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When analysing stellarator configurations, it is common to perform an asymptotic expan-
sion about the magnetic axis. This so-called near-axis expansion is convenient for the
same reason asymptotic expansions often are, namely, it reduces the dimension of the
problem. This leads to convenient and quickly computed expressions of physical quan-
tities, such as quasisymmetry and stability criteria, which can be used to gain further
insight. However, it has been repeatedly found that the expansion diverges at high orders
in the distance from axis, limiting the physics the expansion can describe. In this paper, we
show that the near-axis expansion diverges in vacuum due to ill-posedness and that it can
be regularised to improve its convergence. Then, using realistic stellarator coil sets, we
demonstrate numerical convergence of the vacuum magnetic field and flux surfaces to the
true values as the order increases. We numerically find that the regularisation improves
the solutions of the near-axis expansion under perturbation, and we demonstrate that the
radius of convergence of the vacuum near-axis expansion is correlated with the distance
from the axis to the coils.

Key words: plasma confinement, plasma simulation

1. Introduction

The design of stellarators is a computationally intensive task. The most basic prob-
lem in stellarator design – that of computing the magnetic field – requires solving
the steady-state magnetohydrostatics (MHS) equations. These equations are diffi-
cult to solve for reasons familiar to many problems in physics: they are nonlinear
and three-dimensional. Popular MHS equilibrium solvers include VMEC (Hirshman
1983), DESC (Dudt & Kolemen 2020) and SPEC (Hudson et al. 2012), all of which
take seconds to minutes to compute a single equilibrium. Beyond equilibrium solv-
ing, there are potentially many other stellarator objectives that are expensive to
compute, with plasma stability metrics being a major example. When optimising
for stellarators, the costs of equilibrium and objective solving can limit the speed
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of the overall design process. This, in combination with the high dimensionality of
specifying three-dimensional (3-D) fields, motivates a need for simpler alternatives.

Recently, near-axis expansion (Mercier 1964; Solov’ev & Shafranov 1970) has
gained traction as an alternative to full 3-D MHS solvers. The near-axis expansion
works by asymptotically expanding all of the relevant plasma variables (such as mag-
netic coordinates, pressure, rotational transform and plasma current) in the distance
from the magnetic axis, which is assumed to be small relative to a characteristic
magnetic scale length. The resulting equations are a hierarchy of one-dimensional
ordinary differential equations (ODEs), which can be solved orders of magnitude
faster than 3-D equilibria. This allows for one to quickly find large numbers of opti-
mised stellarators (Landreman 2022; Giuliani 2024), something that was previously
unavailable to the stellarator community.

In addition to the speed, the near-axis expansion has other benefits. For
instance, Garren & Boozer (1991) showed that quasisymmetry imposes more
constraints than free parameters in the expansion, leading to the conjecture that non-
axisymmetric but perfectly quasisymmetric stellarators cannot exist. Many objectives
have been defined and computed for the near-axis expansion, including quasisym-
metry (Landreman & Sengupta 2019), quasi-isodynamicity (Mata et al. 2022),
isoprominence (Burby et al. 2023), and Mercier and magnetic-well conditions for
stability (Landreman & Jorge 2020; Kim et al. 2021). There is evidence that other
higher-order effects such as ballooning and linear gyrokinetic stability could be inves-
tigated as well (Jorge & Landreman 2020). The near-axis expansion has also been
combined with a type of quadratic flux minimising surfaces and coil optimisation
to create free-field optimised quasi-axisymmetric (QA) equilibria (Giuliani 2024). In
sum, the connection among easily expressed objectives, a relatively low-dimensional
equilibrium description and fast computation has led to the increased use of the
near-axis expansion.

However, the near-axis expansion is not without drawbacks. The primary draw-
back is fundamental: the expansion has limited accuracy far from the axis. For
instance, in the ‘far-axis’ regime, there can be large errors in the magnetic shear
and magnetic surfaces can self-intersect (Landreman 2022). The paper by Jorge &
Landreman (2020) also indicates that higher-order terms may be needed for stability;
such as magnetic curvature terms. Unfortunately, attempts to use higher-order terms
have resulted in divergent asymptotic series, limiting the accuracy to small plasma
volumes. Most series go to first, second or sometimes third order in the distance
from the axis in the relevant quantities, with any more terms typically reducing
accuracy rather than improving it. Therefore, if we want to include more physics
objectives over larger volumes in the near-axis expansion, we must overcome the
issue of series divergence.

Unfortunately, the issue of divergence is confounded by many of the assump-
tions that can be incorporated into the near-axis expansion. The most extreme
case is that of QA stellarators, where it has been shown that the system of equa-
tions for quasi-axisymmetry is overdetermined beyond third order in the expansion.
Obviously, unless one relaxes the problem (e.g. via anisotropic pressure; Rodríguez
& Bhattacharjee 2021), one cannot generally ask for a convergent QA near-axis
expansion in such a circumstance. In the simpler case of non-quasisymmetric stellara-
tors with smooth pressure gradients and nested surfaces, it is still unknown whether
there are non-axisymmetric solutions to MHS (Grad 1967; Constantin et al. 2021a).
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Recent work has found that perturbing for small force (Constantin et al. 2021b)
or non-flat metrics (Cardona et al. 2024) allow for integrable solutions, but cur-
rently, there is no guarantee of solutions of MHS, let alone convergent asymptotic
expansions.

So, to begin the task of building convergent numerical methods for the near-
axis expansion, we focus on a problem we know is solvable: Laplace’s equation
for vacuum magnetic potentials following Jorge et al. (2020). This can be solved in
direct (Mercier) coordinates (Mercier 1964) with no assumption of nested surfaces.
Additionally, because solutions of Laplace’s equation are real analytic, there exist
near-axis expansions of the equation that converge within a neighbourhood of the
axis. Despite these guarantees, even the near-axis expansion of Laplace’s equation
diverges.

In this paper, we show that the vacuum near-axis expansion diverges for a reason:
Laplace’s equation as a near-axis expansion is ill-posed (§ 3, following background
in § 2). To address this issue, we introduce a small regularisation term to Laplace’s
equation and expand to find a regularised near-axis expansion. We do this by includ-
ing a viscosity term to Laplace’s equation that damps the highly oscillatory unstable
modes responsible for the ill-posedness. By appropriately bounding the input of the
near-axis expansion in a Sobolev norm, we prove that this term results in a uniformly
converging near-axis expansion within a neighbourhood of the axis.

Following the theory, we describe a pseudo-spectral method for finding solutions
to the near-axis expansion to arbitrary order in § 4. In § 5, we use the numeri-
cal method to show two examples of high-order near-axis expansions: the rotating
ellipse and Landreman–Paul (Landreman & Paul 2022). We find that the near-axis
expansion magnetic field, rotational transform and magnetic surfaces can converge
accurately near the axis for unperturbed initial data. The region of convergence
is observed to be dictated by the distance from the magnetic axis to the coils.
Then, by perturbing the on-axis inputs, we show that the regularised expansion obeys
Laplace’s more accurately farther from the axis. Finally, we conclude in § 6.

2. Background

In this section, we introduce the near-axis expansion for the vacuum field equi-
librium problem. This presentation follows closely that of Jorge et al. (2020). We
begin with a discussion of the geometry of the near-axis problem (§ 2.1), introduce
the near-axis expansion (§ 2.2), define the magnetic field problem (§ 2.3) and finally
discuss finding straight field-line magnetic coordinates (§ 2.4). For a fuller discussion
of the near-axis expansion to all orders, including with pressure gradients, we rec-
ommend the papers by Jorge et al. (2020) and Sengupta et al. (2024). For ease of
reference, we have summarised the equations in the background in box (2.30) for
the magnetic field and box (2.60) for magnetic coordinates.

2.1. Near-axis geometry
We define a magnetic axis as a C∞ closed curve r0 :T→R

3 with r ′
0 �= 0 and a

non-zero tangent magnetic field (see § 2.3 for details about the field). We define a
near-axis domain about the axis with radius σ as

�σ = {
r ∈R

3 | ∀s ∈T, ‖r − r0(s)‖<σ
}
. (2.1)
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FIGURE 1. Schematic of the direct near-axis Frenet–Serret coordinate frame.

We note that the assumption that the axis is infinitely differentiable is necessary
for the near-axis expansion to formally go to arbitrary order, and we will even-
tually reduce the required regularity for the inputs of the regularised expansion,
summarised in box (3.30).

We define a direct coordinate system r :�0
σ →�σ where (ρ, θ, s) ∈�0

σ = [0, σ )×
T

2 is the solid torus as (see figure 1)

r(ρ, θ, s)= r0(s)+ Q(s)

(
x
y
0

)
, (x, y)= (ρ cos θ, ρ sin θ), (2.2)

where Q is an orthonormal basis for the local coordinates at the axis with the tangent
vector in the third column, i.e. t = r ′

0/�
′ = Qe3, where we assume �′ = ∥∥r ′

0

∥∥> 0.
Both the x = (x, y, s) and the q = (ρ, θ, s) coordinate frames are useful, as x is
non-singular with respect to the coordinate transformation, while q diagonalises the
near-axis expansion operator. To perform calculus in the q basis, we require the
induced metric from R

3. For this, we first compute the coordinate derivative

F = dr
dq

= Q

(
cos θ −ρ sin θ 0
sin θ ρ cos θ 0

0 0 �′

)
+ QK xeT

3 , (2.3)

where K is an antisymmetric matrix determining the derivative of Q in the near-axis
basis Q ′(s)= QK . Using this matrix, the metric is computed as

g = F T F. (2.4)

For the numerical examples in this paper, we specifically consider the Frenet–
Serret frame, meaning the local basis Q and its derivative are defined by

Q =
( | | |

n b t
| | |

)
, K = �′

( 0 −τ κ
τ 0 0

−κ 0 0

)
, (2.5)

where κ = ‖t ′‖ /�′ is the axis curvature, n = ‖t ′‖ /(κ�′) is the normal vector, b =
t × n is the binormal vector and τ = − ∥∥b′∥∥ /�′ is the axis torsion. Alternative forms
of the curvature and torsion are

κ =
∥∥r ′

0 × r ′′
0

∥∥
(�′)3

, τ = (r ′
0 × r ′′

0) · r ′′′
0∥∥r ′

0 × r ′′
0

∥∥2 . (2.6)

For the Frenet–Serret coordinate system to be well-defined and non-singular on
�0
σ , we require σ−1 > κ > 0. In particular, no straight segments are allowed in
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the Frenet–Serret frame, disallowing quasi-isodynamic (QI) stellarators (Mata et al.
2022). An alternative choice for axis coordinates that allow for straight segments is
Bishop’s coordinates (Bishop 1975; Duignan & Meiss 2021).

Replacing the Frenet–Serret basis into (2.3), we obtain

F = Q

(
cos θ −ρ sin θ −�′τρ sin θ
sin θ ρ cos θ �′τρ cos θ

0 0 hs

)
, g =

⎛
⎝1 0 0

0 ρ2 �′τρ2

0 �′τρ2 (�′)2τ 2ρ2 + h2
s

⎞
⎠,
(2.7)

where
hs(ρ, θ, s)= �′(1 − κρ cos θ). (2.8)

The local volume ratio is given by
√

g = det F = ρhs (2.9)

and the inverse metric is

g−1 =
⎛
⎝1 0 0

0 (�′)2τ 2h−2
s + ρ−2 −�′τh−2

s
0 −�′τh−2

s h−2
s

⎞
⎠. (2.10)

To find metrics associated with the more general coordinate system (2.2), we
consider transformations of the form (ρ, θ, s) 
→ (ρ, ω(θ, s), s), where ω(θ, s)=
θ + λ(s). This transformation rotates the orthonormal frame, changing the metric to

g =
⎛
⎝1 0 0

0 ρ2 �′Tρ2

0 �′Tρ2 (�′)2T 2ρ2 + h2
s (ρ, ω− λ, s),

⎞
⎠, T = τ − λ′

�′ . (2.11)

In this way, the general set of near-axis frames can be represented by a simple
replacement of τ with T . A special case of this transformation is when T = 0,
yielding (Mercier 1964)

λ=
∫ s

0
τ(s)�′(s)ds. (2.12)

In this coordinate frame, the metric becomes diagonal: g = Diag(1, ρ2, h2
s (ρ, ω−

λ, s)). The fact that g is diagonalised is convenient for theoretical manipulations,
but variables expressed in terms of ω are multivalued for curves with non-integer
total torsion. This unfortunate consequence is important for numerical methods,
as Fourier series cannot be used in s and additional consistency requirements are
necessary. This is part of the motivation for using the Frenet–Serret frame for the
numerical examples herein.

2.2. Near-axis expansion
Now, we consider expansions of functions A ∈ C∞(�0

σ ) about the magnetic axis.
We formally expand in small distances from the axis ρ� min κ−1 as

A(ρ, θ, s)=
∞∑

m=0

Am(θ, s)ρm, Am(θ, s)=
m∑

n=0

Amn(s)e
(2n−m)iθ ,

Amn(s)=
∑
k∈Z

Amnkeiks . (2.13)
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This expansion is not guaranteed to converge anywhere for A ∈ C∞, but it is
asymptotic to A near the axis, i.e.

|A − A<m| =O(ρm), (2.14)

where we define A<m as the partial sum

A<m =
m−1∑
n=0

Anρ
n. (2.15)

In defining magnetic coordinates, we also find it convenient to expand A in x as

A(x, y, s)=
∞∑
μ=0

μ∑
ν=0

Aμν(s)x
μ−ν yν, (2.16)

where we use Latin indices for the q frame and Greek indices for the x frame. If we
require A to be real-analytic on �0

σ , there additionally exists a σ ′ <σ so that the the
asymptotic series converges uniformly on �0

σ ′ (this does not necessarily extend to all
of �0

σ ).
Throughout this paper, we attempt to minimise the number of complicated sum-

mation formulae resulting from the near-axis expansion (NAE). For instance, if we
have two functions A, B ∈ C∞ and we want the mth component of the series of
C = AB, we will write Cm = (AB)m , rather than

Cm =
m∑
�=0

Am−�B�. (2.17)

As expressions become increasingly complicated, this notation provides a concise
description of the mathematics involved. In Appendix B, we define a number of
relevant operations on series that the interested reader can use to expand the expres-
sions within this paper. In § 4, we discuss how this is similarly convenient for the
purposes of programming NAE operations. Rather than implementing residuals via
complicated summation formulae, the operations in Appendix B are called, allowing
for a simple framework for developing new code.

