
8 
Group integration 

Wilson's use of the invariant measure in his definition of lattice gauge 
theory lends a flair of mathematical elegance to the subject. This measure 
is essential to the simplicity of the gauge symmetries in the cutoff theory. 
In this chapter we review some general properties of invariant integrals 
over compact Lie groups. We will explicitly display the measure for some 
simple cases and then discuss integrals over polynomials of SU(n) matrices. 

To begin, we must have the basic properties of any integral 

f dg (af(g) + bh(g» = a f dgf(g)+b f dg h(g), (8.1) 

f dgf(g) > 0 whenever f(g) > 0 for all g. (8.2) 

Here f and h are arbitrary functions over the group and a and bare 
arbitrary complex numbers. We now impose the additional constraint that 
the measure be left-invariant 

f dgf(g) = f dgf(g'g), (8.3) 

where g' is an arbitrary fixed element of the group. In an ordinary integral, 
this corresponds to a shift of the integration variable. As we will only be 
considering compact groups, we can normalize the measure such that 

(8.4) 

We will now show that this measure exists and is unique. We do this by 
first finding an expression for it under the assumption of its existence, and 
then we will show that this expression works. 

To begin, we consider an arbitrary parametrization of the group 
elements in terms of a set of parameters (Xi where the index i runs from 
one to n, the dimension of the group manifold. We assume that as the 
parameters (X run over some domain D of Rn, the corresponding group 
element runs once over the group 

G = {g(<x)I<XED}. (8.5) 
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40 Quarks, gluons and lattices 

The group multiplication is represented by a function a(f3, 1') satisfying 

g(a(f3,y» = g(f3)g(y), (8.6) 

where a,f3, and l' all reside in D. We now wish to find a weight J(a) such 
that the group integral is an ordinary n-dimensional integral 

f dgf(g) = f da1 •.. dan J(a)f(g(a». (8.7) 

The integral on the right hand side of this equation is over the domain D. 
Writing the group invariance property in this notation gives 

f df3J(f3)f(g(f3» = f df3J(f3)f(g(a(y, 13»), (8.8) 

where I' parametrizes the factor g' in eq. (8.3). We now change variables 
to a(y, 13) with the result 

f df3J(f3)f(g(f3» = f dall ~; 11-1 J(f3)f(g(a», (8.9) 

where II oa/of3ll represents the Jacobian determinant for the change of 
variables. Since this is true for arbitrary J, we conclude 

J(a) = Iloa/of3ll-1 J(f3). (8.10) 

Taking 13 to the identity, denoted bye, we find 

J(y) = K II o(a(f3, 1'»/013 II-lip = e' (8.11) 

where K = J(e) is a normalization factor, determined in magnitUde with 
eq. (8.4). Thus the group measure is simply a Jacobian factor. It represents 
the shift of a small standard volume from near the identity to any point 
in the group. 

If an invariant measure exists, eq. (8.11) is an expression for it. We must 
now show that this formula works. In particular, eq. (8.10) must be true 
for all 13. We need to show that 

J(a(f3, 1'» = K II o(a(o, a(f3, 1'»)/00 II i'! e (8.12) 
is equal to 

II oa(f3,1')/of3 II J(f3) = KIIOa~Y)rllloa~f3)l[e (8.13) 

For this we need associativity, which implies 

a(o,a(f3,1'» = a(a(o,f3), 1'). (8.14) 

Differentiating with respect to ° gives 

II oa(o, ~~f3, 1'»11 = II oa~ Y)ll p = ~(6,P> II oa~if3) II· (8.15) 

Setting ° to the identity gives the desired result. 
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Barring a singular parametrization of the group, this analysis proves 
existence and uniqueness of the measure and provides a formal expression 
for it. We now show that the right- and left-invariant measures are the 
same. Clearly a modification of the above arguments will produce a 
measure which is right-invariant 

f(dg)rf(g) = f(dg)rf(ggl). (8.16) 

Suppose we now define 

f(dg),f(g) = f(dg)rf(goggol), (8.17) 

where go is some arbitrary fixed element of the group. This new measure 
satisfies 

f (dg)' f(ggl) = f (dg)rf(goggolgl) 

= f(dg)rf(goggol) = f(dg),f(g), (8.18) 

where we have used the right-invariance of (dg)r. Thus (dg)' is also 
right-invariant. Uniqueness implies (dg)' = (dg)r. But now we can use 
right-invariance again in eq. (8.17) to obtain 

f(dg)rf(g) = f(dg)rf(goggol) = f(dg)rf(gog). (8.19) 

We conclude that the right measure is also left-invariant and, by uniqueness, 
the measures must be equal. Note that we have used compactness in a 
rather subtle way. If the integration measures cannot be normalized as in 
eq. (8.3), the various measures discussed here may differ by constant 
factors. 

