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Abstract
Counting independent sets in graphs and hypergraphs under a variety of restrictions is a classical question
with a long history. It is the subject of the celebrated container method which found numerous spectacular
applications over the years.We consider the question of howmany independent sets we can have in a graph
under structural restrictions. We show that any n-vertex graph with independence number α without bKa

as an induced subgraph has at most nO(1) · αO(α) independent sets. This substantially improves the trivial
upper bound of nα , whenever α ≤ no(1) and gives a characterisation of graphs forbidding which allows for
such an improvement. It is also in general tight up to a constant in the exponent since there exist triangle-
free graphs with α�(α) independent sets. We also prove that if one in addition assumes the ground graph
is chi-bounded one can improve the bound to nO(1) · 2O(α) which is tight up to a constant factor in the
exponent.
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1. Introduction
Problems involving counting independent sets in graphs and hypergraphs have a long history.
They have been studied both due to their intrinsic interest and since one can encapsulate many
natural questions in terms of counting independent sets in an appropriate (hyper)graph, see e.g.
a recent survey [27] for many examples and a detailed history of such questions. Let us denote
by α(G) the maximum size of an independent set and by i(G) the number of independent sets
in a graph G. There are two trivial bounds which often serve as a baseline for more involved
arguments.

2α(G) ≤ i(G)≤
α(G)∑
j=0

(
n
j

)
. (1)

The lower bound follows since all subsets of the maximum size independent set are themselves
independent and the upper bound simply account for all subsets of size up to α(G). Both of these
bounds can be tight, for example, if G is an empty or complete (hyper)graph, respectively. Note
also that if α(G)= �(n) the upper bound is also exponential in α(G) so the two bounds match
up a constant in the exponent. We will be consequently mostly interested in the regime when α

is somewhat small compared to n when one can approximate the upper bound on the right by(
n

α(G)

)α(G)
or even more loosely by just nα(G).
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Trying to improve the upper bound in (1) has garnered a lot of interest over the years and
is the subject of the celebrated container method. In the case of graphs it was introduced in the
1980’s by Kleitman and Winston [21, 22] who used it to count lattices and graphs without four-
cycles. Variations of the method have been used over the years to attack a variety of problems for
example Alon [1] and Sapozhenko [28] used it to count the number of independent sets in regular
graphs which in turn has applications to counting sum-free sets in Abelian groups (see e.g. [1, 24,
29]). Another remarkable example is the recent breakthrough lower bound on the off-diagonal
Ramsey numbers [26]. The method has been extended to the hypergraph case independently by
Balogh, Morris, and Samotij [3] and Saxton and Thomason [30] and has found an even more
impressive array of applications, see e.g. the survey [4] produced to accompany an ICM 2018 talk
on the subject of the container method for more examples and information. At a high level, the
container method allows one to translate knowledge about a variety of statistics in a (hyper)graph
(for example having a control of codegrees) to improvements on the upper bound in (1).

In this paper, we study whether having structural information about a graph leads to an
improvement in the upper bound (1). Perhaps one of the most studied structural properties of
graphs is being H-free for a small fixed graph H. Here and throughout the paper a graph G being
H-free stands for not havingH as an induced subgraph. This leads to a very natural question, does
G being H-free imply a substantial improvement in the upper bound (1)? On the positive side,
Farber in [14] showed in 1987 that forbidding a 2K2 does indeed lead to such an improved bound.
Unfortunately, the answer is in general no. If one takes a graph consisting of α − 1 vertex dis-
joint complete graphs of order as equal as possible (namely the complement of the (α − 1)-partite
Turán graph on n vertices) one obtains a graph with roughly (n/α)α−1 independent sets, which is
quite close to the upper bound in (1). On the other hand, this graph avoids most graphs as induced
subgraphs, in fact, all of its induced subgraphs are themselves vertex disjoint unions of complete
graphs. Our first result shows that one can improve the upper bound substantially if we forbid any
such graph as an induced subgraph.

Theorem 1. Any bKa-free n-vertex graph G with α = α(G) has i(G)≤ nO(1) · αO(α).