An important exception to the general rule of condensing notation is in defining
any linear operators that must be inverted through the course of an asymp-
totic expansion. Detailed understanding of such operators are necessary for both
numerical implementation and analysis on the series.

2.3. Vacuum fields
In the steady state, the vacuum magnetic field B ∈ C∞(�0

σ ) satisfies

∇ · B = 0, J = ∇ × B = 0, (2.18)

where J is the plasma current density. The fundamental near-axis assumption is that
B evaluated on the axis is non-zero and parallel to the magnetic axis, i.e. for some
B0 ∈ C∞(T),

B(0, θ, s)= B0(s)t(s). (2.19)

Off the axis, we express the magnetic field on �0
σ as

B = ∇φ + B̃, B̃ = ∇
[∫ s

0
B0(s

′)�′(s ′)ds ′
]

= B0(s)�
′(s)∇s, (2.20)
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where φ ∈ C∞(�0
σ ) is the magnetic potential satisfying ∇φ|ρ=0 = 0. Then, taking

the divergence of (2.20), we find the magnetic scalar potential satisfies Poisson’s
equation,

φ = −∇ · B̃. (2.21)

By construction, the field B in (2.20) is locally the gradient of some function, so
it is curl-free. This means the contributions from B̃ in (2.20) can locally be absorbed
to recover Laplace’s equation for the potential. However, because �σ is not simply
connected and B · t is single-valued on axis, the closed-loop axis integral

∮
B · d�

demonstrates that it is not possible for B to be globally the gradient of a single-
valued function φ. In contrast, the Poisson’s equation formulation contains only
single-valued functions, which is convenient both numerically and analytically.

In coordinates, we can write the magnetic field in (2.20) as

Bi = gi j ∂φ

∂q j
+ B̃i , B̃i = B0�

′gi j ∂s

∂q j
, (2.22)

where we assume summation over repeated indices and gi j and gi j are the com-
ponents of the metric and inverse metric, respectively. Then, Poisson’s equation in
coordinates becomes

√
g−1 ∂

∂qi

(√
ggi j ∂φ

∂q j

)
= −√

g−1 ∂

∂qi

(√
gB̃i

)
. (2.23)

Multiplying this by hs and expanding this in the q coordinate system, we have

1
ρ2

[
ρ
∂

∂ρ

(
Aρ
∂φ

∂ρ

)
+ ∂

∂θ

(
B
∂φ

∂θ

)]
=

− ∂

∂θ

(
C
(
∂φ

∂s
+ B0�

′
))

− ∂

∂s

(
C
∂φ

∂θ

)
− ∂

∂s

(
D
(
∂φ

∂s
+ B0�

′
))

, (2.24)

where

A = hs, B = hs + ρ2h−1
s (�

′)2τ 2, C = −h−1
s �

′τ, D = h−1
s . (2.25)

From here, we can substitute the asymptotic expansions of φ and the coefficients
A, B, C and D into (2.24). At each order in ρ, Poisson’s equation becomes

�′
(

m2 + ∂2

∂θ 2

)
φm = − (∇ · B̃)m−2 − (φ<m)m−2

= − m(m − 1)A1φm−1 −
[
∂

∂θ

(
B
∂φ<m

∂θ

)]
m

−
[
∂

∂θ

(
C
(
∂φ<m

∂s
+ B0�

′
))

+ ∂

∂s

(
C
∂φ<m

∂θ

)]
m−2

(2.26)

−
[
∂

∂s

(
D
(
∂φ<m

∂s
+ B0�

′
))]

m−2

,

where A1 = (hs)1 = −�′κ cos θ . The right-hand side of (2.26) does not depend on
orders of φ higher than φm−1, so inverting the left-hand-side operator gives an
iteration for obtaining φm at each order.
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However, the operator �′(m2 + (∂2/∂θ 2)) is singular, so we must confirm there are
no secular terms. Specifically, we always have an unknown homogeneous solution
at O(m) of the form φm0e−imθ + φmmeimθ . For this, we use Fredholm’s alternative,
which states that (2.26) is solvable if the right-hand side is orthogonal to the null
space of the adjoint of the operator on the left-hand side. Because the operator is
self-adjoint, the right-hand side must be orthogonal to e±imθ , i.e.〈

m(m − 1)A1φm−1 +
[
∂

∂θ

(
B>0 ∗ ∂φ<m

∂θ

)]
m

+
[
∂

∂θ

(
C
(
∂φ<m

∂s
+ B0�

′
))]

m−2

+
[
∂

∂s

(
C
∂φ

∂θ

)
+ ∂

∂s

(
D
(
∂φ<m

∂s
+ B0�

′
))]

m−2

, e±imθ

〉
= 0,

(2.27)

where the inner product is defined by

〈 f, g〉 =
∫ 2π

0
f (θ)g(θ)dθ. (2.28)

The m − 2 coefficient of any analytic function is orthogonal to eimθ , so we can
remove the C and D terms. The same argument allows us to remove the torsion terms
in B. This means only contributions from A1 = B1 = −�′κ cos θ and φm−1 survive, so
we only need to verify〈

m(m − 1)φm−1 cos θ +
[
∂

∂θ

(
∂φm−1

∂θ
cos θ

)]
m

, e±imθ

〉
= 0. (2.29)

Using the identity cos θ = (eiθ + e−iθ )/2, a quick calculation confirms the above
identity holds.

Now, we consider the problem where φ is unknown. The fact that the Fredholm
condition is automatically satisfied at each order implies that φm0 and φmm are free
parameters at each order in the near-axis expansion. So, these coefficients are an
infinite-dimensional set of initial conditions for the near-axis expansion of Poisson’s
equation. Intuitively, one can think of the coefficients φm0 and φmm as specifying
the Fourier coefficients of an infinitely thin tube about the magnetic axis. In this
way, the imposition of conditions at each order compensates for the fact that partial
differential equations (PDEs) typically satisfy conditions on co-dimension-1 surfaces,
whereas the near-axis expansion is specified on a co-dimension-2 curve.

In addition to φm0 and φmm as free parameters, we also treat r0 and B0

as inputs to the near-axis problem. The requirement that the magnetic
field be tangent to the axis with magnitude B0 results in a constraint that
φ00 = φ10 = φ11 = 0. In total, the direct vacuum near-axis problem can be written as

input: axis r0 ∈ C∞, on-axis field B0 ∈ C∞,

higher moments φm0, φmm ∈ C∞ for m 2,

assuming: �′ > 0, κ > 0, B0 > 0, φ00 = φ10 = φ11 = 0,

solve: �′
(
m2 +

∂2

∂θ2

)
φm = −(∇ · B̃)m−2 − (Δφ<m)m−2,

output: potential φ, magnetic field B = ∇φ+ B̃.

(2.30)
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FIGURE 2. A schematic of the process of finding straight field-line coordinates. On the left,
we plot the surfaces of the magnetic field (hx , hy) on a cross-section for fixed s. Moving one
plot to the right, the leading correction transforms to a coordinate frame where the main elliptic
component is eliminated. Going one further, the next correction accounts for the most prominent
triangularity. This process continues until, in (ξ, η) coordinates, the magnetic surfaces are nested
circles.

2.4. Straight field-line coordinates: leading order
Given a solution magnetic field from box (2.30), we consider the problem of

finding straight field-line magnetic coordinates. We assume that the magnetic field
is locally elliptic about the axis and the rotation number is irrational, so that the
leading-order behaviour is rotation about the magnetic axis. This means that both
hyperbolic orbits (x-points) and on-axis resonant perturbations are excluded from
this work. In the language of Hamiltonian normal forms, the leading order field-line
dynamics is conjugate to a non-resonant harmonic oscillator; see Burby et al. (2021)
and Duignan & Meiss (2021) for a more rigorous derivation of magnetic coordinates
in the near-axis expansion. We note that our process of finding coordinates is formal:
we make no claims that this problem converges in the limit. However, in § 5, we find
that this procedure appears to converge well numerically.

To find magnetic coordinates, we attempt to build a conjugacy between
magnetic field-line dynamics ṙ = (Bs)−1 B(r) and straight field-line dynamics
ξ̇ = (−ι(ψ)η, ι(ψ)ξ, 1), where ξ = (ξ, η, s) ∈R

2 ×T are Cartesian coordinates,
ψ = ξ 2 + η2 is a flux-like coordinate and ι is the rotational transform. To make
the connection with straight field-line coordinates precise, consider the transforma-
tion to polar coordinates (ξ, η)→ √

ψ(cos γ, sin γ ). Then, the field-line is traced by
(ψ̇, γ̇ , ṡ)= (0, ι(ψ), 1), i.e. magnetic field lines are straight with slope ι. However,
we use the Cartesian version of magnetic coordinates because it removes the
coordinate singularity associated with polar coordinates, simplifying the following
steps.

There are two main steps to our process of finding magnetic coordinates: the
leading-order problem and the higher-order problems (see figure 2 for a sketch of
the process). If we use the notation x̃ = (x, y) and ξ̃ = (ξ, η) for the out-of-plane
coordinates, the leading order transformation takes the form

ξ̃ 1 = ∂ ξ̃ 1

∂ x̃
x̃ = G0 x̃ =

(
ξ10x + ξ11y
η10x + η11 y

)
. (2.31)

We will find that the problem for G0 is an eigenvalue problem for the on-axis rotation
number, as is typical for the linearised dynamics about a fixed point. In the following
section, we will discuss the inductive step to higher orders.
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To begin, consider the contravariant form of the Cartesian near-axis magnetic field

1
Bs

B = 1
Bs

dr
dx

(
Bx

B y

Bs

)
= Bx

Bs

∂ r
∂x

+ B y

Bs

∂ r
∂y

+ ∂ r
∂s
. (2.32)

We would like to equate this to the straight field-line dynamics as

1
Bs

B = dr
dξ

(−ι(ψ)η
ι(ψ)ξ

1

)
, (2.33)

where ι depends smoothly upon the radial label as

ι= ι0 + ι2ψ + ι4ψ
2 + . . . , (2.34)

where we emphasise ιμ = 0 for odd μ. Multiplying both sides by dξ/dr , we find the
Floquet conjugacy problem

∂ ξ̃

∂s
= −G(ξ)h̃

x + ι(ψ(ξ))J ξ̃ , (2.35)

where

G = ∂ ξ̃

∂ x̃
, h̃

x =
(

hx

hy

)
= 1

Bs

(
Bx

B y

)
, J =

(
0−1
1 0

)
, (2.36)

where J is known as the symplectic matrix. Our problem is to solve (2.35) for
ξ(x, y), η(x, y) and ι(ψ).

To find the leading-order problem for (2.35), we note the magnetic field (hx , hy)
is linear at leading order:

h̃
x =

(
hx

10x + hx
11 y

hy
10x + hy

11 y

)
+O(ψ)= H0(s)x̃ +O(ψ). (2.37)

Substituting this, (2.31) and ι= ι0 +O(ψ) into (2.35), we have

∂G0

∂s
+ G0 H0 = ι0 J G0. (2.38)

The leading order problem (2.38) is a Floquet eigenvalue problem for the linearised
field-line dynamics about the magnetic axis. Assuming that the near-axis expansion
is elliptic at leading order, the value of ι0 is real. Otherwise, ι0 is not real, meaning
ellipticity can be numerically verified for a given input.

There are many equivalent solutions to (2.38), owing to the symmetries that if
(G0, ι0) satisfies (2.38), then the following are also solutions:

(R(ns)G0, n + ι0), (J G0, ι0),

(
0 1
1 0

)
G0,−ι0, (2.39)

where R is a rotation matrix

R(θ)=
(

cos θ − sin θ
sin θ cos θ

)
. (2.40)
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The question of which solution to choose is then a question of practicalities. For
instance, one could choose the rotational transform corresponding to a non-twisting
right-handed coordinate frame ξ 1. Here, ‘non-twisting’ means that closed coordinate
lines near the axis, implicitly defined as curves r(x, y, s) where ξ̃(x, y, s) �= 0 is held
constant, can be continuously deformed to a point on R

3\r0. In other words, the
coordinates lines do not link with the axis. In this frame, ι0 agrees with the intuitive
definition of the rotational transform as the limiting ratio of poloidal turns divided
by toroidal turns of fieldlines about the axis. Other choices may have other benefits,
e.g. there may be an eigenfunction that G0 behaves best numerically. In this paper,
we opt for an option that is easy to implement: we take the real solution where
ι0 has the smallest magnitude and det G0 is positive. From here, other equivalent
coordinates can easily be found by applying the transformations in (2.39).

For the scaling of G0, we choose ψ to be the actual magnetic flux at leading order.
The formula for the flux is

ψ =
∫

r(Dψ ,0)
B · t dA =

∫
r(Dψ ,0)

Bs dA(r), (2.41)

where Dψ = {(ξ, η) | ξ 2 + η2 <ψ} and

Bs = gsj B j = ∂φ

∂s
+ B0�

′. (2.42)

Pulling this back to the ξ frame, we have

ψ =
∫

Dψ

Bs(x(ξ , s), 0)(det G)−1 dA(ξ). (2.43)

Both Bs and G0 are constant in ξ to leading order, so (2.43) at leading order becomes∫
Dψ

Bs(x(ξ , s), 0)(det G)−1 dA(ξ)= (Bs)0

det G0
πψ +O(ψ2). (2.44)

Setting this equal to ψ , we find

det G0 = π(Bs)0, (2.45)

where we note that this is only possible when (Bs)0 is chosen to be positive.