We note in passing that 

f dgf(g-l) = f dgf(g)· (8.20) 

This follows because the left hand side defines another invariant measure 
which, by uniqueness, must equal the right hand side. In lattice gauge 
theory, the directions of the bonds do not enter in the measure. 

Knowing of its existence may not be useful if the group combination 
law is complicated. A somewhat more explicit formula for the measure for 
groups of matrices follows from the definition of a metric tensor on the 
group 

Mij = Tr(g-l(oig)g-l(Ojg», (8.21 ) 

where the derivatives are with respect to the parameters ai 

(8.22) 
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42 Quarks, gluons and lattices 

In terms of this metric, the invariant measure is 

f dgf(g) = K fda 1 det (M) 11f(g(a», (8.23) 

where the factor of K is again a normalization. This is a standard formula 
of differential geometry. 

We now give some simple examples. For a discrete group the measure 
is an ordinary sum over the elements. For the group U(1) ofrelevance to 
electrodynamics 

the measure is 

U(1) = {eiO 1-1T < 8 ~ 1T} 

f dgf(g) = 2~ J:" d8f(ei O). 

(8.24) 

(8.25) 

Functions over the group are periodic functions of the angle 8. Group­
invariance is under shifts of phase. 

For SU(2) we can parametrize the elements as the surface of a 
four-dimensional sphere (S3) 

SU(2) = {ao+ia·tTla~+a2 = I}. (8.26) 

The matrices tT are the Pauli matrices used in chapter 5 when we discussed 
fermions. With this parametrization the group measure assumes a parti­
cularly simple form 

f dgf(g) = 1T-2 f d4a3(a2 - 1 )f(g)· (8.27) 

Here we use the shorthand notation 

a2 = a~+a·a. (8.28) 

For SU(3) we refer the reader to the discussion by Beg and Ruegg (1965). 
For many purposes an explicit form for the measure is unnecessary. In 

Monte Carlo simulations, to be discussed later, certain algorithms move 
randomly around in the group in a uniform manner and automatically 
generate the correct measure. For analytic work, many integrals can often 
be done using symmetry arguments. For example, the expression 

(8.29) 

will vanish if Ra.p is a non-trivial irreducible matrix representation of the 
group. A group integral selects the singlet part of any function over the 
group. In particular, we have the relation 

f dg XR,(g) ... XRk(g) = nS(Rl ® ... ® Rk ), (8.30) 

where the character XR(g) denotes the trace of the matrix corresponding 
to g in representation R, and nS(Rl ... Rk ) is the number of times the singlet 
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representation occurs in the direct product of the representations Rl to Rk • 

If Rand R' are irreducible, we have the orthogonality of the characters 

f dg x1?(g) XR,(g) = 8 R. R" (8.31) 

For SU(3) we have the integral 

f dg <Xa(g»a = 1. (8.32) 

For the strong coupling expansion we will need integrals of polynomials 
of the group elements in the fundamental representation. We now turn to 
a set of graphical rules for the evaluation of such integrals with the groups 
SU(n) (Creutz, 1978b). We are interested in expressions of the form 

1= f dg g'.il ... gtni"g"k:ll ... g"k~ 1m' (8.33) 

where we explicitly indicate the matrix indices on the group elements. It 
is useful to introduce a generating function for these integrals 

W(J,K) = f dgexp (Tr (Jg+ Kg-I». (8.34) 

Here J and K are arbitrary n-by-n matrices. To obtain the integral in eq. 
(8.33), we take derivatives of this generating function 

I=(o} '''OKo ) W(J,K)IJ_K_O' (8.35) 
h'l lmkm 

Invariance of the group measure gives W the symmetry properties 

W(J,K) = W(K,J) = W(g(j-1Jg1,gllKgO)' (8.36) 

where go and gl are arbitrary SU(n) matrices. 
The generating function satisfies an interesting system of differential 

equations. Since gg-l = I, we have 

(OjOKtk) (ojoJkj) W(J, K) = 8ij . (8.37) 

And since the determinant of an SU(n) matrix is unity, we have 

det(ojoJ) W(J,K) = 1. (8.38) 

Along with the initial condition 

W(O, 0) = 1, (8.39) 

these differential equations are sufficient to determine W. Several authors 
have studied these equations in the large n limit (Brower and Nauenberg, 
1980; Bars, 1981). We will solve them iteratively in powers of J and K and 
give a graphical algorithm for evaluating the coefficients in this expansion. 
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We first eliminate the K dependence in W using the expression for g-1 
in terms of the cofactors of g 