For a version of this theorem with precise dependencies see Theorem 7.
Besides characterising which forbidden graphs lead to an improvement this result is also tight

up to a constant factor in the exponent so long as a≥ 3 and b≥ 2. Indeed, taking b− 1 dis-
joint complete graphs of order about n/b each gives an n-vertex bKa-free graph with roughly
(n/b)b−1 independent sets and independence number b− 1. This shows the polynomial factor
in n needs to grow with b. One can show the same is true for a by taking a graph consisting of
a disjoint complete graphs of order about n/a each and then placing additional edges between
parts independently with suitable probability to ensure there will be few copies of (not necessar-
ily induced) Ka,a’s in the complement but with still many independent sets. One can then add a
few edges to destroy these copies without destroying too many independent sets. More interest-
ingly, one can not, in general, improve the second term either (beyond a constant factor in the
exponent). This follows since there exist triangle-free graphs (so bKa-free for any a≥ 3) with at
least α(G)�(α(G)) independent sets. This in turn follows by combining two results. The first one
is due to Davies, Jenssen, Perkins and Roberts [12] (see also [9] for a slightly weaker but qual-
itatively similar result) showing that any n-vertex triangle-free graph with maximum degree d
has i(G)≥ exp

(( 1
2 + od(1)

) · log2 d
d · n

)
. The second is that there exist triangle-free graphs G with

all degrees being (1+ o(1))
√

1
2n log n and α(G)≤ (1+ o(1))

√
2n log n. One obtains such a graph

with high probability from the famous triangle-free process, see e.g. [5, 15] for more details on
this topic. This produces a triangle-free graph with at least α(

√
2/4+o(1))α independent sets and

α = �(
√
n log n).
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Our second main result shows that we can in fact go further and even match the trivial lower
bound from (1) up to a constant factor in the exponent if we in addition assume our ground graph
is chi-bounded. Here, a hereditary class of graphs G is said to be chi-bounded if there exists some
function g:N→R such that χ(G)≤ g(ω(G)) for everyG ∈ G. It is a well-studied notion withmany
interesting applications and connections, see e.g. a recent survey of Scott and Seymour [31].

Theorem 2. Let G be a chi-bounded hereditary class of graphs. For any bKa-free n-vertex graph
G ∈ G with α = α(G) we have i(G)≤ nO(1) · 2O(α).
For a version of this theorem with precise dependencies see Theorem 8.

Since forbidding bK2 as an induced subgraph implies chi-boundedness, we conclude that the
stronger bound of Theorem 2 also holds in Theorem 1 when a= 2, completing the picture as we
have shown such an improvement is impossible when a≥ 3.

There are two main tools behind our arguments. The first one is a certain hypergraph analogue
of an induced Kövári-Sós-Turán Theorem introduced in the graph case by Loh, Tait, Timmons
and Zhou [25] and extended and used to settle a variety of problems recently in [2, 6, 17–19]. The
proof of this lemma is based on the dependent random choice technique (see e.g. the survey [16]
for more information). The second ingredient is a certain local-to-global transference lemma for
independent set counts, the proof of which is based on the ideas behind the container method.

1.1. Notation
Given a graph G we denote by α(G),ω(G), χ(G) and i(G) the independence number, clique num-
ber, chromatic number, and number of independent sets inG respectively. We denote by It(G) the
family of all independent sets of size t in G and write it(G)= |It(G)|. Given a set of vertices X in a
graph G we write dG(X) for the number of common neighbours of all vertices in X. For counting
simplification purposes we consider an empty set of vertices as independent. For the remainder of
this paper, all logs are in base 2.

We note that for the purposes of intuition that we often refer to counts as local or global.
In general, the former refers to counting objects within (all) subgraphs of our original graph of
certain size whereas the latter refers to counting objects in the whole graph.

