To quote
Ringler et al. (2010): ‘Given the fundamental importance of PV in geophysical
flows, numerical models are sometimes constructed to faithfully represent some
aspects of the PV dynamics within the discrete system.’ Although this property is
closely linkedwith the Poisson bracket formulations described in Section 7, we have
chosen to discuss it in a separate section, because some papers have emphasized
the importance of this aspect whilst not strictly building in energy conservation.
The history again comes through the ‘C grid’ finite difference school of methods

for numerical weather prediction, with Sadourny providing key ideas (Sadourny
1972, Sadourny andBasdevant 1985), andmoremodern application to unstructured
grids taking place in Ringler et al. (2010).
For the incompressible Euler equations, we start from (7.13). Applying the

two-dimensional curl ∇⊥· leads to the law of conservation of vorticity,

lC + ∇ · (lD) = 0, (8.1)

from which conservation of the Casimirs �= can be directly derived. We have
already seen in the previous section that the energy conserving discretization (7.24)
implies a consistent discretization of (8.1), and that the modification of the bracket
(7.140) leads to a consistent SUPG discretization. It is this idea that we seek to
translate to the equations of geophysical fluid dynamics.

8.1. Consistent potential vorticity transport in the energy–enstrophy conserving
framework

For the rotating shallow water equations, the starting point is the ‘vector-invariant’
form, which is

DC + @�D⊥ + 6∇(� + 1) = 0, (8.2)

where @ = (∇⊥ · D + 5 )/� as before. Applying ∇⊥· leads to

(@�)C + ∇ · (@�D) = 0, (8.3)
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which is the law of conservation of potential vorticity (fromwhich the conservation
of the Casimirs �= can also be derived directly). Here the identity ∇⊥ · ∇ is used
to eliminate the pressure gradient term 6∇(� + 1) from this conservation law, and
so compatible discretizations that preserve this identity are important to maintain
this structure.
This occurs straightforwardly in the energy–enstrophy conserving formulation

of McRae and Cotter (2014), presented in Section 7.12. Taking F = −∇⊥W for
W ∈ V0

ℎ
in (7.60) gives

〈−∇⊥W, DC〉 − 〈∇W, @<〉 = 0 for all W ∈ V0
ℎ . (8.4)

Then, taking the time derivative of (7.62) and substituting into (8.4) gives

〈W, (@�)C〉 − 〈∇W, @<〉 = 0 for all W ∈ V0
ℎ, (8.5)

which is a standard finite element discretization of (8.3). This becomes even clearer
after integrating by parts in the second term to obtain

〈W, (@�)C + ∇ · (@<)〉 = 0 for all W ∈ V0
ℎ, (8.6)

which is simply the projection of (8.3) into V0
ℎ
. For the compatible finite element

discretization, this integration by parts is an identity (provided that D · = = 0 on
domain boundaries) since W, @ ∈ V0

ℎ
⊂ �1 and < ∈ V1

ℎ
⊂ �(div). If we apply

similar manipulations to these in the case of the upwind stabilized system (7.158)–
(7.161), we obtain the following stabilized discretization of the potential vorticity
conservation law:

〈W, (@�)C〉 − 〈∇W, <@ − g<(@C + < · ∇@)〉 = 0 for all W ∈ V0
ℎ . (8.7)

Some rearrangement and integration by parts (using < · = = 0 on the boundary)
then gives

〈W, (@�)C + ∇ · (<@)〉 − 〈g< · ∇W, < · ∇@〉 = 0 for all W ∈ V0
ℎ . (8.8)

As we have previously noted, �C + ∇ · < = 0 in !2, so we can write〈
W + 1

�
g< · ∇W, (@�)C + ∇ · (<@)

〉
= 0 for all W ∈ V0

ℎ, (8.9)

which we observe is an SUPG discretization of the law of conservation of potential
vorticity. Even though the potential vorticity is not a prognostic variable, we obtain
consistent dynamics for this diagnosed quantity.
Also in a similar direction, Lee (2021) designed a scheme that applies Petrov–