2.5. Straight field-line coordinates: higher order
Now that we have the leading-order behaviour, we iterate to go to higher order.

To do so, first define the near-axis expansion of ξ̃ near the axis as

ξ̃ =
∞∑
μ=1

ξ̃μ(x̃, s), ξ̃μ =
μ∑
ν=0

ξ̃μν(s)x
μ−ν yν, (2.46)

and define the partial sums as

ξ̃�μ =
μ∑

μ′=1

ξ̃μ′, (2.47)
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where at leading order, ξ̃�1 = ξ̃ 1 = G0 x̃.
At each order in the iteration, we consider the update to be a function of the

previous coordinates, i.e.

ξ̃�μ+1

(
ξ�μ, η�μ, s�μ

)
= ξ̃�μ +

μ∑
ν=0

ξ̃μν

(
s�μ

)
ξ
μ−ν
�μ η

ν
�μ,

= ξ̃�μ +
μ∑
ν=0

ξ̃μνξ
μ−ν
1 ην1 +O

(
ψ(μ+2)/2

)
. (2.48)

We explicitly write the transformed toroidal coordinate s�μ = s so that it is clear
that (∂/∂s) and (∂/∂s�μ) are different operators. The purpose of performing the
update in this way is primarily to make the update step as clear as possible.

To wit, the magnetic field in the new frame satisfies

1
Bs

B = dr
dξ�μ

(
hξ�μ
hη�μ

1

)
= dr

dξ

(−ιη
ιξ
1

)
. (2.49)

We can use the first equality to write

h̃
ξ�μ
(ξ�μ)=

(
hξ�μ

(
ξ�μ

)
hη�μ

(
ξ�μ

))

= ∂ ξ̃�μ
∂ x̃

h̃
x (

x
(
ξ�μ

))+ ∂ ξ̃�μ
∂s

, (2.50)

= [ι(ψ)J ξ̃ ]�μ +
[
∂ ξ̃�μ
∂ x̃

h̃
x
(x(ξ�μ))

]
>μ

, (2.51)

where we use the notation f>μ =∑
ν>μ fν . To get from the second to the third line,

we have used the inductive assumption that ξ�μ matches ξ up to order μ, meaning
that ξ�μ is a straight field-line coordinate system up to order μ. In this way, we will
find that the update residual depends neatly upon the transformed magnetic field.

It is worth noting that (2.51) has two new operations that have not been introduced
so far. The first is that we are computing x(ξ�μ), i.e. we are inverting the coordinate
transformation. The second is that we are composing functions with this inversion
as h̃

x
(x(ξ�μ)). So, for any function f (x) and coordinate transformation ξ(x), we

can compute the equivalent function in indirect coordinates as f (ξ) using these
two steps. Moreover, the inverse transformation x(ξ) can be precomputed for all
transformations one wishes to perform of this type. This gives a framework to move
back and forth between direct and indirect near-axis formalisms to high order. For
more details on how these transformations are computed, see Appendices (B.6) and
(B.7).

Given the residual field (2.51), we can use the second equality in (2.49) to find the
updated equation

∂ ξ̃

∂s�μ
= − ∂ ξ̃

∂ ξ̃�μ
h̃

ξ�μ(
ξ�μ

)+ ι(ψ)J ξ̃ . (2.52)
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Note that this has the exact same form as (2.35), except we have shifted the
underlying coordinates. Substituting ξ̃�μ+1 = ξ̃�μ + ξ̃μ into (2.52), we obtain

∂ ξ̃μ+1

∂s�μ
+ ι0

∂ ξ̃μ+1

∂ ξ̃�μ
J ξ̃�μ − ι0 J ξ̃μ+1 = −h̃

ξ�μ
μ+1 + ιμψ

μ/2 J ξ̃�μ

= Fμ+1. (2.53)

Because the leading order problem (2.38) is an eigenvalue problem, (2.53) has the
form of a higher-order correction to the eigenvalue and eigenfunction. To see what
we might expect, consider the eigenvalue problem K y = λM y, where each term is
expanded in a small parameter, e.g. K = K0 + K1ε + K2ε

2 + . . . for small ε. The
analogous update equation would be

(K0 − λ0 B0) yμ = λμM0 y0 + Rμ, (2.54)

where Rμ contains all of the residual terms. Assume for simplicity that λ0 is an
isolated eigenvalue. Then, there is a single secular term, which can be identified by
taking the inner product of the above expression with the leading left eigenvector z0

to give λμ = −(zT
0 Rμ)/(zT

0 M0 y0). Once this is satisfied, the equation can be solved
for yμ, where we typically choose the free component in y0 so that the norm is
constant.

To perform the same steps on (2.53), we first diagonalise the left-hand-side
operator by converting to polar coordinates (ξ�μ, η�μ)= R�μ(cos��μ, sin��μ) as

∂ ξ̃μ+1

∂s�μ
+ ι0

∂ ξ̃μ+1

∂��μ
− ι0 J ξ̃μ+1 = Fμ+1, (2.55)

where

ξ̃μ+1 = (R�μ)
μ+1

μ∑
n=0

∑
�∈Z

ξ̃μ+1,n�e
(2n−μ)iθ+i�s�μ. (2.56)

After substitution, we find that

((ι0(2n −μ− 1)+ �)iI − ι0 J ) ξ̃μ+1,n� = Fμ+1,n�, (2.57)

where the 2 × 2 left-hand-side matrix has the eigenvalues λμ+1,n�0 = ι0i(2n −μ)+ i�
and λμ+1,n�1 = ι0i(2n −μ− 2)+ i� with corresponding right eigenvectors (v0, v1)=
([−i/

√
2, 1/

√
2], [i/√2, 1/

√
2]). So, the resulting updates in the coefficients are

ξ̃μ+1,n� =
∑

k∈{0,1}

1
i(ι0(2n −μ− 2k)+ �)

〈
vk, Fμ+1,n�

〉
vk, (2.58)

where vk are the corresponding left eigenvectors due to (ι0(2n −μ− 1)+ �)iI − ι0 J
being skew-adjoint.

There are two cases where the update (2.58) fails. The first case is when 2n −
μ− 2k = 0 and �= 0, occurring only when μ is even. This is the standard secularity
that indicates that ιμ must be updated, giving the condition that

〈
v0, Fμ+1,μ/2,0

〉=〈
v1, Fμ+1,μ/2+1,0

〉= 0 for single-valued solutions, where we note that these formulae
are equivalent for real magnetic fields. The resulting formula is

ιμ = h
η�μ
μ+1,μ/2,0 − ih

ξ�μ
μ+1,μ/2,0. (2.59)
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The second case of failure is when ι0 is rational, as then there are other values of
(μ, n, k, �) such that (2.58) is singular. This is attributed to the expanding number of
θ modes at each order, where higher-order poloidal perturbations resonate with the
axis. To avoid this, extra resonant terms in the higher-order magnetic field must be
introduced to avoid secularity (Duignan & Meiss 2021) (equivalently, this requires
adding terms to the Hamiltonian normal form). Here, we assume that ι0 is irrational
so that the iteration is well defined.

We note that there is still one undetermined part of the problem: what
value to choose for 〈v0, ξ̃μ+1,μ/2,0〉 and its complex conjugate. Because this
is arbitrary, we currently set this coefficient to 0. However, other options
could be to choose this value to improve the radius of convergence or to
match the flux (2.43). In summary, the straight field-line coordinate process is

dleficitengameerf-ecnegrevid:tupni B,

assuming: elliptic on axis with irrational ι0,

leading eigenvalue problem:
∂G0

∂s
+G0H0 = ι0JG0,

detG0 = π(Bs)0, |ι0| minimized,

where: ξ̃ = (ξ, η)T = G0(s)x̃+O(ψ),

h̃x(x) =
1

Bs

(
Bx

By

)
= H0(s)x̃+O(ψ),

higher order linear solve:
∂ξ̃μ+1

∂s μ
+ ι0

∂ξ̃μ+1

∂ξ̃ μ

J ξ̃ μ − ι0J ξ̃μ+1 = Fμ+1,

ιμ = h
η µ

μ+1,μ/2,0 − ih
ξ µ

μ+1,μ/2,0, (μ even)

where: Fμ+1 = −h̃
ξ µ

μ+1 + ιμψ
μ/2J ξ̃ μ,

h̃ξ µ(ξ μ) =
∂ξ̃ μ

∂x̃
h̃x(x(ξ μ)),

output: rotational transform ι,

straight field-line coordinates ξ.

(2.60)

3. Ill-posedness and regularisation

In this section, we describe how the near-axis problem is ill-posed (§ 3.1) and
how we can regularise the problem (§ 3.2). In § 3.3, we state how the near-axis
expansion of φ converges under suitable input assumptions (Theorem (3.8) and
Corollary (3.9)). Most proofs can be found in Appendix A, where the individual
sections are referred to after each statement.
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3.1. Ill-posedness
We define a problem as ill-posed if it is not well-posed, where the standard

definition of a well-posed problem is that:

(i) the solution exists;

(ii) the solution is unique;

(iii) the solution is continuous in the initial data.

We note that the interpretations of these statements depend on what space we
require the solution to belong to and over which topology continuity is described
in. For instance, it is straightforward to show existence and uniqueness in the sense
of a formal power series.

PROPOSITION 3.1. Consider the near-axis problem in box (2.30), with all inputs in
C∞. Then, there exists a unique formal power series solution φn(s) at each order.

Proof. Simply notice that the residual at each order is C∞ if every previous order
is. Then, because the inverse of ⊥ of C∞ functions is C∞, we satisfy the Fredholm
alternative, and we specify the null space the operator at each order, we have a
unique solution. �

Note that this proposition says nothing about the convergence of the power
series to a solution off-axis; it only shows that we can find the coefficients of the
power series. So, formal existence does not necessarily imply good or consistent
computational results.

Another straightforward existence result for harmonic inputs is the following.

PROPOSITION 3.2. Let B = ∇φ + B̃ be a valid vacuum magnetic field on �σ with a
real-analytic axis r0 and σ > 0. Then, the near-axis expansion using the coefficients
corresponding to φ converges uniformly on a smaller domain �σ ′ with 0<σ ′ <σ .

Proof. See § A.1 �

Proposition (3.2) is a useful result because it says that vacuum fields can, in prin-
ciple, be written as solutions to the infinite near-axis problem. However, this is a
difficult theorem to use in practice, as it is difficult to verify a priori whether the
input data to the near-axis expansion agree with a solution of Poisson’s equation.

So, for a more computational approach, we must define normed spaces of inputs
and outputs that agree with notions of convergence. To intuit what the correct space
may be, we observe that the radial direction behaves as a ‘time-like’ variable, whereas
the θ and s behave more like spatial variables. That is, the near-axis PDE can be
thought of as propagating surface information off the axis. This motivates a decision
to separate our treatment of these coordinates. Moreover, we desire convergence in
a power series in the radial variable, so we choose to treat it in an analytic manner.
In contrast, the coefficients φm(θ, s) are obtained by solving a linear PDE at each
order, so we treat them in a Sobolev sense as a function of θ and s.

To this end, let α= (α1, α2) be a multi-index of degree 2 and |α| =∑
j α j . We

define the H q Sobolev norm of functions f :T2 →R as

‖ f ‖2
Hq =

∑
|α|�q

‖Dα f ‖2
L2 , (3.1)
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where

Dα f = ∂ |α| f

∂θα1∂sα2
, ‖ f ‖2

L2 =
∫
T2

| f |2 dμ, (3.2)

and μ is the Lebesgue measure on T
2. We additionally define the Cq norm of a

q -times differentiable function f :T2 →R as

‖ f ‖Cq =
∑
|α|�q

sup
(θ,s)∈T2

|Dα f (θ, s)| . (3.3)

Then, we define the following convenient near-axis function space.

DEFINITION 3.3. Let σ > 0 and W be a Banach space on functions on T
2. We define

a function f :�0
σ →R

d as (σ,W )-analytic if f has a convergent near-axis expansion
of the form

f (ρ, θ, s)=
∞∑

m=0

fm(θ, s)ρm, fm(θ, s)=
m∑

n=0

fmn(s)e
(2n−m)iθ , (3.4)

where the norm
‖ f ‖σ,W = sup

n

(
σ n ‖ fn‖W

)
(3.5)

is bounded. Here, convergence of the near-axis expansion is pointwise in ρ and in norm
in (θ, s), i.e. for all ρ < σ ,

lim
M→∞

∥∥∥∥∥ f (ρ, ·, ·)−
M∑

m=0

fm(·, ·)ρm

∥∥∥∥∥
W

→ 0. (3.6)

Paralleling standard linear regularity theory (Evans 2010), we will consider near-
axis solutions φ to belong to a Sobolev (σ, H q)-analytic space, while near-axis PDE
coefficients belong to differentiable (σ,Cq)-analytic spaces. Because the coefficients
of Poisson’s equation (2.21) are functions of the metric, control on the (σ,Cq)-
analytic norm of the coefficients in the Frenet–Serret coordinate system will be
entirely determined by the differentiability class of the axis r0 ∈ Cq(T).

To build some intuition for (σ,W )-analytic functions, we turn to some straight-
forward facts about their convergence. Let f be (σ,W )-analytic. Then, for any
F � ‖ f ‖σ,W , the definition of the norm ‖·‖σ,W tells us that the coefficients are
bounded as

‖ fm‖W � Fσ−m . (3.7)

This means that surfaces of f converge geometrically for ρ∗ <σ in W , i.e.

∥∥ f |ρ=ρ∗
∥∥

W
� F

∞∑
m=0

(
ρ∗

σ

)m

= F

1 − ρ∗/σ
. (3.8)

For a more practical statement of pointwise convergence, we have the following
proposition.