2. Counting independent sets locally
In this section, we will prove our key technical tool, namely a hypergraph variant of the induced
version of the Kövári-Sós-Turán Theorem [23]. The classical theorem of Kövári, Sós, and Turán
dating back to 1954 states that if an n vertex graph does not contain a Ks,s as a not necessarily
induced subgraph, then it has at most O(n2−1/s) edges. It proved itself as an incredibly useful
tool over the years as in many problems one can easily verify there are no Ks,s-subgraphs and
as a result conclude that the graph in question is “locally sparse”. Erdős extended this result to
hypergraphs in 1964 [13] showing that forbidding the r-partite r-uniform complete hypergraph
as a not necessarily induced subgraph of an r-uniform n-vertex hypergraph implies the number
of edges is at most O(nr−ε) for some ε > 0 depending on the forbidden hypergraph. Another
natural extension of the classical theorem in which one only forbids Ks,s as an induced subgraph
was only considered about 10 years ago in the graph case by Loh, Tait, Timmons, and Zhou [25]
and has found some very interesting further extensions and applications in the last few years.
Unfortunately, the straightforward generalisation can not hold, as even a complete graph is Ks,s-
free so long as s≥ 2. However, if one, in addition, forbids a clique (even of a size polynomial in n)
one suddenly recovers the classical bound.

Our technical lemma gives in a sense a common extension of both of these results. Roughly
speaking our result states that if one forbids a complete r-partite graph as an induced subgraph
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and assumes there are no large cliques in our graph then there are at most O(nr−ε) cliques of
size r for some ε > 0 depending on the forbidden graph. Our result is actually slightly stronger,
we assume a more flexible condition that every m vertices contain an independent set of size a
(not having a large clique implies such a condition holds via Ramsey’s Theorem). We note that
in [25] a similar result focusing on the number of larger cliques has been proved but only under
a much stronger assumption that a complete bipartite graph is forbidden. We also note that our
result is not a full-fledged extension of Erdős’ result as it only applies to clique complexes, namely
hypergraphs whose edges are cliques of a graph. One can actually prove such a stronger variant
using a similar approach although since we do not need it here we choose not to do so. Part of the
reason for this is that for our chi-bounded result, we need a very precise bound here, namely one
that gives us a (slight) improvement even under a much weaker local assumption. We note also
that the result is stated in the complement compared to the above discussion since this is how we
will use it.

We start with a precise definition of the local condition we will use.

Definition 3. A graph G is (m, a)-cliquey if all m-vertex induced subgraphs of G contain a Ka.

So in particular, by Ramsey’s theorem, we know that any graph G is (α(G)a, a)-cliquey for any a.
We advise the reader that the following lemma and its proof might be initially easier to read

under the assumption that m is polynomially smaller than n which ensures ε > 0 is an absolute
constant depending only on a and b. Indeed, this is sufficient for our proof of Theorem 1 and
we suspect for most future applications as well. However, as mentioned above we need the more
precise version, which allows for smaller, subpolynomial gains under weaker assumptions to prove
Theorem 2.

Lemma 4. Let a, b≥ 1 and n≥m be integers. Let G be a bKa-free n-vertex graph which is (m, a)-
cliquey. Then there are at most nb−ε/b! independent sets of size b in G, where

ε:=
( log n

m
8ab log n

)b
.

Proof. We write εb:=
( log n

m
8ab log n

)b
as the values ofm, a and n for which we will use this expression

always remain the same. We prove the lemma by induction on b. If b= 1, the lemma is vacuous
since G being (m, a)-cliquey and Ka-free imply we must have n<m. Let us now assume b≥ 2 and
that the lemma holds for any (b− 1)Ka-free graph. Let G be a bKa-free (m, a)-cliquey graph with
n vertices. If a= 1 or n< b there are no independent sets of size b in G and the lemma holds, so
we may in addition assume a≥ 2 and n≥ b.

We may assume n>m as otherwise, εb = 0 and the desired bound is larger than
(n
b
)
so is triv-

ially true. Suppose towards a contradiction that G has more than nb−εb
b! independent sets of size

b. Our general strategy will be to find a set of vertices containing many independent sets of size
b− 1 for which all a(b− 1) subsets have more thanm non-neighbours. By induction, this set will
contain (b− 1)Ka which will be used to create an induced bKa.