Galerkin-style upwinding by evaluating mass flux test functions at downstream
locations along advective characteristics (similar to a semi-Lagrangian scheme).
This was demonstrated to have a beneficial effect on the implied potential vorti-
city dynamics (although the scheme does dissipate energy, unlike those described
above).
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In the case of the thermal shallow water equations, there is a source term in the
potential vorticity equation. Eldred et al. (2019) constructed a scheme based on the
ideas above so that the diagnostic potential vorticity satisfies a discretized version
of this conservation law with sources, which preserves constant potential vorticity
in the case when entropy B is constant.

8.2. Consistent potential vorticity transport using primal–dual grids

The previous section suggests an approach to designing numerical schemes where
one selects an advection scheme for potential vorticity (which could be higher-order
accurate, with limiters, etc.). Then the corresponding scheme for velocity that is
consistent with the chosen advection scheme is deduced. This makes use of the
compatible spaces, since an equation for vorticity can be immediately obtained by
choosing a test function F = ∇⊥W for W ∈ V0

ℎ
in the velocity equation. Thuburn

and Cotter (2015) took this approach to designing a compatible scheme based on
combinations of spaces on overlaid primal–dual grids, necessitating lowest-order
spaces. To raise the order of accuracy of the velocity advection scheme, they
chose a third-order upwind finite volume scheme for the potential vorticity on
the dual grid (a swept area scheme in this case) to obtain higher-order accurate
potential vorticity dynamics in space and time. The advantage of third-order (and,
generally, odd-order) transport schemes is that a backward error analysis shows that
the leading-order error is diffusive rather than dispersive: this reduces gridscale
oscillations in the numerical solution. This was achieved by considering both
the potential vorticity and velocity equations after time discretization. This was
possible because the finite volume scheme can be reinterpreted as an equation of
the form (or a discrete-time formulation that is analogous to)

〈W, (@�)C〉 − 〈∇W, <@∗〉 = 0 for all W ∈ V0
ℎ, (8.10)

for some chosen @∗, where < is the mass flux such that �C +∇ ·< = 0 in !2 for the
corresponding discrete scheme for �. Then this equation can be obtained from the
following velocity equation:

〈F, DC〉 + 〈F, @∗<⊥〉 + 〈∇ · F, %〉 = 0 for all F ∈ V1
ℎ, (8.11)

for some %. This can be checked upon taking F = ∇⊥W.

8.3. Consistent potential vorticity transport using Taylor–Galerkin schemes

In a similar direction, Shipton et al. (2018) used a third-order Taylor–Galerkin
scheme for the diagnostic potential vorticity equation, and constructed the pro-
gnostic velocity equation accordingly. A Taylor–Galerkin scheme is an extension
of the Lax–Wendroff technique in which one expands a Taylor series in time, trans-
forming higher-order time derivatives into space derivatives using the advection
equation, before discretizing in space to obtain stable schemes.
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8.4. Preservation of constant potential vorticity

Another aspect of these schemes is that although we wish to solve the equation
in conservative form (8.10) to conserve total vorticity, the potential vorticity also
solves

@C + D · ∇@ = 0, (8.12)

obtained by combining (8.3) with the continuity equation for �. This means that
the value of @ is preserved along characteristics moving at speed D. In particular,
it can be desirable that if @ is constant then it remains constant, which is a property
of (8.12). To obtain this at the discrete level, we need a mass flux < such that
�C + ∇ · < = 0. This is straightforward when the scheme (7.61) is used, since one
can take q = �C + ∇ ·<, implying that �C + ∇ ·< = 0 in !2, as we have previously
discussed. This becomes more complicated when discontinuous Galerkin methods
are used (or finite volume methods for lowest-order spaces, as used in Thuburn and
Cotter (2015)), because the equation is not immediately in that form. However,
such a form can be deduced using compatible properties of the spaces. Thuburn and
Cotter (2015) used such an approach coming from finite volume schemes (Ringler
et al. 2010), which was translated to discontinuous Galerkin methods by Shipton
et al. (2018). To describe this, we consider an upwind discontinuous Galerkin
method for �:

〈q, �C〉 − 〈∇q, �D〉 + 〈〈[[qD]], �̃〉〉Γ = 0 for all q ∈ V2
ℎ . (8.13)

For each cell  , we then define < ∈ V1
ℎ
( ) from∫

5

W(< − D�̃) · = d( = 0 for all W ∈ )( 5 ), 5 ∈  , (8.14)∫
 

F · (< − D�) dG = 0 for all F ∈ V1,−
ℎ

( ), (8.15)

where 5 are all the facets of  , )( 5 ) is the appropriate trace space on 5 spanned
by D · =| 5 with D ∈ V1

ℎ
( ), and V1,−

ℎ
( ) is the appropriately sized curl-conforming

space to close the system, as used in the definition of the commuting projection into
V1
ℎ
. For example, if V1

ℎ
is BDM: then V1,−

ℎ
is the (rotated) Raviart–Thomas space

of degree : − 1. This is a local projection that can be evaluated independently in
each cell  , with < ∈ V1

ℎ
(since the normal components agree on facets). Then we

have

〈q,∇ · <〉 = −〈∇q, <〉 + 〈〈[[q]], <〉〉Γ
= −〈∇q, D�〉 + 〈〈[[q]], D�̃〉〉Γ for all q ∈ V2

ℎ, (8.16)

where we used that q ∈ V2
ℎ
=⇒ ∇q ∈ V1,−

ℎ
and q| 5 ∈ )( 5 ), following standard

calculations defining the commuting projection. Hence we obtain (7.61) with <
defined as above, and so �C +∇ ·< = 0 in !2. We then aim to construct our scheme
to have the form (8.10), with the property that @ = 1 =⇒ @∗ = 1. Then, if @ = 1,
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we have

〈W, �@C〉 = −〈W, �C〉 + 〈∇q, <〉
= −〈W, �C + ∇ · <〉 = 0 for all W ∈ V0

ℎ . (8.17)

In other words, we have that @ constant implies that @ stays constant. Both Thuburn
and Cotter (2015) and Shipton et al. (2018) implemented this approach in a semi-
implicit framework bywriting the time-stepping scheme as a fixed number of Picard
iterations, taking care to show that the properties above are enforced at each Picard
iteration.

8.5. Consistent potential vorticity transport with boundaries

Earlier we discussed the extension in Bauer and Cotter (2018) of the scheme of
McRae and Cotter (2014) to the case of the presence of boundaries. This extension
also solves the problem of how to obtain a scheme with a consistent discretization
for the implied potential vorticity equation in that case, including the use of SUPG
stabilization there. Taking the time derivative of (7.88) gives

〈W, (@�)C〉 =
〈
W, /̊C + / ′C

〉
=

〈
%̊1
ℎW, /̊C

〉
+

〈
%̊⊥0 W, /

′
C

〉
=

〈
∇⊥%̊1

ℎW, DC
〉
+

〈
%̊⊥0 W, /

′
C

〉
= −

〈
∇⊥%̊1

ℎW, @<
⊥〉 − 〈

∇%̊⊥0 W, @<
〉

= −〈∇W, @<〉 for all W ∈ V0
ℎ, (8.18)

as required. Similarly, the equations can be modified so that @ is replaced by @∗,
the SUPG modified potential vorticity, to obtain a consistent SUPG stabilized dia-
gnostic potential vorticity equation (but we do not discuss it here). The existence of
this implied potential vorticity equation actually also provides a useful equivalent
formulation that avoids explicit computation of / ′ (which is in the rather cumber-
some space %̊⊥0 , which is not efficient to compute with). Rather than separately
incrementing / ′, we can redundantly increment @ on the whole domain, solving

〈F, DC〉 + 〈@F, <⊥〉 −
〈
∇ · F, 1

2
|D |2 + 6(� + 1)