PROPOSITION 3.4. Let f be (σ,Cq)-analytic for q � 0. Then, f is continuous and
q -times continuously differentiable in �0

σ .

Proof. See § A.2 �
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COROLLARY 3.5. Let f be (σ, H q)-analytic for q � 2. Then, f is (σ,Cq−2)-analytic,
continuous and (q − 2)-times continuously differentiable in �0

σ .

Proof. Because H q(T2) is continuously embedded in Cq−2(T2), f is also (σ,Cq−2)-
analytic. Apply Proposition (3.4). �

A direct consequence of the preceding statements is that both (σ,C0)-analytic and
(σ, H 2)-analytic functions are continuous in 3-D, but (σ, H 1)-analytic functions need
not be.

Now, let us return to the question of ill-posedness. To define the norm of the
input, let

φ(IC) =
∞∑

m=0

ρm
(
φm0e−imθ + φmmeimθ

)
. (3.9)

This allows us to naturally define the norm of the input functions φm0 and φmm via
a single (σ, H q)-analytic norm. Using this, we prove that the problem is ill-posed in
the following sense.

THEOREM 3.6. Let r0, B0, φm0, φmm ∈ C∞ for 2� m <∞ with �′, κ > 0 and q0 �
0. The near-axis solution φ of (2.30) is not continuous to perturbations
δr0, δB0, δφm0, δφmm ∈ C∞ under the C4+q0(T) norm on r0, the H 1+q0(T) norm on
B0, the (σ0, H 2+q0)-analytic norm on φ(IC) with σ0 > 0, and any (σ, H q)-analytic norm
on the output φ with σ > 0 and q � 2, i.e. the near-axis expansion is ill-posed.

Proof. See § A.3 �

In other words, Theorem (3.6) tells us that smooth bounded perturbations in the
input lead to unbounded deviations in the solution, even if the problem is initially
prepared to be convergent. The characteristic form of the unbounded perturba-
tions are high frequency in s, which grow exponentially off-axis according to their
wavenumber. When the near-axis expansion is discretised, this appears to be a poor
condition number for the truncated problem. This motivates us to introduce a term
in the near-axis expansion that damps the behaviour of the high-frequency modes.

Before we continue, we note there is a strong connection between the ill-posedness
of the near-axis expansion and the ill-posedness of coil design. It is typically the case
that magnetic fields with large gradients are difficult to approximate using plasma
coils far from the boundary (Kappel et al. 2024). This is because high frequencies in
coil design decay quickly towards the surface of the plasma – the opposite view of
the problem of high frequencies growing outward from the axis. The effect is that it
is difficult to match high frequencies on the plasma boundary, and coil design codes
also require some form of regularisation (Landreman 2017).

3.2. Regularisation
We have just seen in Theorem (3.6) that the near-axis expansion described in box

(2.30) is ill-posed. Ill-posedness can potentially cause significant problems for numer-
ical simulations, with the primary one being that discretisation refinement – both in
toroidal resolution and in the order of expansion – will not lead to convergence to
a solution. Instead, the deviation from the correct answer typically increases with
refinement.

In the proof of Theorem (3.6) (§ A.3), the problematic perturbations to the input
have small amplitude and high poloidal wavenumber, leading to exponential growth
off the axis with a rate proportional to the wavenumber. Here, we would like to
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damp the problematic high-wavenumber modes while maintaining the fidelity of the
low-wavenumber modes. We do so by adding a high-order differential operator in the
toroidal and poloidal directions, as high-order derivatives affect high wavenumbers
significantly more than low wavenumbers. Specifically, we propose the following
version of Poisson’s equation (2.21) with regularisation:

φ + ρ√
g
⊥ Pφ = −∇ · B̃. (3.10)

The new term contains the regularising differential operator ⊥ P that is at least
fourth order. The operator is composed of a product of the perpendicular Laplacian
defined by

⊥φ = 1
ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+ 1
ρ2

∂2φ

∂θ 2
, (3.11)

and the regularising differential operator P satisfying the following hypotheses.

HYPOTHESES 3.7. Let q � 0 and D � 1. We require P be an order 2D differential
operator that satisfies the following:

(i) P takes the form

P =
2D∑

m=0

m∑
n=0

P (mn)(s)
∂m+n

∂sm∂θ n
, (3.12)

where P (mn)(s) ∈ Cq ;

(ii) P is strongly elliptic, i.e. for some C > 0 and for all (x, y) ∈R
2\{0},

2D∑
n=0

P (2D,n)(s)x2D−n yn � C(x2 + y2)D, (3.13)

(iii) P is self-adjoint and semi positive-definite, i.e. for non-zero f, g ∈ H 2D(T2),

〈 f, Pg〉 = 〈P f, g〉 , 〈 f, P f 〉� 0, 〈 f, g〉 :=
∫
T2

f (θ, s)g(θ, s)dθds

(3.14)

We note that in hypothesis (i), the coefficients of P do not depend on θ . This
means poloidal Fourier modes ‘block diagonalise’ P , i.e. for f (s) ∈ H q+2D, we
have P( f (s)eimθ )= g(s)eimθ for some g(s) ∈ H q . This is sufficient for P to map
(σ, H q+2D)-analytic functions to (σ, H q)-analytic functions, while θ dependence
would make the operator non-analytic. It also means that P commutes with ⊥,
i.e. P⊥ =⊥ P on sufficiently regular functions. Moreover, the hypotheses (ii) and
(iii) are sufficient for 1 + P to be invertible, which is necessary at each step of the
iteration.

In practice, we use the operator

P =
(

− 1
K 2

(
L

2π�′
∂

∂s

)2
)D

+
(

− 1
K 2

∂2

∂θ 2

)D

, (3.15)

where K > 0 is the characteristic wavenumber of regularisation, 2D � 2 is the alge-
braic order of the frequency damping and L = ∮

�′ ds is the length of the magnetic
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axis. We have chosen the specific form of P so that it is easy to implement numer-
ically when the curve is in arclength coordinates (and therefore �′ is constant,
satisfying the smoothness requirement). Indeed, any polynomial in the arclength
derivative (�′)−1(∂/∂s) and the poloidal derivative (∂/∂θ) is simply inverted in
Fourier space. Additionally, the parameter K can be tuned from large (weak
damping) to small (strong damping) to adjust the regularisation strength.

With regularisation, the new iterative form of the near-axis expansion (3.10) is(
m2 + ∂2

∂θ 2

)
(1 + P)φm = −(∇ · B̃ +φ<m)m−2, (3.16)

where we discuss the relevant regularity in Corollary (3.9). If we use the regularisa-
tion (3.15) and s to be a scaled arclength coordinate so that �′ = L/2π is constant,
the componentwise version of the iteration is

(m2 − (2n − m)2)

(
1 +

(
k

K

)2D

+
(

2n − m

K

)2D
)
φmnk =

−(∇ · B̃ +φ<m)m−2,n−1,k (3.17)

for 0< n <m. We see that in the near-axis iteration, the regularisation damps the
high-order modes by dividing by high-order polynomials in the poloidal and toroidal
wavenumbers.

By construction, the regularisation has another benefit: the full problem can be
represented as the divergence of a perturbed magnetic field BK . If we let G =
Diag(1, ρ−2, 0), we have

Bi
K = gi j ∂φ

∂q j
+ B̃i + ρ√

g
Gi j ∂(Pφ)

∂q j
. (3.18)

The fact that there is still an underlying divergence-free field is important for the
relation between the near-axis expansion and Hamiltonian mechanics. Therefore,
the regularised near-axis expansion of the field BK can be expressed by the problem

∇ × BK = J K , ∇ · BK = 0, (3.19)

where J K is a fictitious regularising current. In contrast, the regularisation means
B = ∇φ + B̃ is not divergence-free. To find the flux surfaces, we note that the pro-
cedure in box (2.60) in no way depends on the magnetic field being curl-free. As
such, we perform the same steps for finding flux coordinates for BK as with B.

3.3. Convergence of the regularised expansion
Consider a PDE of the form

⊥(1 + P)φ = f + L (a)φ, (3.20)

where P satisfies Hypotheses (3.7), f is (σ0, H q)-analytic for q � 0 and σ0 > 0, and

L (a) = a(1)φ + ∂a(2)

∂ρ

∂φ

∂ρ
+ 1
ρ2

∂a(2)

∂θ

∂φ

∂θ
+ a(3)

∂φ

∂θ

+ a(4)
∂φ

∂s
+ a(5)

∂2φ

∂θ 2
+ a(6)

∂2φ

∂θ∂s
+ a(7)

∂2φ

∂s2
, (3.21)
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and each a( j) is a (�,Cq)-analytic for � >σ0. By a straightforward application
of chain rule, we see that (3.10) satisfies this form for r0 ∈ H 4+q and B0 ∈ H 1+q ,
where � �min κ−1 (see proof of Corollary 3.9 in Appendix A.5). Equation (3.20)
also encompasses other coordinate and regularisation assumptions of the near-axis
expansion, including those not defined by Frenet–Serret coordinates.

The implicit near-axis iteration for (3.20) can be written as

(⊥(1 + P)φ)m = [
f + L (a)

]
m
. (3.22)

The form of the iteration automatically respects the Fredholm condition, so it is
solvable at each order (see the proof of Theorem (3.8)). So, to solve at each order
of the iteration, we can invert to find that

φm = φ(IC)m + (
(1 + P)−1+

⊥
[

f + L (a)φ
])

m
, (3.23)

where φ(IC) is (σ0, H q+2)-analytic of the form (3.9) and we define the pseudoinverse
+

⊥ as

+
⊥(ρ

mei(2n−m)θ )= 1
(m + 2)2 − (2n − m)2

ρm+2ei(2n−m)θ for 0� n � m. (3.24)

Given this iteration, we find the following theorem for its convergence.

THEOREM 3.8. Let 0<σ0 <�, q � 1 and D � 1. Then, let f be (σ0, H q)-analytic,
a( j) for 1� j � 7 be (�,Cq)-analytic, φ(IC) as defined by (3.9) be (σ0, H q+2D)-analytic
and P satisfy Hypotheses (3.7). Then, there is a unique (σ, H q+2D)-analytic near-axis
solution φ of (3.20) with initial data φ(IC). Moreover, this solution operator is continuous
in a( j) and satisfies the bound

‖φ‖σ,Hq+2D � C ‖ f ‖σ0,Hq + C
∥∥φ(IC)∥∥

σ0,Hq+2D . (3.25)

Proof. See Appendix A.4. �

This theorem can be translated to the Frenet–Serret problem.

COROLLARY 3.9. Let σ > 0, q � 1 and D � 1. Then, let r0 ∈ C4+q in scaled arclength
coordinates with �′ = L/2π > 0 and κ > 0, B0 ∈ H 1+q , φ(IC) be (σ0, H q+2D)-analytic,
and P be defined as in (3.15). Then, for some σ > 0 satisfying σ � σ0 and σ <
min κ−1, the near-axis solution φ of (3.10) is (σ, H q+2D)-analytic, continuous in r0

and satisfies
‖φ‖σ,Hq+2D ≤ C ‖B0‖H1+q + C

∥∥φ(IC)∥∥
σ0,Hq+2D . (3.26)

Furthermore, the associated divergence-free field BK is well-defined and is (σ ′, H q)-
analytic for all σ ′ <σ .

Proof. See Appendix A.5. �

There are two primary reasons why Theorem (3.8) is useful for computation.
First, it gives a guarantee that the norm of the inputs controls the size of the output.
For instance, in the context of stellarator optimisation, if an appropriate Sobolev
penalty is put on r0, B0 and φ(IC), then one can expect the output to be appro-
priately bounded. Second, because the output is (σ, H q+2D)-analytic, it tells us that
truncations of the near-axis expansion are approximations of the true solution. So,
we can be more confident that finite asymptotic series are approximately correct, at
least for the regularised problem.
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It is worth noting that while Theorem (3.8) tells us there is a solution to the
regularised problem, it does not tell us that the solution solves the original problem.
To address this, we can develop an a posteriori handle on the error.

PROPOSITION 3.10. Consider the hypotheses of Theorem (3.8) with q � 2.
Additionally, suppose 0<σ ′ <σ , L =⊥ − L (a) is a second-order negative-definite
operator on H 2

0 (�
0
σ ′), and φσ

′ = φ(σ ′, θ, s). Then, the solution φ of the near-axis
expansion is the unique solution in H q+2D(�0

σ ′) of the boundary value problem

P⊥φ + Lφ = f, φ|ρ=σ ′ = φσ
′
. (3.27)

Moreover, let φ̃ be the solution to

Lφ̃ = f, φ̃

∣∣∣
ρ=σ ′ = φσ

′
. (3.28)

Then, ∥∥∥φ − φ̃

∥∥∥
Hq
(
�0
σ ′
) � C ‖P⊥φ‖

Hq−2
(
�0
σ ′
). (3.29)

Proof. See Appendix A.6. �

In other words, this tells us that given a solution to the regularised problem,
we can bound the distance to a non-regularised boundary value problem via
the norm of P⊥φ. This applies directly to the Frenet–Serret case because
the Laplacian is negative-definite. So, given a solution, this gives us an esti-
mate of the error. As before, we can summarise the new problem (cf. box (2.30)):

input: axis r0 ∈ C4+q, on-axis field B0 ∈ H1+q,

(σ0, H
q+2D)-analytic higher moments φ(IC ),

P satisfying Hypotheses 3.7,
assuming: �′ > 0, κ > 0, B0 > 0, q,D 1

solve: �′
(
m2 +

∂2

∂θ2

)
(1 + P )φm = −(∇ · B̃)m − (Δφ<m)m,

output: (σ,Hq)-analytic potential φ,

magnetic field Bi
K = gij

∂φ

∂qj
+ B̃i +

ρ√
g
Gij ∂(Pφ)

∂qj
.

