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THE SATURATION OF A PRODUCT OF IDEALS
STANLEY WAGON

In this note we discuss how the saturation of I X J, where I, J are k-com-
plete ideals on a regular uncountable cardinal , depends on the saturation of
I and J. We show that if 2% = «* then the saturation of I X J is completely
determined by the saturation of I and J. A consequence of a negative satura-
tion result is that NS, X NS, is not kT-saturated, where NS, is the non-
stationary ideal on « (even though it is still open whether NS, can be x*-
saturated). We also discuss the preservation of precipitousness under certain
products, obtaining a simple example of an ideal on x that is precipitous but
not xt-saturated.

1. Preliminaries. Let « denote a regular uncountable cardinal. By an
ideal on k we mean a k-complete, non-principal, proper ideal on k, i.e., a collec-
tion I € B(k) such that {a} € Tfora <k, « ¢ I,if A C B € I then 4 € I,
and if 8 <k and A, € I for a < B then U{d,:a < B} € I. I* denotes
{k — A:4 € I} and It denotes {4 C x:4 ¢ I}.

If A C « then [4] = {B C «: the symmetric difference of 4 and B is in I};
B (x)/I denotes {{4]:4 C «}. A collection I of sets in [T is called an «lmost
disjoint family for I (adf for I) if A M B € I whenever 4, B € A and 4 # B.
An ideal I is called \-saturated, N a cardinal, if whenever 9 is an adf for I then
[A| < N\. We let sat I denote the least X such that I is M\-saturated.

Note that sat I < (2%)tif I is an ideal on «. The saturation of an ideal was
first defined by Tarski [6], who proved that sat [ is always a regular cardinal.
The saturation of an ideal I provides a measure of how close I* is to being an
ultrafilter.

If I, J are ideals on «, we may define the product ideal I X J on « X k by
setting 4 € I X Jifja < k:dw € J*} € Iwhere A = {8 < k:(a, B) € A}.
It is well-known that if I, J are 2-saturated i.e., prime (an ideal I is prime if
and only if I* is a measure ultrafilter) then so is I X J. Theorem 1 generalizes
this by showing that sat I X J = max {sat /, sat J} whenever sat / < «* and
sat J < k. In the other direction, Theorem 2 shows that satl X J > «*
whenever sat J > k. These results are motivated, in part, by a paper of
Kakuda [3], where the preservation of saturation under certain forcing exten-
sions is studied.

2. Products which are saturated. In this section we describe a situation
where the saturation of a product is as small as it can be. The following theorem
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is well-known when sat I < «, in which case it follows easily from a result of
Silver (see [4, Theorem 1.45]).

THEOREM 1. If I, J are ideals on «, sat I = p =< ¢+, and sat J = N < «, then
sat I X J = v = max {u, M.

Proof. It is easy to see that sat I X J = ». For the reverse inequality we
shall use the method of generic ultrapowers introduced by Solovay [5] (see
also [2]). If G is P (k)/I-generic over the universe 1” then, in V[G], we may use
G to form an ultrapower, Ult (1, G), of 17 which we denote by 1”. (Strictly
speaking, such G does not exist. However, for ease of exposition, we use this
approach to generic sets rather than considering a Boolean-valued universe,
which would be more precise.) 1" consists of Scott equivalence classes (in-
duced by G) of functions f in " such that f:x — V; let [ f ] denote the equiv-
alence class of f. That 1” is well-founded follows from the «*-saturation of I.
As in the usual ultrapower construction, there is, in 1/[G], an elementary
embedding 7: 17— 1”" such that « is the first ordinal moved by 1.

Now, suppose, to get a contradiction, that {A4,:a < »} is an adf for I X J.
Define fo ik — P(x), fora < v, by fo(v) = Aa(,- Then | [ fo] € i(k), where
P = B(x)/I. We claim that |}, V'EIB < vWa > B | fo € 1(J). For if not
then, since v is regular, there is some p in P, p # 0, such that

p 1l V' E there is a v-sized adf for i(J).

Since N £ v, this contradicts the fact that | |-p 1 £ (/) is7(\) = \-saturated.