Let T be a random subset of vertices of G obtained by sampling t =
⌊
4ab log n
log n

m

⌋
> 2ab · log n

log n
m

times uniformly at random, with repetitions, a vertex ofG. LetU be the set of vertices not adjacent
to any vertex of T. Let X count the number of independent sets of size b− 1 contained in U. An
independent set I of size b− 1 is contained within U only if all t vertices we sampled belong to
its common non-neighbourhood, which happens with probability (dḠ(I)/n)t so by using Jensen’s
inequality (and convexity of f (x)= xt for x positive) we get
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EX =
∑

I∈Ib−1(G)

(
dḠ(I)
n

)t
≥ |Ib−1(G)|

(∑
I∈Ib−1(G) dḠ(I)
n|Ib−1(G)|

)t

≥ nb−1

(b− 1)!

⎛
⎝ b|Ib(G)|
n · nb−1

(b−1)!

⎞
⎠

t

>
nb−1

(b− 1)! · n−tεb

>
nb−1

(b− 1)! · n−εb−1/2,

where in the second inequality we used |Ib−1(G)| ≤
( n
b−1
)≤ nb−1

(b−1)! (and the fact this term appears
with a power 1− t ≤ 0) and the hypergraph handshake lemma. In the third inequality, we used the

assumed lower bound on |Ib(G)|. In the final inequality we used tεb =
⌊
4ab log n
log n

m

⌋
·
( log n

m
8ab log n

)b
<

1
2

( log n
m

8a(b−1) log n

)b−1 = εb−1
2 . On the other hand, given a set of a(b− 1) vertices with less than m

common non-neighbours the probability that this set is a subset of U is at most
(m
n
)t . So if we let

Y be the random variable counting the number of a(b− 1)-sized subsets of U with less than m
common non-neighbours we have

EY ≤
(

n
a(b− 1)

) (m
n

)t ≤ na(b−1) · 2−t log n
m < na(b−1) · n−2ab = n−a(b+1).

This shows that there is an outcome for which

X −
(

n
b− 1

)
· Y >

nb−1−εb−1/2 − n−2−(a−1)(b+1)

(b− 1)! ≥ nb−1−εb−1/2 − n−2

(b− 1)! .

Let us consider such an outcome U. Note that since X ≤ ( n
b−1
)
and nb−1−εb−1/2 − n−2 > 0 we

must have Y = 0. Furthermore, since b≥ 2 we have εb−1 ≤ 2(b− 1) log
n
m

log n , which is equivalent to

nb−1−εb−1/2 ≥mb−1. This implies that X > mb−1−n−2

(b−1)! >
(m−1
b−1

)
, so |U| ≥m. This, together with a≥

2 implies there must be an edge inside G[U], so X ≤ ( n
b−1
)− 2≤ nb−1−2

(b−1)! , where we used n≥ b≥ 2.
Combined with the above lower bound on X we get nb−1 − 2> nb−1−εb−1/2 − n−2 which implies
nεb−1/2 > 1+ 1

nb−1 which in turn gives X > nb−1−εb−1/2−n−2

(b−1)! ≥ nb−1−εb−1
(b−1)! .

If b= 2 this implies |U| = X > n1−ε1 >m so we can find aKa inside ofG[U]. For b≥ 3 consider
an auxiliary graph G′ on the same vertex set for which G′[U]=G[U] but every vertex in V(G) \U
is adjacent to every other vertex ofG′.G′ is an n vertex graph, is clearly (m, a)-cliquey and hasmore
than nb−1−εb−1

(b−1)! independent sets of size b− 1. So by the inductive assumption, it must contain a
(b− 1)Ka as an induced subgraph. Since b− 1≥ 2 the vertices of this (b− 1)Ka are not adjacent
to all other vertices and hence must belong toU. Hence, in either case, we find an induced copy of
(b− 1)Ka inside G[U]. Finally, since Y = 0 the a(b− 1) vertices comprising this (b− 1)Ka have at
least m common non-neighbours. Among them, we can find a Ka giving us an induced bKa in G
and the desired contradiction. �

3. Translating counts from local to global
In this section, we prove our second technical result which will allow us to propagate a tiny gain
in the number of independent sets of some small size b to a more substantial one globally. The
basic idea behind the proof is reminiscent of the proofs of the container theorems (see e.g. [3, 30])
although for the specific regime we work with we have a very simple proof (motivated in part by
the ideas in [7]).
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The following definition will come in useful in tracking independent set counts on subgraphs.