(3.30)

4. Numerical method

To numerically solve the regularised near-axis expansion algorithm in (3.30), we
use a pseudospectral method. Pseudospectral methods use spectral representations
of the solution for derivatives, while scalar multiplication and other operations occur
on a set of collocation points. The spectral form of the series is

X�Nρ (ρ, θ, s)=
Nρ∑

m=0

ρm Xm(θ, s), Xm(θ, s)=
m∑

n=0

Xmn(s)F2n−m(θ),

Xmn(s)=
Ns∑

k=−Ns

XmnkFk(s), (4.1)
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where Nρ and Ns are integers specifying the resolution of the series and

Fk(s)=
{

cos(ks), k � 0,
sin(−ks), k < 0.

(4.2)

Derivatives of the series are numerically evaluated by

∂X�Nρ

∂ρ
=

Nρ−1∑
m=0

(m + 1)Xm(θ, s)ρm,

∂X�Nρ

∂θ
=

Nρ∑
m=1

m∑
n=0

−(2n − m)Xmnρ
mF−(2n−m)(θ),

∂X�Nρ

∂s
=

Nρ∑
m=0

m∑
n=0

Ns∑
k=−Ns

−k Xmnkρ
mF2n−m(θ)F−k(s). (4.3)

For algebraic operations such as series multiplication, composition and inversion,
we discretise each Xm on a grid Xm(θmj , s�), where

θmj = π j

m + 1
, s� = 2π�

Ms
, (4.4)

where 0� j � m, 0� � < Ms and Ms � 2Ns + 1 is the number of s-collocation
points. Typically, we choose Ms = 4Ns + 3 to oversample in s by a factor of
over 2. This choice anti-aliases the numerical method by removing high harmon-
ics generated in the collocation space (Boyd 2001). We note that the θ -collocation
points θmj are spaced around the half-circle instead of the full circle, owing to the
fact that analytic coefficients satisfy the symmetry

Xm(θ + π, s)= (−1)m Xm(θ, s). (4.5)

For even m, (4.5) tells us that Xm is periodic in 2θ and the resulting transformation
is the discrete Fourier transform (DFT) in that angular coordinate. However, Xm is
anti-periodic in θ for odd m and the collocation on the half-circle can interpreted as
a symmetry reduction of the DFT on the full circle.

To transform between Fourier and spatial representations at each order m, let
Xc

m = [Xm(θmj , s�)] ∈R
(m+1)×Ms be the matrix of collocation values and Xs

m = [Xmnk] ∈
R
(m+1)×(2Ns+1) be the matrix of Fourier coefficients. Then, we define the tran-

sition matrices [(Fm,m′
θ ) jn] = [F2n−m(θm′ j)] ∈R

(m+1)×(m′+1) and [(Fs)k�] = [Fk(s�)] ∈
R
(2Ns+1)×Ms . The transformation from spectral coefficients to collocation nodes is

expressed by
Xc

m = (Fm,m
θ )T Xs

mFs . (4.6)

Similarly, the inverse transform happens via

Xs
m = (Fm,m

θ )−T Xc
mF+

s , (4.7)

where the pseudo-inverse is F+
s = FT

s D−1
s and Ds = FsFT

s ∈R
(2Ns+1)×(2Ns+1) is diago-

nal with (Ds) j j = (2Ns + 1) for j = 0 and (Ds) j j = (2Ns + 1)/2 for −Ns � j � Ns ,
j �= 0. This transformation is currently performed via full matrix–matrix mul-
tiplication, but it could be accelerated for large systems by the fast Fourier
transform.
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The final basic operation we use is to raise the order of the θ -collocation. To
see why this is necessary, consider the simple case of three monomial power
series: X = ρm Xm , Y = ρm′

Ym′ and Z = XY = ρm+m′
Zm+m′ = ρm+m′

XmYm′ . Then, the
multiplication on the collocation nodes as

Z(θm+m′, j , s�)= ρm+m′
X (θm+m′, j , s�)Y (θm+m′, j , s j). (4.8)

So, to obtain the correct collocation on Zm+m′ , we need to change the θ -collocation
on Xm from θmj to θm+m′, j and similarly for Ym′ . To do this, we use the θ -collocation
matrices to find

Zc
m+m′ =

[
(Fm,m+m′

θ )T (Fm,m
θ )−T Xc

m

]
�
[
(Fm′,m+m′

θ )T (Fm′,m′
θ )−T Yc

m

]
, (4.9)

where � is the Hadamard (element-wise) product, and Yc
m′ and Zc

m+m′ are the col-
location matrices of Ym′ and Zm+m′ . With this operation, the operations outlined in
Appendix B can be performed on the collocated nodes.

We note that choosing the correct amount of modes in s presents the most
difficult numerical problem in computing the near-axis expansion. As the order
increases, high-order residuals are increasingly nonlinear in the lower orders, caus-
ing a broadening of the spectrum in s. If the inputs to the expansion do not have
a sufficiently narrow bandwidth, this will result in broad higher-order residuals, par-
ticularly when finding flux coordinates. Both the regularisation and the anti-aliasing
effects of choosing Fs to be rectangular help alleviate the issue of broad bandwidth,
but in practice, we have found that it remains important to choose smooth inputs,
especially for finding flux surfaces.

5. Examples

We now investigate the numerical convergence of the near-axis expansion to high
orders. Our focus is on characterising the convergence of the input (figure 4), the
convergence of the output magnetic field (figure 5), the convergence of the magnetic
surfaces (figures 7, 8) and the role of regularisation (figures 5, 6). Through our two
examples – the rotating ellipse and the precise QA equilibrium of Landreman–Paul
(Landreman & Paul 2022) – we find that the radius of convergence of every series
is closely related to the distance from the magnetic axis to the coils σcoil. This radius
appears to limit the convergence of every other series of interest, including the
magnetic surfaces that extend beyond this distance.

All computations in this section were performed on a personal laptop. The code
used to perform the expansions can be found at the StellaratorNearAxis.jl
package (Ruth 2024a).

5.1. Equilibrium initialisation
A major task in computing high-order near-axis expansions is choosing the input

coefficients φ(IC) in box (3.30). While low-order expansions can often be expressed
in physically intuitive variables parametrising the rotation and stretching of elliptical
magnetic surfaces, it is not as intuitive how to determine the high-order coefficients
of φ(IC). In practice, the best option for finding equilibria would likely be via opti-
misation. However, for the purposes of demonstration, we initialise our inputs by a
more direct method: via magnetic coils (see figure 3).

The primary advantage of using coils for equilibrium initialisation is accuracy.
The accuracy comes from the fact that the coil field can be expanded analytically
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(a) (b)

FIGURE 3. Coil sets for the rotating ellipse and Landreman–Paul examples. The colour indicates
the normalised B · N error on the outer closed flux surface.

about the axis, giving a direct input to the near-axis expansion. This circumvents the
potentially error-prone problem of interpolating stellarator equilibria. Coils also pro-
vide an accurate ground truth to which to compare our equilibrium. In the following
subsections, we use this to assess the accuracy of the near-axis expansion, both close
to the axis and farther away.

The coil optimisation method employed here follows the approach described by
Wechsung et al. (2022) and Jorge et al. (2024) using the code SIMSOPT (Landreman
et al. 2021). Coils are modelled as single closed 3-D filaments of current �(i) :T→
R

3. Each coil i is modelled as a periodic function in Cartesian coordinates where

�( j)(s)= c( j)
0 +

NF∑
�=1

[
c( j)
� cos(�θ)+ s( j)

� sin(�θ)
]
, (5.1)

where each c( j)
� , s( j)

� ∈R
3, yielding a total of 3 × (2NF + 1) degrees of freedom

per coil. In this work, we used NF = 12, with four coils per half-field period for
Landreman–Paul case and eight coils per half-field period for the ellipse. The degrees
of freedom for the coil shapes are then

xcoils = [c( j)
l , s( j)

l , I j ], (5.2)

with I j the current that goes through each coil. We take advantage of stellarator and
rotational symmetries to only optimise a set of Nc coils per half-field period. This
leads to a total of 2 × nfp × Nc modular coils, where nfp is the number of toroidal
field periods with nfp = 2 for Landreman–Paul and nfp = 5 for the rotating ellipse.
The remaining coils are determined by symmetry. The magnetic field Bext of each
coil is evaluated using the Biot–Savart law

Bcoil(r)= μ0

4π

2nfp Nc∑
j=1

∫ 2π

0

I j
∂� j

∂s′ × (� j(s ′)− r)∣∣� j(s ′)− r
∣∣3 ds ′, (5.3)

where s ′ parametrises the coil curve. Each coil is divided into 150 quadrature points,
and the cost functions used to regularise the optimisation problem use the minimum
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distance between two coils, the length of each coil, their curvature and mean-squared
curvature (see Wechsung et al. 2022).

Using the coil magnetic field (5.3), we find the magnetic axis r0 via a shoot-
ing method. Then, using the near-axis coordinate representation of r in (2.2), we
expand the quadrature rule of (5.3) using the operations in Appendix B to find a
near-axis expansion for the magnetic field B(ρ, θ, s). Given the near-axis field, it is
straightforward to compute B0 by

B0(s)= t(s) · B(0, 0, s), (5.4)

and φ is found by a near-axis expansion of the path integral (note that φ = 0 on the
axis)

φ(ρ, θ, s)=
∫ ρ

0
(B(ρ ′, θ, s)− B̃(ρ ′, θ, s)) · (cos(θ)n(s)+ sin(θ)b(s))dρ ′. (5.5)

Finally, the coefficients φm0 and φmm of this are used as input for φ(IC). The input is
computed to the Nρ = 9 orders in ρ with Ns,RE = 100 and N,sLP = 50 Fourier modes
in s for the rotating ellipse and Landreman–Paul, respectively (see (4.1)), where
we use the subscript ‘RE’ for the rotating ellipse and ‘LP’ for Landreman–Paul
wherever necessary.

To begin our analysis of the examples, we consider the inputs to the near-axis
expansion. Corollary (3.9) suggests that there are two length scales dictated by the
inputs. First is the radius of curvature of the axis. Letting � = mins κ

−1(s) be the
radius of curvature, we find

�RE = 0.987, �LP = 0.681. (5.6)

The other length scale of interest is the radius of convergence σ0 of φ(IC) in the
(σ0, H q+2D)-analytic norm. However, to the orders to which we compute, this radius
appears to depend on the exponent q + 2D. To determine the most informative
exponent, we consider the work by Kappel et al. (2024), where it was shown that
the normalised gradient of the magnetic field is a strong predictor for plasma–coil
separation. Because the H 2(T2) norm measures the size of the second derivative
of φ(IC)m (and therefore the gradient of the input magnetic field), we conjecture this
corresponds to the most practical exponent.

To verify this, we first compute the minimum axis-to-coil distance σcoil for both
configurations to be

σcoil,RE = 0.241, σcoil,LP = 0.350. (5.7)

We note that σcoil <� for both configurations, indicating that the distance-to-coil is
the limiting factor for convergence (cf. Corollary (3.9)). In figure 4, we plot the H 2

norms of φ(IC)m versus Aσ−m
coil , where the coefficient A is found via a best fit for both

configurations. In both cases, we find there is remarkable agreement, indicating that
the H 2 radius of convergence of φ(IC) could be used as a proxy for distance-to-coils.

5.2. Magnetic field convergence
Next, we compute the near-axis expansion via the procedure in box (3.30). We

perform the expansion both without regularisation (P = 0) and with the regularisa-
tion operator in (3.15). For the regularised runs, we use D = 2 throughout and vary
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FIGURE 4. Plot of the coefficient norm ‖φ(IC)m ‖H2 versus the order m (markers) and best-fit lines
Aσ−m

coil (lines), where σcoil is the axis-to-coil distance.

K between 10 and 200 to assess how the equilibrium changes between strong and
weak regularisation, respectively.

As a first test of the output convergence, we compare the coil magnetic field
against the unregularised expansion. Because the input is harmonic, we expect that
the near-axis expansion will converge from Proposition (3.2) (unless floating-point
errors overwhelm the solution, which is not observed to this order). We verify this
by computing the L2 magnetic field error on surfaces about the axis

‖B − Bcoil‖L2(∂�0
σ )

= 1
4π 2

∫ 2π

0

∫ 2π

0
|B(σ, θ, s)− Bcoil(σ, θ, s)|2 dθds, (5.8)

where B is computed from the near-axis expansion and Bcoil is computed directly
from Biot–Savart.

In figure 5(a,b), we plot the error (5.8) versus the normalised distance-from-axis
σ/σcoil. This error is computed for the approximation

φ�Nρ ≈
Nρ∑

m=2

φmρ
m, B�Nρ−1 = ∇φ�Nρ + B̃�Nρ−1 (5.9)

where Nρ is varied from 1 to 8. For both configurations, we find that the error of
the magnetic field obeys the expected power law∥∥B�Nρ−1 − Bcoil

∥∥
L2(∂�0

σ )
=O(σ−Nρ

)
. (5.10)

The error curves for varying Nρ meet at σ = σcoil, indicating that the output radius of
convergence is limited by the coils. This tells us that the limit of convergence σ = σ0

is achievable in Corollary (3.9).
Turning to the effects of regularisation, we fix Nρ = 9 and plot the error (5.8)

versus σ/σcoil for varying K between 10 and 200 in figure 5(c,d). We also include
the unregularised solution, labelled with K = ∞. We find that as the regularisa-
tion becomes stronger (K decreases), the magnetic field loses fidelity near the core.
We attribute to the increasing loss of accuracy of the high-wavenumber s modes,
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(a) (b)

(c) (d)

FIGURE 5. (a,b) The error (5.8) as a function of the normalised distance from axis σ/σcoil for
varying orders of approximation Nρ . (c,d) The error (5.8) as a function of σ/σcoil for varying
values of the regularisation parameter K (K = ∞ is unregularised).

while the low-wavenumber modes maintain accuracy. Then, far from the axis, the
regularised error inflects to begin to agree with the rate of convergence of the unreg-
ularised solution. So, while the solution loses a high-wavenumber fidelity, the low
wavenumbers maintain a similar level of accuracy. Comparing figures 5(a,b) with
figure 5(c,d), we see that a regularised high-order expansion can achieve an equiva-
lent error to an unregularised lower-order expansion near the axis while maintaining
that fidelity far from the axis.