〉
= 0 for all F ∈ V̊1

ℎ, (8.19)

〈q, �C〉 + 〈∇ · <〉 = 0 for all q ∈ V2
ℎ, (8.20)

〈W, (@�)C〉 + 〈∇W, @<〉 = 0 for all W ∈ V0
ℎ, (8.21)

having initialized @ from (7.54). This provides a computationally feasible technique
for a scheme with consistent potential vorticity dynamics (and indeed a scheme that
conserves energy and even enstrophy if the SUPG form is not used). In a practical
implementation, if errors from round-off or truncated numerical solvers cause @
and D to diverge from

〈W, @�〉 + 〈∇⊥W, D〉 − 〈W, 5 〉 = 0 for all W ∈ V̊0
ℎ (8.22)
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at any point, then we may replace @ ← @′ + @, where @′ ∈ V̊0
ℎ
satisfies

〈W(@′ + @)�〉 + 〈∇⊥W, D〉 − 〈W, 5 〉 = 0 for all W ∈ V̊0
ℎ . (8.23)

This is equivalent to solving for the new @ from (7.54) with Dirichlet boundary
condition obtained from the old @.

8.6. Consistent vorticity transport in three dimensions

Following a similar route, we can show that (7.128)–(7.134) have a consistent
discretization of vorticity transport. Initially, to see this, assume that there are no
boundaries. Then we choose F = ∇ × Σ in (7.134) with Σ ∈ W1

ℎ
. This gives

〈Σ, lC〉 + 〈∇ × Σ, l × <〉 −
〈
∇ × Σ, B

�
∇\

〉
= 0 for all Σ ∈ W2

ℎ, (8.24)

where either B = 2?�Π or B = X�/X\, depending on whether or not the Poisson
bracket formulation is used. Equation (8.24) is an integral form of the vorticity
equation

lC + ∇ × (l × <) + ∇
(
B

�

)
× ∇\ = 0. (8.25)

The last term on the left-hand side of (8.25) is known as the baroclinic torque. If
we dot (8.25) with ∇\ and use (5.18), we obtain the potential vorticity conservation
law

(�@)C + ∇ · (@<) = 0, (8.26)

where @ is the Ertel potential vorticity

@ =
l · ∇\
�

. (8.27)

It would be wonderful to have a discretization that has a consistent conservation of
Ertel’s potential vorticity, in the manner of this section. This could be done if one
could choose test functions Σ = k∇\ in (8.24) with k ∈ W0

ℎ
, with \ also satisfying

an exact advection equation \C +D ·∇\ = 0 in !2. Neither of these properties appear
to be possible in the present framework, and this remains a challenging unsolved
problem. What is possible, if \ ∈ W0

ℎ
, is to obtain conservation of total potential

vorticity,

d
dC

∫
Ω

�@ dG =
d
dC
〈∇\, l〉

= 〈∇\C , l〉 + 〈∇\, lC〉
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= −〈\C , X1l︸︷︷︸
= X1 X2D=0

〉 + 〈∇\, lC〉

= −
〈
∇ × ∇\︸  ︷︷  ︸
= 0

, l × < − B

�
∇\

〉
, (8.28)

upon choosing Σ = ∇\. Note that this also works for any quantity ∇k for k ∈ W0
ℎ
,

dynamical or not.
Returning to the conservation of vorticity in (8.24), we can develop upwind

stabilizations of the vorticity equation using a residual-based approach (similar to
that of Bendall and Wimmer (2023)) by replacing

〈∇ × Σ, l × <〉 ↦→ 〈∇ × Σ, l∗ × <〉, (8.29)

where

l∗ = l − g
(
lC + ∇ × (l × <) + ∇

(
B

�

)
× ∇\

)
, (8.30)

for a stabilization parameter g.
This approach can also be extended to the case of domains with boundaries,

which of course is important for atmosphere models that have a top and bottom
surface, where we assume that the boundary condition is D · = = 0. This requires
that D ∈ W̊2