Definition 5. Given a graph G and a real m≥ 0 let

i(G,m):= max
G′⊆G,|G′|≤m

i(G′).

In other words, i(G,m) denotes the maximum number of independent sets contained in an induced
subgraph of G with up to m vertices.

Lemma 6. Let b≥ 1, and suppose G is an n-vertex graph with at most nb−ε/b! independent sets of
size b. Then, i(G)≤ nb−1 · i(G, n1−ε/2b−1 ).

Proof. We call any independent set of size b atypical. Now for any 1≤ i≤ b− 1 we call an inde-
pendent set of size b− i typical if it belongs to fewer than n1−ε/2i atypical independent sets of
size b− i+ 1 and we say it is atypical otherwise. Let It denote the collection of atypical indepen-
dent sets of size t. So Ib consists of all independent sets of size b in G and has size |Ib| ≤ nb−ε/b!.
Since each atypical independent set of size b− i belongs to at least n1−ε/2i atypical independent
sets of size b− i+ 1 and each of these sets can contain at most b− i+ 1 of them we conclude
|Ib−i| · n1−ε/2i ≤ |Ib−i+1| · (b− i+ 1). We conclude that

|Ib−i| ≤ |Ib| · b · (b− 1) · · · (b− i+ 1)
n1−ε/2 · n1−ε/4 · · · n1−ε/2i

≤ nb−i−ε/2i

(b− i)! . (2)

We now count the independent sets of G based on the size of the largest typical independent
set they contain. Note that there are at most

( n
b−i
)
i(G, n1−ε/2i) independent sets in G with the

largest typical independent set they contain having size b− i. Indeed, there are
( n
b−i
)
choices for

the typical independent set, and once this is fixed the rest of the independent set is restricted to
vertices which extend it into any atypical independent set of size b− i+ 1 (by maximality) and
by definition of typicality there are at most n1−ε/2i such vertices. This only leaves the independent
sets not containing any typical independent sets at all. Note that any such set is restricted to use
only the vertices which are atypical independent sets of size one, of which there are by (2) at most
n1−ε/2b−1 . Putting all of this together we conclude that the number of independent sets in G is at
most

i(G, n1−ε/2b−1
)+

b−1∑
i=1

(
n

b− i

)
i(G, n1−ε/2i)≤ nb−1 · i(G, n1−ε/2b−1

),

as desired. �

4. Counting independent sets in H-free graphs
In this section, we prove our main results. We begin with Theorem 1 which we state here in a
slightly more precise form.

Theorem 7. Let a, b≥ 1 be integers. There exists C = C(a, b)≥ 0 such that any bKa-free n-vertex
graph G with α = α(G) has i(G)≤ nC · α2aα .

Proof. We will prove the theorem with ε = ε(a, b):= (16ab)−b, C = C(a, b)= (b− 1)2b−1/ε. We
proceed by induction on n. Observe first that if n≤ α2a, then the desired inequality holds since
i(G)≤ nα ≤ α2aα . Let us now assume that n> α2a and that any induced subgraph H of G on
m< n vertices satisfies the desired inequality. In particular, this implies i(G,m)≤mC · α2aα for
anym< n.
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Ramsey’s Theorem implies that G (and in fact any graph) is (αa, a)-cliquey. Lemma 4 implies
there are at most nb−ε/b! independent sets of size b in G since( log n

αa

8ab log n

)b
≥ (16ab)−b.

By Lemma 6 this implies

i(G)≤ nb−1 · i(G, n1−ε/2b−1
)≤ nb−1 · nC−Cε/2b−1 · α2aα = nCα2aα .

This completes the induction and the proof. �
We note that by being more careful with the numbers in the above argument one can improve

the bound to nO(1) · α(1+o(1))aα .
We proceed with our result in the chi-bounded case, namely Theorem 2. The proof is similar to

the above, the main distinction being that we can lower the base case to n being linear in α rather
than polynomial. This however comes with additional issues concerning the fact that Lemma 4
stops giving us a polynomial gain in counts of small independent sets. The gain is still sufficient
for our purposes though.