(g-I)ii = (cof(g»/i 

= (lj(n-I)!)6j. i, .... i n_, 6i.h .... i n-, gi,h ... gin-,in-,' (8.40) 

where 6 denotes the totally anti symmetric tensor with 6 1 ... n = I. This allows 
us to solve eq. (8.37), replacing derivatives with respect to Kby derivatives 
with respect to J 

W(J,K) = exp (Tr (Kcof(ojOJ») W(J), (8.41) 

where W(J) = W(J, K = 0) = f dg exp (Tr (Jg». (8.42) 

To evaluate W(J) we use the invariance of eq. (8.36), which now reads 

W(J) = W(gOIJg1). (8.43) 

In an appendix of Creutz (1978a) it is proven that any analytic function 
of J satisfying this symmetry property is a function only of the determinant 
of J. Thus we expand 00 

W(J) = 1: ai(detJ)i. (8.44) 
i-o 

Normalization of the integration measure implies 

ao = I. (8.45) 

A recursion relation determining further at follows from the second 
differential equation, eq. (8.38). A tedious combinatoric exercise (Creutz, 

1978b) shows (i+n-l)' 
(det(ojoJ»(detJ)i = (i-I)! . (detJ)i-l. (8.46) 

From eqs (8.38), (8.44) and (8.46) we find 

(i-I)! 
ai = (i+n-I)! ai-I' 

With eq. (8.45), this is solved to give 

2!3! ... (n-I)! 
at = "(' I)' (. I)" l. 1+ . '" I+n- . 

Our final power series expression for W(J) is 

W(J) = ~ }!. .. ,<n-I)! , (detJ)i. 
i-O l. ... (l+n-I). 

(8.47) 

(8.48) 

(8.49) 

Note that the determinant of a matrix is simply expressed in terms of the 
anti symmetric tensor 6 

detJ= (ljn!)6i, ... in6h ... inJi,h ... Jinin' (8.50) 

A graphical notation is useful for carrying out the derivatives in eq. 
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(8.35). We use directed line segments to denote group elements. In figure 
8.1 we illustrate the convention of upward directed lines representing 
factors of g while downward lines represent g-l. The ends of these line 
segments carry as labels the matrix indices of the respective elements. The 
line direction runs from the first to the second index, as shown in the figure. 
In figure 8.2 we show how the generic integral from eq. (8.33) appears in 
this notation. 

Fig. 8.1. Graphical representation of g and g-1 (Creutz, 1978b). 

I r· · · n· · · t 
Fig. 8.2. The generic integral under consideration (Creutz, 1978b). 

(a) 6ii j 

i2 

i~~ il~in (b) €;, ... in 
n • • • 'I 

Fig. 8.3. Representation of (a) the Kronecker symbol and (b) the antisymmetric 
tensor (Creutz, 1978b). 

We represent the Kronecker delta symbol 8ij with an undirected line 
connecting the indices i andj, as shown in figure 8.3a. The anti symmetric 
epsilon symbol ei1 •.• i n appears as a vertex joining n lines from the indices 
il to in. As the order of these lines is important, we attach to the vertex 
an arrow running from the first to the last index, as shown in figure 8.3b. 
Finally, whenever two line segments are connected, a matrix product is 
understood; i.e., the indices associated with the connected ends are 
summed over. 
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In the evaluation of group integrals, products of 6 symbols often occur. 
Some useful identities involving such products are: 

6i, ... in 6i, ... in = n!, 

6·· . 6ji . =(n-l)'o .. t, t} ... tn_l ,1 ... "n-1 . "'1' 

6i,j, i, ... i n_2 6k, I, i, ... i n_2 = (n - 2)! (Oik Ojl-Oil Ojk)' 

In our graphical notation these relations appear in figure 8.4. 

n! 

(n - I)! 

(8.51) 

(8.52) 

(8.53) 

(n - 2)! (::::< ->( ) 
Fig. 8.4. Some combinatoric identities (Creutz, 1978b). 

Fig. 8.5. Replacing g-l with the cofactors of g (Creutz, 1978b). 