Now, use the claim to choose { V516 < u'}, {85:6 < '} such that { V;:6 < p'}
is a maximal adf for I and [V5] | |85 is the least 8 < » such that [ f,] € ¢(J)
for all B £« <». Then u < p and so, since » is regular and » = u, 8 =
sup {8518 < u'} < »v. But then |5 [ fs] € 4(J), which implies (by the funda-
mental theorem on ultrapowers in this context) that {y < k:fg(y) € J} € I*.
Since this means that {y < «: 4., € J*} € I, we have that 4s € I X J, a
contradiction.

In the case sat I = «, the following version of Silver's lemma referred to
earlier is true (proved independently by A. Taylor and the referee), and this
gives a simpler proof of the theorem above. Namely, if [ is a x-saturated ideal
on k, N < k, and {A,:a <k} C I then there is some ¥ C « with |V]| = A\
and N{Aq.:a € YV} 5 0. It is not as clear how to proceed in case sat I = «t,
but one can obtain a combinatorial proof based on the above metamathema-
tical proof.

It is easy to see that if J is prime then sat I X J = sat I, with no restriction
on I. However, it will follow from Theorem 2 that it is not necessarily true
that sat I X J = sat J when [ is prime.

3. Products which are not saturated. We now show that if J is mildly

unsaturated then I X J is badly unsaturated. We need the following lemma,
most of which is well-known.
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LEMMA. (a) If ks regular there are go & — k for a < k* such thatif a < 8 < k*
then |1E < :2.(8) = gD} < .

(b) If x 1s a regular limit (1.e., weakly tnaccessible) cardinal then there are g
as in (a) such that, in addition, g.(£) < |¢|*.

(c) If « 1is strongly inaccessible there are goix — & for a < 2% such that if
a < B < ktthen [1E < kiga(E) = go(E)}] < kand ga(f) < 215

Proof. We first prove (b); the proof of (a) is similar. Define g, by induction
on a, letting go be identically 0. Suppose g, has been defined for a < 3, and
g (£) < [g|*. Let h:f — & be one-one and, for ¢ < «, let gg(¢) be such that
gs(&) < |g|F and gs(¢) > ga(§) for each a such that k(a) < & This is possible
since {g,(£) 1h(a) < &} has size at most |¢| and so is not cofinal in [¢|*. It is
easy to see that this construction produces the sequence of functions as
required.

The proof of (c) is essentially the standard proof that, for a strongly inac-
cessible k, there are 2% k-sized subsets of x with pairwise intersections having
size less than «. Let 7" be the full binary tree with ¥ many levels. Since « is
strongly inaccessible this tree has « nodes and, in fact, one can label these
nodes with ordinals less than « so that if a node has level v, then its label is
less than 2171, Now, each of the 2% paths through 7" of length « induces a func-
tion from « to x and the collection of such functions satisfies the conditions of
the lemma.

THEOREM 2. If I, J are ideuls on k such that sat J = « then sat I X J > «*.
If, in addition, « 1s strongly inaccessible, then sat I X J = (2%)*.

Proof. First, suppose k is a successor cardinal. Then, by a theorem of
Ulam [8], sat J > « and so there is { B(y):v < «} which is an adf for J. Now,
for a < «* let

‘4[, = {(‘Ev 6):5 GL B(‘a’a(&))},

where the g, are as in (a) of the lemma. Then {4, :a < «*} isan adf for I X J.
If x is a limit cardinal then let {g,:a < «*} be as in (b) of the lemma. For each
B <k, let {B(B,8):6 < |B|*} be an adf for J; such exists because J is not
|8 t-saturated. Define 4, for @ < «* by

Aa = {(Ev 6):6 G B(Ev ga(é))}

Then {4,:a < «*} isan adf for I X J. The strongly inaccessible case is similar
to the previous case, using the functions {g,:a < 2*} of part (c) of the lemma.

It is easy to modify this proof slightly and obtain that if J is nowhere
N-saturated for any N < « then I X J is nowhere «*-saturated. (/ is nowhere
A-saturated if sat I|4 > Noreach 4 € I* whereI|4 = {X C«: X N A4 € 1}.)
If NS, denotes the ideal of nonstationary subsets of « then NS, is nowhere
k-saturated (Solovay [5]) but it is not known whether NS, can be x*-saturated
(although recent results of van Wesep show, under some very strong assump-
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tions, that NS,, can be ws-saturated). Theorem 2 yields some information
about the saturation of NS, X NS..