Theorem 8. Let a, b≥ 1 be integers and let G be a chi-bounded, bKa-free hereditary class of graphs.
There exists C = C(G)> 0 such that for every G ∈ G we have i(G)≤ |G|C · 2Cα(G).

Proof. Let g be a non-decreasing integral chi-bounding function, so that |G′|
α(G′) ≤ χ(G′)<

g(ω(G′)) for any G′ ∈ G. Let C = g(a) · (32ab)2b.
Let G ∈ G be an N-vertex bKa-free graph and let α = α(G).
Let G′ be an induced subgraph of G with αg(a) vertices. By our chi-boundedness assumption

we have α(G)g(a)= |G′| < α(G′)g(ω(G′))≤ α(G)g(ω(G′)) so ω(G′)> a. In particular, this implies
that G, as well as any of its induced subgraphs, are (αg(a), a)-cliquey.

Let m:= αg(a) and εn:=
( log n

m
8ab log n

)b
. We note that while εn is a function of a, b,m as well as

n the values of a, b,m will remain fixed throughout the argument. Now for any n≥m Lemma 4
implies that any n-vertex subgraph of G contains at most nb−ε/b! independent sets of size b. This
in turn via Lemma 6 implies it has at most nb−1 · i(G, n1−εn/2b−1 ) independent sets in total. Since
this subgraph was arbitrary we have that for any real n≥m we have

i(G, n)≤ nb−1 · i
(
G, n1−εn/2b−1

)
. (3)

Suppose first that 2m≤ n≤m2. Then, combined with (3) we get

εn/2b−1 =
( log n

m
8ab log n

)b
/2b−1 ≥ 1

(32ab)b logb m
= :c =⇒ i(G, n)≤ nb−1 · i(G, n1−c).

The main benefit compared to (3) is that the exponent c does not depend on n (which is also why
we require an assumption on the rough size of n). This makes it easier to iterate the bound to get
for any integer j≥ 1 that:

i(G, n)≤ nb−1 · i (G, n1−c)≤ n(b−1)j · i
(
G, max{n(1−c)j , 2m}

)
.

By choosing j= �1/c� we get
i(G, n)≤ n(b−1)/c · i(G, 2m)

≤ (m2)(b−1)(32ab)b logb m · 22m ≤ 22(b−1)(32ab)b logb+1 m+2m ≤ 22b(32ab)
b(b+1)b+1m ≤ 2Cα .
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Suppose now n≥m2. This combined with (3) gives

εn/2b−1 =
( log n

m
8ab log n

)b
/2b−1 ≥ 1

(16ab)b
= :c =⇒ i(G, n)≤ nb−1 · i(G, n1−c).

Similarly to the above, we get that in this range for any integer j≥ 1

i(G, n)≤ n(b−1)(1+(1−c)+(1−c)2+...+(1−c)j) · i
(
G, max{n(1−c)j+1

,m2}
)
.

By choosing j large enough we get

i(G, n)≤ n(b−1)/c · i (G,m2)≤ n(b−1)(16ab)b · 2Cα .
Putting all of this together, since i(G)= i(G,N), this completes the proof if N ≥ 2m. In the

remaining case the trivial bound of 2N ≤ 22g(a)α suffices. �
We note that by being more careful with the numbers in the above argument one can improve

the bound to nO(1) · 2(1+o(1))g(a)α .

5. Concluding remarks and open problems
In this paper, we improve the trivial upper bound on the number of independent sets in bKa-
free graphs. One of the main points of interest in improving upper bounds on the number of
independent sets in a variety of graphs is that it allows for reducing the number of events we need
to run various union bound arguments. It would be very interesting to find such applications of
our results.