To address the role of regularisation more fully, however, we need to consider the
fidelity of the expansion on less tuned inputs. To do this, we perturb r0, B0 and φ(IC)

by the random functions as

δr0,i = ε

Ns∑
�=−Ns

Xi�

1 + (�/Kε)4+q
,

δB0 = ε

Ns∑
�=−Ns

Y�
1 + (�/Kε)1+q

,

δφ(IC)mn = ε

Ns∑
�=−Ns

Zmn�

1 + (m/Kε)q+2D + (�/Kε)q+2D
, n ∈ {0,m}, (5.11)

where Xi�, Y� and Zmn� are independent and identically distributed (i.i.d.) unit nor-
mal random variables, q = 2, and ε = 10−6 for the rotating ellipse and ε = 10−4 for
Landreman–Paul. We have chosen the regularity of the perturbation to align with
the inputs in box (3.30).
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FIGURE 6. Finite difference residual (5.12) as a function of the normalised distance from axis
σ/σcoil for the perturbed rotating ellipse and Landreman–Paul inputs (see (5.11)). For both
plots, three lines are coloured and labelled, while the grey lines represent other values of K
interpolating between K = 10 and K = 200.

In figure 6, we consider the accuracy of the solution to the perturbed problem for
K varying between 10 and 200 for both examples with Nρ = 9 fixed. To measure the
accuracy, we no longer have a coil set with which to compare the solution directly.
So, we instead measure the residual of Poisson’s equation

‖∇ · B‖L2(∂�0
σ )

= 1
4π 2

∫ 2π

0

∫ 2π

0

∣∣∣∇ · (∇φ + B̃)
∣∣∣2 dθds, (5.12)

where we evaluate every derivative (including in the metric) via finite differences.
For both perturbed examples, the best solution near the axis is the lightly regularised
K = 200 solution. However, beyond a certain radius between 0.3σcoil and 0.4σcoil,
more regularised solutions improve upon the less regularised ones in the finite dif-
ference metric. For our examples, we find that K = 26 for the rotating ellipse and
K = 33 for Landreman–Paul are perhaps the best choices in practice. This figure
potentially indicates a more general principle: the further from the axis one wants
accuracy of the expansion, the more regularised the expansion likely has to be.

5.3. Magnetic coordinate convergence
To compute straight field-line coordinates, we return to the unregularised

Landreman–Paul configuration. Then, using the straight field-line magnetic coor-
dinate equation from box (2.60), we compute the approximate coordinates (ξ, η) for
Nρ varying between 2 and 9, where we note the Nρ = 2 approximation of φ provides
the leading-order field-line behaviour. To find flux surfaces, we then invert (ξ, η) to
find the distance-to-axis coordinates (x(ξ, η, s), y(ξ, η, s)), where magnetic surfaces
are parametrised by ξ 2 + η2 =ψ .

In figure 7, we plot in black the computed surfaces on the s = 0 Poincaré section
for varying values of Nρ . For comparison, we plot the intersections of coil magnetic
field lines in the background. At leading order, we see the surfaces are elliptical,
while higher orders account for more shaping in the θ direction. Then, as the order
increases beyond 5, the surfaces away from the core start diverging.

To investigate this divergence, we plot a red circle of constant radius σcoil,LP in the
Nρ = 9 panel. We see that the circle appears to separate the divergent surfaces from
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FIGURE 7. Near-axis approximations of flux surfaces for varying orders of approximation Nρ
(black); a Poincaré plot of the true coil magnetic field lines (colour). In the final Nρ = 9 panel,
we plot a circle with radius σcoil,LP in red.

the convergent ones. We believe this is the likely reason for the divergence; however,
there are still other possibilities.

To assess the errors of surfaces closer to the axis, we turn to a more quantita-
tive measure. To do this, we first use the method from Ruth & Bindel (2024) in
the SymplecticMapTools.jl package (Ruth 2024b) to compute invariant cir-
cles (xcoil(θ), ycoil(θ)) and the rotational transform ιcoil on the cross-section from the
Poincaré plot trajectories. Then, as a function of the inboard distance x from the
axis (see figure 7), we compute rotational transform and parametrisation errors as

Rι = |ι− ιcoil| ,

Rparam =
[∫ 2π

0
(x(ψ(x, 0, 0), θ, 0)− xcoil(θ))

2 + (y(ψ(x, 0, 0), θ, 0)− ycoil(θ))
2 dθ

]1/2

.

(5.13)
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FIGURE 8. (a) The rotational transform and (b) the parametrisation error Rparam defined in
(5.13) as a function of the inboard x distance (cf. figure 7) for varying orders of approximation
Nρ .

In figure 8, we plot both errors with varying Nρ . In both cases, the rotational
transform and parametrisation converge to high accuracy near the core. However,
they begin to diverge before the the outermost surface, agreeing with the visual
divergence in figure 7.

6. Conclusion

In this paper, we have investigated the convergence of the near-axis expansion
in vacuum, both theoretically and numerically. From the theoretical point of view,
we showed in Theorem (3.6) that the near-axis expansion is ill-posed, even in the
relatively simple case of vacuum fields. However, as shown in Theorem (3.8), we
found the near-axis problem can be regularised giving a guarantee of convergence
for appropriately smooth input data. In particular, this tells us that a truncated
near-axis expansion is an approximation to the solution of the regularised prob-
lem. Combining this with Proposition (3.10), we find can estimate the error of the
regularised expansion from a true solution.

From the numerical results, we have verified that the near-axis expansion can con-
verge in vacuum. This includes convergence of surfaces, where we have shown that
the rotational transform and surface parametrisations can be approximated near the
axis to high accuracy. Moreover, we demonstrated that the radius of convergence of
the expansion is directly tied to the minimum distance to coils. Under perturbation,
we found that the regularisation reduces the residual of Poisson’s equation far from
the axis.

Our analysis suggests that the following four quantities should be kept in mind for
future optimisation problems.

(i) The axis, on-axis field and higher moments should all be sufficiently regular
for the expansion to converge (see box (3.30)). These can be enforced, e.g. by
Sobolev norms on the inputs of the near-axis expansion.

(ii) In particular, the H 2-norm radius of convergence of φ(IC) appears to indicate
the distance to coils from the axis (see figure 4). This gives a potential metric
for plasma–coil distance.

(iii) The axis curvature also limits to the radius of convergence, so this should be
small relative to the desired minimum distance to coils.
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(iv) In the case that the above terms are not sufficient, the error in Proposition
(3.10) could be used to monitor the accuracy of the solutions.

Using these metrics, a moderate-order near-axis expansion (say, 4� N � 6) could be
used to explore the space of stellarators more effectively. This could allow for the
use of new near-axis optimisation problems.

Looking forward, these results indicate that regularisation is likely also required
for the near-axis expansion to converge in pressure. The form of (3.19) gives a
potential path forward, where the regularisation could be expressed as a fictitious
current. Physically, a link between regularisation and extended MHD models that
provide additional current contributions can be studied. However, the issue of small
denominators for near-rational ι0 (see (2.58)) will appear, which will combine with
the regularised expansion in a non-trivial way in pressure. It remains to be seen
whether regularisation can be used for improved convergence of these surfaces.
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Appendix A. Proofs
A.1 Proof of Proposition (3.2)

Because B is a vacuum field, its Cartesian components (B1, B2, B3) are also
harmonic and therefore real-analytic, meaning at each point on the axis r0(s), it
has a uniformly convergent Taylor series in a ball of size (

√
2 − 1)σ (Axler et al.

2001, Theorem 1.28). By choosing the coefficients φmn to match the Taylor series
at each point, we find that the near-axis expansion is uniformly convergent near
the axis. Because B is harmonic, the coefficients must satisfy the near-axis problem
(2.30). Finally, because the solution to the near-axis expansion is unique (3.1), the
proposition is proven.

A.2 Proof of Proposition (3.4)

We start with a lemma on derivatives on (σ,W )-analytic functions.
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LEMMA A.1. Let (x, y)= (ρ cos θ, ρ sin θ) and W be Cq(T2) or H q(T2) for q � 0.
The derivatives (∂/∂x) and (∂/∂y) are bounded operators from (σ,W )-analytic
functions to (σ ′,W )-analytic functions for all 0<σ ′ <σ .

Proof. We will prove this for the x derivative, as the proof for the y derivative
is identical. First, we observe that x derivatives preserve the analytic structure (3.4).
Let f be (σ,W )-analytic, where W is H q or Cq for q � 1. In polar coordinates, we
have

∂ f

∂x
= cos θ

∂ f

∂ρ
− sin θ

ρ

∂ f

∂θ
. (A.1)

For both ρ and θ , we have∥∥∥∥ ∂∂ρ
(
ρm fm

)∥∥∥∥
W

� mρm−1 ‖ fm‖W ,

∥∥∥∥ 1
ρ

∂

∂θ

(
ρm fm

)∥∥∥∥
W

� mρm−1 ‖ fm‖W . (A.2)

Multiplying by sin θ and cos θ is bounded on both H q and Cq , so∥∥∥∥
(
∂ f

∂x

)
m

∥∥∥∥
W

� C(m + 1) ‖ fm+1‖W ,

� C(m + 1) ‖ f ‖σ,W σ−m−1,

� C(m + 1)(σ ′)m

σm+1
‖ f ‖σ,W (σ ′)−m � C ‖ f ‖σ,W (σ ′)−m . (A.3)

�

LEMMA A.2. Let q � 1. The derivatives (∂/∂s) and (∂/∂θ) are bounded operators
from:

(i) (σ, Cq)-analytic functions to (σ, Cq−1)-analytic functions; and

(ii) (σ, H q)-analytic functions to (σ, H q−1)-analytic functions.

Proof. Simply notice (∂/∂s) and (∂/∂θ) are bounded from Cq to Cq−1 and from
H q to H q−1. �

Combining the two above lemmas, if we choose σ ′ <σ , q � 0 and f to be
a (σ, Cq)-analytic function, then for all m, n, � > 0 such that m + n + �� q, the
function

g = ∂ f

∂xn∂ym∂s�
(A.4)

is (σ ′, C0)-analytic. So, it suffices to prove that g is continuous in �0
σ ′ .

Let 0< ρ̃ < σ ′ and (θ̃ , s̃) ∈T
2. Then, choose ρ∗ such that ρ̃ < ρ∗ <σ ′. We will

show that g is continuous at the point (ρ̃, θ̃ , s̃). Letting ρ1, ρ2 � ρ∗, we can establish
a Lipschitz bound of g in ρ:

|g(ρ1, θ, s)− g(ρ2, θ, s)|�
∞∑

m=β
‖gm‖C

∣∣ρm
1 − ρm

2

∣∣
� G

|ρ1 − ρ2|
ρ∗

∞∑
m=1

m

(
ρ∗

σ

)m

� L |ρ1 − ρ2| . (A.5)
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Now, let (ρm, θm, sm)→ (ρ̃, θ̃ , s̃) ∈�0
σ and sup(ρm) < ρ

∗ <σ . We have∣∣∣g(ρm, θm, sm)− g(ρ̃, θ̃ , s̃)
∣∣∣� L |ρm − ρ| +

∣∣∣g(ρ̃, θm, sm)− g(ρ̃, θ̃ , s̃)
∣∣∣ . (A.6)

Because surfaces of g converge in C , both terms converge to zero giving our result.

A.3 Proof of Theorem (3.6)

To prove this theorem, we will begin with a few facts about operators on (σ, q)-
analytic functions.

LEMMA A.3. Let f be (σ, H q)-analytic and g be (�, Cq)-analytic where 0<σ � σ0 <
� and q � 0. Then, f g is (σ, H q)-analytic with

‖ f g‖σ,q � C ‖g‖�,Cq ‖ f ‖σ,Hq , (A.7)

where C only depends on q, σ0 and �.

Proof. The coefficients of f g are

( f g)m =
m∑

n=0

fngm−n. (A.8)

We can bound the norm of fngm−n as

‖ fngm−n‖Hq � C ‖ fn‖Hq ‖gm−n‖Cq � C ‖ f ‖σ,Hq ‖g‖�,Cq σ
−n�−(m−n), (A.9)

where the constant C only depends on q. So,

‖( f g)m‖Hq � C ‖ f ‖σ,Hq ‖g‖�,Cq σ
−m

m∑
n=0

( σ
�

)−n

� C ‖ f ‖σ,Hq ‖g‖�,Cq σ
−m

∞∑
n=0

(σ0

�

)−n

� C ‖ f ‖σ,Hq ‖g‖�,Cq σ
−m 1

1 − σ0/�
, (A.10)

giving the result. �

LEMMA A.4. Let aα be (�, Cq)-analytic for all degree 3 multi-indices |α|� m, 0<
σ ′ <σ <� and q � 0. The operator

L =
∑
|α|�m

aα
∂ |α| f

∂xα1∂yα2∂sα3
(A.11)

is bounded from (σ, H q+m)-analytic functions to (σ ′, H q)-analytic functions.

Proof. Combine Lemmas (A.1), (A.2) and (A.3). �

COROLLARY A.5. Let r0 be C4+q for q � 0 and �′, κ > 0. There exists a � > 0 such
that the Laplacian, defined in (x, y, s)-coordinates via the left-hand side of (2.23), is
a bounded operator from (σ, H q+2) to (σ ′, H q). Similarly, the divergence operator,
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defined in (x, y, s) coordinates via the right-hand side of (2.23), is a bounded operator
from (σ, H q+1) to (σ ′, H q).