Evaluation of a group integral consists of a replacement of the directed 
lines in figure 8.2 with vertices and undirected lines, thus expressing the 
result in terms of anti symmetric 6 and Kronecker 0 symbols. The first step 
in this procedure is to convert all directed lines into a set of lines directed 
only upward. This is accomplished using eq. (8.40), which is shown 
graphically in figure 8.5. If there were initially more downward than 
upward lines, it would be simplest to first use eq. (8.20), which says that 
the arrows on all lines can be simultaneously reversed. Once all lines have 
the same orientation, we use eqs (8.49) and (8.50) to reduce the integral 
to a sum of terms involving antisymmetric tensors. Note that the integral 
automatically vanishes unless the number of group lines is a multiple of n. 
Supposing we have np lines, where p is an integer, we display eq. (8.49) 
graphically in figure 8.6. The indicated sum over permutations is over all 
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topologically distinct ways of connecting the group indices to pairs of 
vertices. The factor in· the figure already includes permutations of indices 
coupled to the same vertex pair and permutations of the vertex pairs. The 
resulting sum has (np)!/(p!(n!)P) terms. 

Certain identities on the group elements have a simple graphical 
representation. For example, invariance of the Kronecker symbol 

gij8ik(g-1)kl = 8u, (8.54) 

2! 3! ••• (n - I)! ( H···t r (p+ I)! ••• (p+n -I)! 

+ permutations 

Fig. 8.6. Evaluation of the integral (Creutz, I 978b). 

(b) 

(a) n 
rH 

n 

Fig. 8.7. Invariance of the (a) Kronecker symbol and (b) antisymmetric tensor 
(Creutz, 1978b). 

is shown in figure 8.7a. In terms of the sources J and K, this figure 
corresponds to eq. (8.37). Invariance of the antisymmetric symbol 

giIi, ... gi"i,/'i, ... i" = 6" ... i,,' (8.55) 
is shown in figure 8.7h. Contracting the indices with an additional 6 symbol 
gives the graphical representation of eq. (8.38). Both the identities 
represented in figure 8.7 are valid regardless of any other lines present in 
the diagram. 

We conclude this chapter with some simple examples to illustrate these 
rules. First consider p = 1 in figure 8.6. This immediately gives 

f dg gi,J. ... gi"i" = (1 In!) 6i, ... i" 6J. ... i,,· (8.56) 

In low-order strong coupling expansions a useful integral is 

Iiikl = f dg gii (g-l)kl· (8.57) 
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This is evaluated graphically in figure 8.8 Here we first use figure 8.5 to 
direct all lines upwards, then we use figure 8.6 to eliminate these lines, and 
finally we use the identity from figure 8.4 to obtain the result 

[tjkl = (l/n) Itjk Itu. (8.58) 

As a final example consider 

[= f dg gtj (g-l)klgmn(g-l)pq' (8.59) 

f t 
n! (n - I)! 

Fig. 8.8. Evaluation of the integral J dg glj gil (Creutz, 1978b). 

+ b + 

Fig. 8.9. The integral J dgg,jgil gmng;~ (Creutz, 1978b). 

In figure 8.9 we use figure 8.5 to express [ in terms of 2n upward lines. 
Use of figure 8.6 at this point would give an expression with (2n)!/(2!n!2) 

terms. Some simple tricks allow us to simplify this expression for general 
n. All terms in this sum have four, an even number, of e vertices both at 
the top and at the bottom of the diagram. These can all be eliminated using 
identities similar to those in figure 8.4. Thus the result must finally appear 
in terms of sets of Kronecker It symbols connecting separately indices at 
the top and bottom of the diagram. Furthermore, note that a Kronecker 
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8 cannot connect the indices i and m or j and n because they can be 
initially coupled only through an odd number of € vertices. Thus the final 
expression for the integral must take the form 

1= a(oil Omq Ojk onp + 0iq 0mlOjp 0nk) 

+ b(OilOmq Ojp Onk + 0iq 0mlOjk 0np), (8.60) 

where only two independent coefficients are needed because of the kl ~ pq 
symmetry of the integrand. The coefficients a and b can now be determined 
by multiplying by Ojk and using figure 8.7a to reduce the integral to that 

a (~ 
+ b ( 

0 

~ 

+ 

+ 

n 

) 

(~) 
Fig. 8.10. Evaluation of the coefficients a and b. The closed circles represent 

~i OJ; = n (Creutz, 1978b). 

already evaluated in figure 8.8. This sequence of steps appears in figure 
8.10 and leads to the conclusion 

a= 1/(n2-1), 

b = -1/(n(n2-1». (8.61 ) 

Inserted into eq. (8.60), this gives the desired integral. 

Problems 

1. Show that for 2-by-2 matrices det (A) = t«Tr A)2 - Tr (A2». What is 
the corresponding formula for 3-by-3 matrices? 

2. For SU(n) evaluate f dgTr(gn). 
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3. Show that for irreducible representations Rand R' 

f dg X~(g) XR,(gtg) = dil8RR' XR(gt)' 

where dR is the dimension of the matrices in the representation. 
4. Prove eq. (8.23). 
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