COROLLARY. NS, X NS, 1s nowhere x*-saturated.

If 2% = «* then Theorems 1 and 2 handle all possible cases and the satura-
tion of I X J is completely determined by the saturation of 7 and J.

COROLLARY. [If 2% = k% then sat [ X J = max {sat I, sat J} unless sat J = «
in which case sat I X J = «*++.

Proof. If satJ = «x then Theorem 2 implies that satl X J = «*+. If
sat / < k and sat [ < «* then Theorem 1 implies that sat I X J equals
max {sat I, sat J}. Lastly, if sat I > «* thensat I = «*+sosat I X J = «*+,

Suppose [ is a prime ideal on a measurable cardinal and J is defined as
follows. Choose {4.:a < «}, a partition of k into sets of size «, and {fy:a < &}
such that f, 1k — A, is a bijection, and then let X € J if f,~1(X) € [ for each
a < k. Then satJ = «* and so, by Theorem 2, sat ] X J > «*. Thus a
product with a prime left factor need not preserve saturation, while a product
with a prime right factor does (see remark at end of Section 2). Note that, by
Theorem 3 below, it follows that this ideal, I X J, is a precipitous ideal on «
which is not «x*-saturated.

4. Products which are precipitous. In the proof of Theorem 1 we made
use of the fact that if [ is a k*-saturated ideal on « then, for any B (k) /I-generic
set G, the ultrapower Ult (V, G) is well-founded. An ideal satisfying this latter
property is called precipitous; this is a weaker condition than being a x*-
saturated ideal on « (see [1]). In this section we show that in some ways this
notion is more well-behaved under products than saturation is. The following
theorem should be compared with the result of the previous section which
showed that saturation need not be preserved under formation of a product
with a prime ideal.

THEOREM 3. If I is « prime ideal on the measurable cardinal x and J is a
precipitous ideal on « then I X J and J X I are both precipitous.

Proof. We first consider / X J. Suppose G is P(x X «)/I X J-generic over
7. Let V' = Ult (V, I), the standard ultrapower with respect to a measure
ultrafilter (prime ideal), and let 2: 1V — 1”" be the canonical elementary
embedding. Then, in V’, 2(J) is a precipitous ideal on z(x). We shall show that
Ult (V, G) is well-founded by defining a set G’ which is B(k) N V' /i(J)-
generic over " such that Ult (1, G) = Ult (V’, G’); since 7(J) is precipitous,
this suffices.

Define G’ as follows. If [ f]; € B(ik) N V', put [[ f];]is in G’ if and only if
[A];xs € G where 4 = {(a,8):8 € f(a)}. It is easy to check that G’ is well-
defined. To prove that G’ is appropriately generic it suffices to show that if,
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in 17, {[ga) i < 6} is @ maximal adf for 1(J), then for some «a, [[g.]] € G'. Let
A, be defined from g, as in the definition of G’. Then {4,:a < 6} isin V and is
an adf for I X J. In fact, it is a maximal adf for suppose 4 € (I X J)*.
Define h:ik — B (k) by h(y) = A@. Then [h]; € (i) since {y < k: A4y € Tt}
€ It =1T* So for some o <6, [h]l;MN [g); € (¢J)* which implies that
AMNA, € (I X J)r. So, since G is generic, some [A,]x; € G and so some
[[gd] € G".
ViG] 2 1'[G"]

ul ul

Ult (V, G) —Y 5 Ult (17, ')

14 — y

Form Ult (1", G’) and define ¥:Ult (V, G) — Ult (7', G") by letting
V([ fle) = [[A) 1]l where hik — V*M 17 is in V" and is defined by setting
h(y)(8) = f(v,6). To see that ¥ is well-defined, suppose that

[ (v, 8):fi(v, 8) = faolv, 8)}] € G.