Proof. In (x, y, s)-coordinates, we have hs = 1 − κx ,
√

g = �′hs and

g−1 = 1
h2

s

⎛
⎜⎝

h2
s + τ 2y2 −τ 2xy τ y

�′
−τ 2xy h2

s + τ 2x2 −τ x
�′

τ y
�′ − τ x

�′
1

(�′)2

⎞
⎟⎠. (A.12)

Because r0 ∈ C4+q , �′ ∈ C3+q , κ ∈ C2+q and τ ∈ C1+q , so g−1 ∈ C1+q . This means the
elements of h2

s g−1 are (σ, C1+q)-analytic with finite series. To include the factor of
h−2

s , we have
1
hs

=
∞∑

m=0

(κ cos θ)mρm . (A.13)

The function κ cos θ is in C2+q , so ‖(κ cos θ)m‖H2+q � Cm ‖κ cos θ‖m
C2+q for some

C � 1 and h−1
s is (�, C2+q) for some 0<� � ‖κ‖−1

C0 . Finally, after performing the
chain rule to bring the operator to the form in Lemma (A.4), the coefficients are each
in (�, H q)-analytic, giving the result. The same argument applies to the divergence
operator. �

The last ingredient needed for the proof of ill-posedness is Cauchy’s estimates for
harmonic functions.

THEOREM A.6 (Cauchy’s estimates (Axler et al. 2001)). Let α= (α1, α2, . . . , αd) be
a multi-index. Then, for some constant Cα > 0, all harmonic functions φ bounded by
M on the radius-R ball B(x, R) satisfy the inequality

|Dαφ(x)|� CαM

R|α| . (A.14)

Now, we return to the proof of Theorem (3.6). It is sufficient to show that φ is
not (σ, H q)-analytic for q = 2. So, consider input data such that ‖φ‖σ,H2 <∞, say
constructed via Proposition (3.2). We will focus on perturbations in B0 of the form
B( j)

0 = c j ei js , where c j = j−N and N > q0 + 1 is a positive integer, while r0 and
φ(IC) remain constant. Clearly, ‖B0‖H1+q0 → 0 as j → ∞. Let φ( j) be the formal
power series solution of the perturbed problem.

We want to show that φ( j) cannot converge to a (σ, H q)-analytic solution. In
the case where the perturbed near-axis expansion for fixed j does not converge
in �σ , then

∥∥φ( j)
∥∥
σ,H2 = ∞ for all σ and we are done, as the operator fails to be

bounded for a specific function. Otherwise, suppose the near-axis expansion solution
converges on �σ and each φ( j) is (σ, H 2)-analytic. Then, using Corollary (13), for
σ ′ <σ , φ( j) + ∇ · B̃ is a (σ ′, L2)-analytic function. Because φ satisfies the near-
axis expansion, the solution must satisfy (φ( j) + ∇ · B̃)m = 0 in L2(T2), further
implying that φ( j) + ∇ · B̃ = 0 in L2(�0

σ ′). Pulling this back to �σ ′ , we are solving
the standard Poisson’s equation φ( j) = −∇ · B̃ in L2(�σ ′). If we locally define

ψ( j) = φ( j) +
∫ s

0
B0(s

′)�′(s ′)ds ′, (A.15)

we find ψ( j) = 0. That is, ψ( j) is analytic in simply connected subdomains of �σ ′
and the magnetic field is locally the gradient of ψ( j).
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Then, let B(x, R) be a ball around a point on the magnetic axis r0(s0). At
r0(s0), the order M > N derivative in the tangent direction of r0 of ψ( j) takes the
polynomial form

∂Mψ( j)

∂sM
= ∂M B0

∂sM
+ c j

M∑
�=0

a� j �, (A.16)

where aM = (i/�′(s0))
Mei js0 �= 0 and a� for � < M contain higher order derivatives of

the axis. As such, there is a J such that j > J implies that∣∣∣∣∂Mψ( j)

∂sM

∣∣∣∣> |aN |
2

j M−N . (A.17)

Then, by Theorem (A.6), we have that

max
B(x,R)

ψ( j) >
RN aN

2CN
j M−N . (A.18)

So, as j → ∞, ψ( j) cannot converge to a continuous function. However, because φ
was assumed (σ, H 2)-analytic and by Corollary (3.5) it must be continuous, we have
drawn a contradiction.

A.4 Proof of Theorem (3.8)

We will start with two lemmas. The first is on the boundedness of the right-hand-
side operator of the PDE (3.20).

LEMMA A.7. Let q � 0, D � 1, 0<σ � σ0 <�, φ be (σ, H q+2D)-analytic, and a( j)

be (�, Cq)-analytic for 1� j � 7. Then, the operator L (a) defined in (3.21) preserves
the analytic form (3.4) and satisfies the bound

∥∥(L (a)φ)m
∥∥

Hq � C(m + 1)

(
7∑

j=1

∥∥a( j)
∥∥
�,Cq

)
‖φ‖σ,Hq+2D σ

−(m+1), (A.19)

where C depends on σ0 but not on σ .

Proof. For j �= 2, Lemmas (A.2) and (A.3) tell us that

L (�=2)φ = a(1)φ + a(3)
∂φ

∂θ
+ a(4)

∂φ

∂s
+ a(5)

∂2φ

∂θ 2
+ a(6)

∂2φ

∂θ∂s
+ a(7)

∂2φ

∂s2
(A.20)

satisfies the analytic form and has the bound

∥∥L (�=2)φ
∥∥
σ,Hq � C

(∑
j �=2

∥∥a( j)
∥∥
�,Cq

)
‖φ‖σ,Hq+2D , (A.21)

where C does not depend on σ .
For the j = 2 term, define

L (2)φ = ∂a(2)

∂ρ

∂φ

∂ρ
+ 1
ρ2

∂a(2)

∂θ

∂φ

∂θ
= ∂a(2)

∂x

∂φ

∂x
+ ∂a(2)

∂y

∂φ

∂y
, (A.22)
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where x = ρ cos θ and y = ρ sin θ . By Lemmas (A.1) and (A.3), this preserves the
analytic form. To bound the operator, first note that∥∥∥∥

(
∂φ

∂ρ

)
m

∥∥∥∥
Hq

= (m + 1) ‖φm+1‖Hq � (m + 1)σ−(m+1) ‖φ‖σ,Hq+2D . (A.23)

A similar bound is satisfied by the θ derivative:∥∥∥∥
(
∂φ

∂θ

)
m

∥∥∥∥
Hq

� mσ−m ‖φ‖σ,Hq+2D . (A.24)

So, we focus on the ρ derivative term of L (2), where the same steps can be used to
bound the θ derivative term. We have that∥∥∥∥
(
∂a(2)

∂ρ

∂φ

∂ρ

)
m

∥∥∥∥
Hq

�
∥∥∥∥∥

m∑
n=0

(
∂a(2)

∂ρ

)
n+1

(
∂φ

∂ρ

)
m−n+1

∥∥∥∥∥
Hq

� C
∥∥a(2)

∥∥
�,Cq ‖φ‖σ,Hq+2D

m∑
n=0

(n + 1)(m − n + 1)�−(n+1)σ−(m−n+1)

� C(m + 1)
∥∥a(2)

∥∥
�,Cq ‖φ‖σ,Hq+2D σ

−(m+1)
m+1∑
n=0

(n + 1)
(σ0

�

)n

� C(m + 1)
∥∥a(2)

∥∥
�,Cq ‖φ‖σ,Hq+2D σ

−(m+1). (A.25)

Combining the estimates on L (2) and L (�=2), we have our theorem. �

Then, the main step in proving Theorem (3.8) is to show the inductive step in
Lemma (A.9). For this, we depend on the following interior regularity theorem for
the regularisation.

THEOREM A.8 ((Taylor (2011), Theorem 11.1)). If P is elliptic of order 2D and
u ∈D′(M), Pu = h ∈ H q(M), then u ∈ H q+2D

loc (M), and, for each U ⊂⊂ V ⊂⊂ M ,
σ < q + 2D, there is an estimate

‖u‖Hq+2D(U ) � C ‖Pu‖Hq (V ) + C ‖u‖Hσ (V ) . (A.26)

Then, our inductive step is the following lemma.

LEMMA A.9. Assume the hypotheses of Theorem (3.8), and let σ � σ0 � σ ′ <� and
m � 0. Suppose we have computed the finite solution

φ<m =
m−1∑
n=0

ρnφn(θ, s), φn =
n∑
�=0

φn�(s)e
(2�−n)iθ , (A.27)

where
‖φn‖Hq+2D <�σ

−n for all n <m. (A.28)

Then,

φm =
m∑

n=0

φmn(s)e
(2n−m)iθ (A.29)
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and there exists two constants C1,C2 > 0 independent of m, σ , σ0, φ(IC), f and �,
where C1 depends continuously on a( j) and σ ′, and C2 is independent of a( j) such that

‖φm‖Hq+2D <C1�σ
−m+1 + ‖φ(IC)m ‖σ,Hq+2D + C2

m + 1
‖ fm‖Hq ,

<C1�σ
−m+1 + (‖φ(IC)‖σ0,Hq+2D + C2 ‖ f ‖σ0,Hq )σ

−m
0 . (A.30)

Proof. Let L (a) be as in (3.21). Then, the near-axis iteration is given by

φm = φ(IC)m + ((1 + P)−1+
⊥( f + L (a)φ<m))m, (A.31)

where +
⊥ is defined in (3.24). As such, the triangle inequality gives

‖φm‖Hq+2D �
∥∥φ(IC)m

∥∥
Hq+2D + ∥∥(1 + P)−1(+

⊥( f + L (a)φ<m))m
∥∥

Hq+2D . (A.32)

For the initial conditions, we have∥∥φ(IC)m

∥∥
Hq+2D �

∥∥φ(IC)m

∥∥
σ0,Hq+2D σ

−m
0 , (A.33)

so we just need to focus on the second term.
Let g = f + L (a)φ<m . By Lemma (A.7), we have that

‖gm‖Hq � ‖ f ‖σ0,Hq σ
−m
0 + C(m + 1)

(
7∑

j=1

∥∥a( j)
∥∥
�,Cq

)
�σ−(m+1), (A.34)

where C depends on σ ′ and we have used ‖φ<m‖σ,Hq ��. Next, we establish a bound
for the inverse polar Laplacian. We have that

(
+

⊥g
)

m
=

m−1∑
n=1

1
m2 − (2n − m)2

gm−2,n−1e(2n−m)iθ , (A.35)

so for m � 2,

∥∥(+
⊥g
)

m

∥∥2

Hq =
m−1∑
n=1

1
m2 − (2n − m)2

∥∥gm−2,n−1e(2n−m)iθ
∥∥2

Hq ,

� 1
4(m − 1)

m−1∑
n=1

∥∥gm−2,n−1e(2n−m)iθ
∥∥2

Hq ,

= 1
4(m − 1)

‖gm−2‖2
Hq ,

� C (1)

m + 1
‖ f ‖σ0,Hq σ

−m
0 + C (2)

(
7∑

j=1

∥∥a( j)
∥∥
�,Cq

)
�σ−m+1, (A.36)

where we used constants so that this is trivially extended to m ∈ {0, 1}, where
(+

⊥g)0 = (+
⊥g)1 = 0.

Now, we would like to bound the inverse operator (1 + P)−1. Specifically, we need
it to be the case that

‖u‖Hq+2D <C ‖(1 + P)u‖Hq . (A.37)

https://doi.org/10.1017/S0022377825000388 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000388


38 M. Ruth, R. Jorge and D. Bindel

We will prove this is true by the standard argument. For the sake of contradic-
tion, suppose that there exists a sequence u(n) ∈ H q+2D such that

∥∥u(n)
∥∥

L2 = 1 and∥∥(1 + P)u(n)
∥∥

Hq → 0. By Theorem (A.8), this tells us that
∥∥u(n)

∥∥
Hq+2D � 1 + ε for

some ε > 0. By Rellich’s theorem (Taylor 2011, Proposition 3.4), H q+2D is com-
pactly embedded in H q+2D−1, so there exists a subsequence such that un → u in
H q+2D−1. This implies that (1 + P)u(n) → (1 + P)u = 0 in H q−1, where we are using
the assumption that q � 1. However, because 1 + P is positive, it does not have a
kernel, so the bound (A.37) must hold.

Equation (A.37) tells us that 1 + P is one-to-one from H q+2D to H q . Moreover,
because 1 + P is positive and self-adjoint, it must be surjective, so it is invertible and
we have the inequality

∥∥(1 + P)−1
(
+

⊥g
)

m

∥∥2

Hq+2D � C1

m + 1
‖ f ‖σ0,Hq σ

−m
0 + C2

(
7∑

j=1

∥∥a( j)
∥∥
�,Cq

)
�σ−m+1,

(A.38)
proving the lemma. �

We are now ready to prove Theorem (3.8). For continuity (boundedness) of the
solution with respect to φ(IC) and f , we choose a σ such that σC1 < 1 and σ � σ0.
Then, let 0< γ < 1 − C1σ . We choose � such that

C1σ�+ ∥∥φ(IC)∥∥
σ,Hq+2D + C2 ‖ f ‖σ0,Hq = (1 − γ )�. (A.39)

Then, we perform induction. At m = 0, φ<m = 0, so we have trivially satisfied the
initial case. For the inductive step, because σ−m

0 � σ−m , we have

‖φm‖Hq+2D � (1 − γ )�σ−m, (A.40)

implying

‖φ‖σ,Hq+2D ��= 1 − γ

1 − γ − C1σ

(∥∥φ(IC)∥∥
σ,Hq+2D + C2 ‖ f ‖σ0,Hq

)
. (A.41)

For continuity with respect to the coefficients A = (a(1), . . . , a(7)), consider fixing
σ and γ as before. Then, because C1 is continuous with respect to A, there is a small
enough perturbation so that both σ and γ continue to satisfy 0< γ < 1 − C1σ and
C1σ < 1. So, there is a neighbourhood of U of A such that for all A + δA ∈ U and
some values of C , we have ‖φ‖σ,Hq+2D � C(‖φ(IC)‖σ0,Hq+2D + ‖ f ‖σ0,Hq ). Because C1

does not depend on σ0, it is also the case that there is a neighbourhood of U0 of A
such that ‖φ‖σ,Hq+2D � C0(‖φ(IC)‖σ,Hq+2D + ‖ f ‖σ0,Hq ) for all A + δA ∈ U0.