ℎ
, and we have a difficulty similar to that for the shallow water equations

with defining vorticity, since a consistent approximation requires

〈Σ, l〉 = 〈Σ, 2Ω〉 − 〈∇ × Σ, D〉 + 〈〈= × Σ, D〉〉 for all Σ ∈ W1
ℎ, (8.31)

and l ∈ W1
ℎ
, not W̊1

ℎ
. We have the same solution to the difficulty, which is

to introduce the space (W̊1
ℎ
)⊥, the !2 complement of W̊1

ℎ
in W1

ℎ
, and writing

l = l′ + l̊, with l′ ∈ W̊1
ℎ
and l̊ ∈ W̊1

ℎ
. Then l′ has its own dynamics defined by

〈Σ, l′C〉 + 〈∇ × Σ, l × <〉 −
〈
∇ × Σ, 1

�
B∇\

〉
= 0 for all Σ′ ∈ (W1

ℎ)⊥. (8.32)

In the Poisson bracket setting, the bracket (7.121) is then extended as

{�, �} = · · · +
〈
∇ × X�

Xl′
, l × X�

XD
− 1
�

X�

X\
∇\

〉
−

〈
∇ × X�

Xl′
, l × X�

XD
− 1
�

X�

X\
∇\

〉
. (8.33)

Similar calculations to those in Sections 7.6 and 8.5 then lead from this Poisson
bracket to (8.24). Further, just as in Sections 7.6 and 8.5, solving the resulting
equation set is equivalent to solving (8.24) in place of (8.31). This type of scheme
is as yet not explored in numerical computations.
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9. Structure preserving schemes on non-affine meshes
The interpretation of the compatible finite element discrete de Rham complexes
and the finite element exterior calculus (FEEC) is well known. Arnold, Falk and
Winther (2006, 2010) and Arnold (2018) provided a comprehensive unifying treat-
ment of the stability and error analysis of numerical approximations of the Hodge
Laplacian, which is now finding applications in the design of stable discretizations
for the Stokes equation and in elasticity. In applications to geophysical fluid dy-
namics, one of the main applications of finite element exterior calculus has been in
establishing a clean separation between topological and geometric aspects of the
formulation. In particular, when non-affine meshes are used, at first sight it seems
that it is not possible to perform exact integration when assembling the discrete
operators on a computer, because the integrands are non-polynomial. For example,
when a function D ∈ V1

ℎ
is transformed back to a reference cell, a contravariant

Piola transform must be used, so it will take the form �−>D̂/det(�), where � is
the Jacobian of the transformation from the reference cell to the mesh cell. � is
non-constant for non-affine meshes, so 1/det(�) is non-polynomial. In general, this
creates potential problems because we rely on clean separation in the Helmholtz
decomposition of V1

ℎ
between divergence-free and rotational components to ob-

tain good long-time behaviour for all methods (not just structure preserving ones).
These types of errors have the potential to break structure preserving properties of
all the schemes discussed in this section. However, all is not lost, because many
of the terms in our fluid dynamics equations result in cancellation of geometric
factors (factors involving � when the equations are transformed back to the refer-
ence cell). This cancellation of geometric factors can be derived using standard
vector calculus, but they are most transparently established under the invariance
of various operations involving differential forms under pullback (wedge product,
exterior derivative, etc.). In fact, the author of this review only became aware of the
possibility of some of them after computing with the differential form formulations.
In particular, we have the following formulae:∫