Then [[H],]i; € G" where H(y) = {6 < «: hi(y)(8) = h2(v)(8)}. But [H]; =
16 <a(6): ] (§) = [ho],(§)} and so [[k1]/]e = [[hs]r]gr. This same proof,
with = replaced by 5 or €, shows that ¥ is one-one and preserves €. While
not strictly necessary for the present theorem, it is worth noting that ¥ is onto,
and hence an isomorphism. For if [{4;]]s € Ult (V/,G’) then, in V’,
[A];:i(k) — V', and so, for each v < «, h(y):x = V. Let f(y, 8) = h(y)(6).
Then ¥ ([ f]e) = [lh]]e.

The proof that J X I is precipitous is similar. Suppose G is B(k X «)/J X I-
generic over V. We shall show that Ult (V, G) is well-founded by defining a
set G’ which is B (x)/J-generic over I” such that

Ult (V, G) = Ult (Ult (V, G"), (1))

where 2: 1 — Ult (I, G"). Since 7(I) is a prime ideal on 7(x) in the well-
founded model Ult (17, G'), this shows that Ult (V, G) is well-founded.

Define G’ by setting [A]; € G" if and only if [4 X «];«; € G. It is easy to
check that G’ is well-defined and P (x)/J-generic over 1”. Thus we may form
Ult (V, G’) and then Ult (Ult (V, G"), ¢(1)).

Suppose [ 1 € Ult (V, G). Let ([ f1¢) = [[hl¢)ir) where hik — VN 1V
is defined by letting k(y)(8) = f(v,d). Then, using the fact that I is prime,
one may check that ¥ is well-defined and an isomorphism. This concludes the
proof.

The converse to this theorem is valid too (this was pointed out by A. Taylor),
in the sense that if I X J is precipitous then so are I and J.
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Mitchell ([1]) has shown that if [ is a prime ideal on a measurable cardinal
k, P is the Lévy collapse of « to w;, and G is P-generic over V, then, in 1[G],
x = w; and [ is a precipitous ideal on w,, where I is the ideal on « in V[G]
generated by I, i.e., x € I if and only if x C y for some y € I. This result can
be used to point out another difference between precipitous and saturated
ideals. By Theorem 2 and the fact that w; bears no w;-saturated ideal, if I isan
ideal on w; then I X I is not we-saturated. However, a product can be precipi-
tous. For suppose I, P, G, I are as in Mitchell’s result. Then I X I is a prime
ideal on « in 17 and so, in V[G], I X [ is a precipitous ideal on w,. It is not
difficult to see that I X I = I X I (see [9, p. 79]).

A. Taylor [7] has proved that a «*-saturated ideal on a successor cardinal «
is a P-point. The result of the previous paragraph shows that this theorem
cannot be improved to hold for precipitous ideals because I X [ is precipitous
and, since it is a product, it fails to be a P-point.

Remark. Mitchell's result that precipitousness is preserved by a Lévy
collapse has been improved recently by Kakuda, who showed that the Lévy
collapse could be replaced by any partial ordering with the «-chain condition.

REFERENCES

1. T. Jech, M. Magidor, \V. Mitchell and K. Prikry, Precipitous ideals, J. Sym. Logic (to
appear).

2. T. Jech and K. Prikry, Ideals over uncountable sets: application of almost disjoint functions
and generic ultrapowers, Memoirs A.M.S. 214 (1979).

3. Y. Kakuda, Saturated ideals in Boolean extensions, Nagoya Math. J. 48 (1972), 159-168.

. K. L. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. 68 (1970).

. R. M. Solovay, Real-valued measurable cardinals, in Axiomatic Set Theory, Proc. Symp.

Pure Math. 13 (1) (1971), 397-428.

. A. Tarski, Ideale in vollstindigen Mengenkirpern 11, Fund. Math. 33 (1945), 51-65.

. A. Taylor, Regularity properties of ideals and ultrafilters, Ann. Math. Logic 16 (1979), 33-55.

. S. Ulam, Zur Masstheorie in der Allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.

. S. Wagon, Decompositions of saturated ideals, Ph.D. Thesis, Dartmouth College (1975).

(S

N=Je BN =

Smath College,
Northampton, Massuchissels

https://doi.org/10.4153/CJM-1980-007-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-007-9