Now, consider the full PDE operator

L =⊥(1 + P)− L (a), (A.42)

and let L + δL be the operator associated with substituting a( j) with a( j) + δa( j) ∈
U ∩ U0, i.e.

δLφ = δL (a)φ = δa(1)φ + ∂(δa(2))

∂ρ

∂φ

∂ρ
+ 1
ρ2

∂(δa(2))

∂θ

∂φ

∂θ

+ δa(3)
∂φ

∂θ
+ δa(4)

∂φ

∂s
+ δa(5)

∂2φ

∂θ 2
+ δa(6)

∂2φ

∂θ∂s
+ δa(7)

∂2φ

∂s2
.

(A.43)
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With fixed initial conditions φ(IC) and f , let the solution to the original PDE be φ
(i.e. Lφ = f ) and the solution to the perturbed PDE be φ + δφ (i.e. (L + δL)(φ +
δφ)= f ). Subtracting the two PDE formulae gives

(L + δL)δφ = −δLφ, (A.44)

where δφ satisfies δφ(IC) = 0. Using Lemma (A.7), we have that

‖(δLφ)m‖Hq � C(m + 1)

(
7∑

j=1

∥∥δa( j)
∥∥
�,Cq

)
‖φ‖σ,Hq+2D σ

−m . (A.45)

Then, we find that

C1�σ
−m+1 + C2

m + 1
‖ fm‖ H q �

(
C1σ + C

(
7∑

j=1

∥∥δa( j)
∥∥
�,Cq

))
σ−m . (A.46)

We can take δA small enough so the right term is less than 1, allowing us to proceed
inductively as before, giving continuity in the coefficients.

A.5 Proof of Corollary (3.9)

For the coefficients of the PDE, we must only notice that

1
1 − κρ cos θ

=
∞∑

n=1

ρn (κ cos θ)n . (A.47)

Because r0 ∈ C4+q(T), κ ∈ C3+q(T). This immediately tells us that

‖(κ cos θ)n‖C3+q � (C ‖κ cos θ‖C3+q )
n (A.48)

for some constant C , showing this converges. (In fact, the sum converges for all
ρ < κ.)

We note that P satisfies the Hypotheses (3.7) by construction, so we can apply
Theorem (3.8). The regularity of BK is the obtained from (3.18), where the reduction
in regularity comes from the order of P , combined with Lemmas (A.1) and (A.3).

A.6 Proof of Propsition (3.10)

For the statement about uniqueness, suppose φ′∈H q+2D(�0
σ ′) with φ′ − φ = δφ �= 0

satisfies the boundary value problem. Then, δφ satisfies

−(P⊥ + L)δφ = 0, δφ|ρ=σ ′ = 0. (A.49)

Then, after some algebra, we have〈
∂δφ

∂ρ
, P

∂δφ

∂ρ

〉
+
〈
1
ρ

∂δφ

∂θ
, P

1
ρ

∂δφ

∂ρ

〉
− 〈δφ, Lδφ〉 = 0, (A.50)

where the inner product is the L2 inner product

〈 f, g〉 =
∫ 2π

0

∫ 2π

0

∫ σ ′

0
f (ρ, θ, s)g(ρ, θ, s) ρdρdθds. (A.51)
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By our assumptions on P and L , each term in (A.50) is positive. So, it then must
be the case that 〈δφ, Lδφ〉 = 0. However, this is only possible when δφ = 0, so the
solution is unique.

For the error estimate, fix φ and subtract the two boundary value problems to
find that

L(φ − φ̃)= −P⊥φ, (φ − φ̃)

∣∣∣
ρ=σ ′ = 0. (A.52)

Because L is negative, there is a unique solution φ − φ̃ to this problem. Then, by
standard regularity theory (Evans 2010, Theorem 6.3.5), we have the desired bound.

Appendix B. Asymptotic expansions of basic operations
To build the near-axis code, we need some facts from formal expansions. We let

A, B and C be smooth formal power series of the generic form

A(ρ, θ, s)=
∞∑

n=0

An(θ, s)ρn, (B.1)

and let α ∈R. Here, we explain how we numerically perform the following basic
operations:

(i) multiplication (Appendix B.1), C = AB;

(ii) multiplicative inversion (Appendix B.2), B = A−1;

(iii) differentiation with respect to ρ (Appendix B.3), B = (dA/dρ);

(iv) exponentiation (Appendix B.4), B = eαA;

(v) power (Appendix B.5), B = Aα;

(vi) composition (Appendix B.6), A(ρ̃, θ̃ , φ) where
(
B C

)T = (
ρ̃ cos θ̃ ρ̃ sin θ̃

)T
;

(vii) series inversion (Appendix B.6), find the inverse coordinate transformation
C (i) of the transformation B(i), i.e.(

C (1)(B(1)(x, y, s), B(2)(x, y, s), s)
C (2)(B(1)(x, y, s), B(2)(x, y, s), s)

)
=
(

x
y

)
. (B.2)

We find that these operations build upon each other, with multiplication, ρ-
differentiation and series composition being the main building blocks of other, more
complicated algorithms.

B.1 Multiplication
The most basic problem is that of (matrix) multiplication. Let C be the solution to

C = AB. (B.3)

Via simple matching of orders, we find that

Cn(θ, s)=
n∑

m=0

Am(θ, s)Bn−m(θ, s). (B.4)
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B.2 Inversion
Now, instead consider the problem of finding the (matrix) inverse

B = A−1. (B.5)

It is easier to write this in terms of the problem

AB = I. (B.6)

So, using (B.4), we have

n∑
m=0

Am Bn−m =
{

I, n = 0,
0, n > 0.

(B.7)

Assuming A0 is invertible, an iterative method for finding Bn is

Bn =
{

A−1
0 , n = 0,

−B0

(∑n
m=1 Am Bn−m

)
, n > 0.

(B.8)

B.3 ρ Derivatives
Let

B = dA

dρ
. (B.9)

Then, we have

B =
∞∑

n=0

n Anρ
n−1, (B.10)

or
Bn = (n + 1)An+1. (B.11)

B.4 Exponentiation
A more complicated series operation is scalar exponentiation (see Knuth 1997).

We would like to find
B = eαA. (B.12)

Taking a derivative with respect to ρ, we find

dB

dρ
= deαA

dA

dA

dρ
,

= αeαA dA

dρ
,

= αB
dA

dρ
. (B.13)

Now, we can write out the multiplication using (B.4) and (B.11), giving

(n + 1)Bn+1 = α

n∑
m=0

(m + 1)Am+1 Bn−m, (B.14)

https://doi.org/10.1017/S0022377825000388 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000388


42 M. Ruth, R. Jorge and D. Bindel

where B0 = eαA0 . From this, we have

Bn =
{

eαA0, n = 0,
α

n

∑n−1
m=0(m + 1)Am+1 Bn−1−m, n > 0.

(B.15)

Note that through exponentiation and inversion, we can obtain any trigonometric
or hyperbolic trigonometric function. For instance, we have

sin A = I meiA, (B.16)

and
sechA = 2

(
eA + e−A

)−1
. (B.17)

As a more detailed example, consider the problem of simultaneously computing
sin(A) and cos(A). Using α = iω in (B.15), we find

cos(ωA)n + i sin(ωA)n =

⎧⎪⎪⎨
⎪⎪⎩

cos(ωA0)+ i sin(ωA0), n = 0,

−∑n−1
m=0

ω(m+1)
n

Am+1 sin(A)n−1−m

+ i
∑n−1

m=0
ω(m+1)

n
Am+1 cos(A)n−1−m, n > 0.

(B.18)

From this, we can work with only real-valued series via the formulae

cos(A)n =
{

cos(A0), n = 0,

−∑n−1
m=0

ω(m+1)
n

Am+1 sin(A)n−1−m, n > 0,
(B.19)

sin(A)n =
{

sin(A0), n = 0,∑n−1
m=0

ω(m+1)
n

Am+1 cos(A)n−1−m, n > 0.
(B.20)

B.5 Power
Now, we take a power α �= 1 of a series:

B = Aα. (B.21)

Assuming A0 �= 0, we have B0 = Aα
0 at leading order. At higher orders, we take the

derivative with respect to ρ to find

dB

dρ
= αAα−1 dA

dρ
. (B.22)

Multiplying both sides against A, we find

A
dB

dρ
− αB

dA

dρ
= 0. (B.23)

Term by term, we have

n−1∑
j=0

( j + 1)An−1− j B j+1 − α( j + 1)Bn−1− j A j+1 = 0. (B.24)
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This gives

Bn = 1
n A0

(
nαAn B0 +

n−2∑
j=0

(
j + 1

)(− An−1− j B j+1 + αBn−1− j A j+1

))
. (B.25)

By substituting j → n − j − 2, we reorder the right sum to find

Bn = 1
n A0

(
nαAn B0 +

n−2∑
j=0

(
α(n − j − 1)− ( j + 1)

)
Bj+1 An− j−1

)
. (B.26)

B.6 Composition
Series composition is an important operation for changing coordinates. Consider

that A = A(x, y, s), where x = R cos� and y = R sin�. We would like to compose
this with the functions B(ρ, θ) and C(ρ, θ) as A(B,C, s), where B and C replace
the Cartesian cross-section coordinates x and y. We note that this is preferable
to composing with the polar coordinates R and �, as there are valid non-analytic
transformations in these coordinates that keep A analytic. For this transformation,
we assume that B0 = C0 = 0, i.e. there is no constant offset. We present the details
for numerical Fourier series composition (4.1), but equivalent expressions could be
used for other forms.

The main observation we make for series composition is that if we can compute
the basis functions

�mn(ρ, θ, s)= R(ρ, θ, s)mF2n−m(�(ρ, θ, s)), (B.27)

then the composition is simply

A(B,C, s)=
∞∑

m=0

m∑
n=0

Amn(s)�mn(ρ, θ, s), (B.28)

where the multiplication in s can be performed in spatial coordinates. So, the major-
ity of the work is to find �mn, with the added perk that once the basis is found,
further series compositions are faster.

To find the basis, we first notice that

�00 = 1, �10 = R cos�= C, �11 = R sin�= B. (B.29)

Then, further functions can be found by using angle-sum identities in the cosine case
(m/2� n � m + 1)

�m+1,n = Rm+1 cos((2n − m − 1)�),

= Rm+1 cos((2(n − 1)− m)�) cos(�)− Rm+1 sin((2(n − 1)− m)�) sin(�),
=�m,n−1�11 −�m,m−n+1�10, (B.30)

and the sine case (0� n <m/2)

�m+1,n = Rm+1 sin((m + 1 − 2n)�),

= Rm+1 sin((m − 2n)�) cos(�)+ cos((m − 2n)�) sin(�),
=�mn�11 +�m,m−n�10. (B.31)
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B.7 Series inversion
Consider that we know the (Cartesian) flux coordinates (B(1)(x, y, s),

B(2)(x, y, s))= (X, Y )= (R cos�, R sin�) and we want to know how to represent
a function A(ρ, θ, s) in terms of R and �. For this, we would use the series compo-
sition step presented in the previous section, but we need to obtain ρ and θ in terms
of R and �, i.e. we need (C (1)(X, Y, s),C (2)(X, Y, s))= (x, y)= (ρ cos θ, ρ sin θ),
where (

C (1)(B(1), B(2), s)
C (2)(B(1), B(2), s)

)
=
(

x
y

)
. (B.32)

This is a step that is necessary if we have a series represented in direct coordinates,
and we want to represent it in indirect (flux) coordinates.

We will solve this equation iteratively, assuming that we are using the real Fourier
form (4.1). At leading order (assuming C (i)

0 = B(i)
0 = 0), we have(

C (1)
11 C (1)

10

C (2)
11 C (2)

10

)(
B(1)

11 B(1)
10

B(2)
11 B(2)

10

)(
x
y

)
=
(

x
y

)
(B.33)

or (
C (1)

11 C (1)
10

C (2)
11 C (2)

10

)
=
(

B(1)
11 B(1)

10

B(2)
11 B(2)

10

)−1

. (B.34)

For the next orders, we note that we can compute C (i)
<m+1(B

(1), B(2), s) using the
composition formula, where we have chosen Cm so this is identity up to order m + 1.
Substituting this into (B.32), we have(

C (1)
m+1

(
ρB(1)

1 , ρB(2)
1 , s

)
C (2)

m+1

(
ρB(1)

1 , ρB(2)
1 , s

)
)

= −
((

C (1)
<m+1(B

(1), B(2), s)
)

m+1(
C (2)
<m+1(B

(1), B(2), s)
)

m+1

)
. (B.35)

If we build a basis �mn from B(i)
1 (see (B.27) and the following procedure) where

�mn =
∞∑

k=0

k∑
�=0

�mnklρ
kFk−2�(θ), (B.36)

the update can be expanded in index-notation as

m+1∑
�=0

C (i)
m+1,��m+1,�,m+1,n = −(C (1)

<m+1(B
(1), B(2), s)

)
m+1,n

. (B.37)

Then, by inverting the matrix ��n =�m+1,�,m+1,n onto the right-hand side, we have
the update for C (i)

m+1.
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