Given a graph G with weights on its vertices, the MaximumWeight Independent Set (MWIS)
problem asks to find the independent set in G of maximum weight. It is well-known that MWIS is
(very) computationally difficult in general, and is in particular (strongly) NP-hard [20]. This moti-
vated a considerable amount of work on getting efficient algorithms for MWIS for graphs under
various restrictions, see [11] for a more detailed treatment of the history and many examples. For
example, it is known that a polynomial time algorithm exists for graphs with bounded treewidth.
In fact, combining the results of [10, 11] gives that it is enough to have a bounded independence
number in every bag of some tree decomposition.1 A natural next step is to explore whether this
can be further relaxed to allow the independence number bound to grow with n, in particular,
given several recent results (see [8, 10, 11] and references therein) showing various structural
restrictions imply the existence of a tree decomposition with each bag having independence num-
ber at most polynomial in log n. In addition, there is a polynomial time algorithm for MWIS if
we are given a tree decomposition in which every bag has only polynomially many independent
sets. All of this motivates the question of exploring which structural restrictions guarantee that
there are only polynomially many independent sets in a graph with a small independence num-
ber. Theorem 1 tells us that an n-vertex, bKa-free graph G with α(G)≤O( log n/ log log n) has
nO(1) independent sets. Theorem 2 tells us that under the additional assumption that G belongs to
a chi-bounded class of graphs the same holds already when α(G)≤O( log n).

Another interesting future direction might be to try to obtain improvements similar to ours
under other structural restrictions.

Our bounds are tight up to a constant in the exponent in general. It would be interesting to
obtain optimal exponents, at least asymptotically. This certainly seems to require additional ideas.
With this in mind, we sketch here an alternative argument, inspired by the one of Farber [14] that
he used to settle the 2K2-free case, which can be used to prove both of our main results in the case
one forbids a disjoint union of (b− 1)K2 and Ka. Instead of counting all independent sets, we will

1See [8] for definitions of a variety of concepts discussed in this paragraph.
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only count maximal ones. Since each maximal independent set contains at most 2α(G) indepen-
dent sets of G and every independent set is contained in at least one maximal one this shows the
difference between two counts is at most 2α(G). The argument now proceeds by induction on b.
The case b= 1 follows immediately from Ramsey’s Theorem. For larger b, let us fix an arbitrary
vertex v. There are three types of maximal independent sets in G

1. Ones that do not contain v, and are hence also maximal in G \ {v}.
2. Ones that do contain v, and are, after removal of v, maximal in G \ {v}.
3. Ones that do contain v, but are, after removal of v, not maximal in G \ {v}.

It is easy to see that the number of maximal independent sets of type 1. plus the number of maxi-
mal independent sets of type 2. equals the number of maximal independent sets of G \ {v}. On the
other hand, for anymaximal independent set of type 3. there must exist a vertex u adjacent to v but
otherwise having no neighbours in the maximal independent set. This means that we can upper
bound the number of such maximal independent sets by going through all neighbours u of v (at
most n choices) and counting maximal independent sets in the set of common non-neighbours of
v and u. The crucial observation is that this set must be (b− 2)K2 +Ka-free as we could extend
any such induced subgraph by vu to a (b− 1)K2 +Ka. So we can use induction to get a strong
upper bound on the number of independent sets of type 3, which suffices to prove the desired
bounds.

As we already mentioned the number of independent sets and the number of maximal inde-
pendent sets are at most a factor of 2α(G) apart, so they behave similarly. On the other hand, no
such relation seems to hold with the count of maximum independent sets. This leads to the nat-
ural question of whether one can improve our results if instead of counting independent sets we
count only maximum ones. For example, even the following initial question remains open.

Question 9. Does every n-vertex triangle-free graph with independence number α contain at most
2O(α) maximum independent sets?

If true this would be tight (up to a constant factor in the exponent) by considering nK2. Or,
more generally, by taking a disjoint union of mK2 and a triangle-free graph on n− 2m vertices
with as small independence number as possible so as to show the above result would be tight even
for essentially any choice of α.
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[11] Dallard, C., Milanič, M. and Štorgel, K. (2024) Treewidth versus clique number. II. Tree-independence number.
J. Combin. Theory Ser. B 164 404–442.

[12] Davies, E., Jenssen, M., Perkins, W. and Roberts, B. (2018) On the average size of independent sets in triangle-free
graphs. Proc. Amer. Math. Soc. 146(1) 111–124.
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