 ̂

q̂D̂ · F̂⊥ dG =
∫
 

qD · F⊥ dG, (9.1)∫
 ̂

q̂∇ · F̂ dG =
∫
 

q∇ · F dG, (9.2)∫
5̂

q̂D̂ · =̂ d( =
∫
5

qD · = d(, (9.3)

where 6 :  ̂ →  is the mapping from reference cell  ̂ to a mesh cell  , 5̂ is a
facet of cell  ̂ with normal =̂, 5 is the image of 5̂ under 6 with normal =, and

q̂ = q ◦ 6, �F̂

det(�)
= F ◦ 6, �D̂

det(�)
= D ◦ 6. (9.4)
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Following computations in Thuburn and Cotter (2012) for the finite difference
case (interpreted as discrete exterior calculus (DEC)), Cotter and Thuburn (2014)
presented a finite element exterior calculus formulation in the setting of the family
of methods related to McRae and Cotter (2014). Relevant to the discussion of
this section, they noted the existence of these Jacobian-free pullback formulae as
derived from the properties of pullbacks of differential forms. Eldred and Bauer
(2022) provided further insight into this family of DEC and FEEC schemes for
rotating shallow water equations. They noted that a special case of the Leibniz rule
for the wedge product, in which one of the two terms is a constant, is underpinning
the presence of an implied conserved potential vorticity as described in Section 8,
and hence the conservation of total vorticity and potential vorticity for associated
Poisson bracket schemes.
In the context of the Poisson bracket formulation for rotating shallow water

equations, the pullback formulae (9.1)–(9.3) can be used to maintain a structure
preserving formulation. This is achieved by replacing the !2 inner product with a
quadrature rule,

〈q, ?〉@ =
∑
8

q(G8)@(G8)F8 , (9.5)

and similarly for vector-valued functions. In practice, this quadrature is defined
cellwise as usual, as the image of quadrature points on the reference cell  ̂ under the
map 6. This incomplete quadrature causes a ‘variational crime’, and then analysis
is required to demonstrate whether the convergence rate is affected; a minimal con-
dition is that it still satisfies the definition of an inner product on the relevant finite
element spaces. This modification produces a modified Helmholtz decomposition,

V1
ℎ = �

1
ℎ ⊕ h̃

1
ℎ ⊕ (�̃∗)1

ℎ, (9.6)

where h̃:
ℎ
and (�̃∗):

ℎ
are modified spaces constructed using X̃: , the dual operator

defined using the modified inner product, that is,〈
q, X̃:ℎD

〉
@
= −

〈
3:+1q, D

〉
@
. (9.7)

It also produces a modified definition of the variational derivative,〈
X�

XD
, E

〉
@

= lim
n→0

1
n

(� [D + nE] − � [D]). (9.8)

However, we maintain the usual !2 inner product in (7.39), since all of the terms
in the bracket have polynomial integrands when transformed back to the reference
cell, and hence can be evaluated exactly. Further, the integrands in (7.54) can also
be integrated exactly for similar reasons. If we assume that the modified inner
product is exact for these terms as well (it just needs to be a sufficiently high-order
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Gaussian quadrature), then the formulation (7.60)–(7.63) is still energy–enstrophy
preserving by the above arguments. This modification of the inner product can
be extended to more complicated formulations involving temperature and in three
dimensions.

10. Summary and outlook
In this survey we have introduced the application of compatible finite element
methods to the world of geophysical fluid dynamics, with applications to oceans,
weather and climate. We have introduced themain properties of the spaces and their
application to understanding the discrete wave propagation properties when they
are used for linearized models. We have discussed how to build compatible finite
element methods for nonlinear models, focusing on the transport and pressure
gradient terms; we have also discussed the approach to solving the linear and
nonlinear systems that arise from certain time-stepping schemes. Then we have
surveyed the use of compatible finite element methods in structure preserving
methods: variational integrators, Poisson integrators and schemes with consistent
potential vorticity transport. There is much more work to be done in the analysis
of all of these schemes, considering stability, convergence of solutions, and mesh
independence of preconditioners, etc. There are also plenty of research directions
in finding practical approaches that incorporate as much of the structure preserving
properties as possible. The finite element exterior calculus continues to be an
important guiding principle for designing compatible finite element methods for
geophysical fluid dynamics. It should prove a useful tool for the rigorous analysis of
stability of these methods for fully nonlinear systems, where only limited progress
has been made so far. The author looks forward to many fruitful collaborations on
compatible finite element methods for geophysical fluid dynamics in the future.
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