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On Set Theoretically and Cohomologically
Complete Intersection Ideals

Majid Eghbali

Abstract. Let (R,m) be a local ring and a be an ideal of R. The inequalities

ht(a) ≤ cd(a,R) ≤ ara(a) ≤ l(a) ≤ µ(a)

are known. It is an interesting and long-standing problem to determine the cases giving equality.
Thanks to the formal grade we give conditions in which the above inequalities become equalities.

1 Introduction

Throughout this note, R is a commutative Noetherian ring with identity and a is an
ideal of R. The smallest number of elements of R required to generate a up to radical
is called the arithmetic rank, ara(a) of a. Another invariant related to the ideal a is
cd(a,R), the so-called cohomological dimension of a, defined as the maximum index
for which the local cohomology module Hi

a(R) does not vanish.
It is well known that ht(a) ≤ cd(a,R) ≤ ara(a). If ht(a) = ara(a), then a is called

a set-theoretic complete intersection ideal. Determining set-theoretic complete inter-
section ideals is a classical and long-standing problem in commutative algebra and
algebraic geometry. Many questions related to an ideal a being a set-theoretic com-
plete intersection are still open. See [15] for more information.

Recently, there have been many attempts to investigate the equality cd(a,R) =
ara(a) (see e.g., [2,3,14] and their references), for certain classes of squarefree mono-
mial ideals, but the equality does not hold in general (cf. [23]). However, in many
cases, this question is open and many researchers are still working on it.

Hellus and Schenzel [12] defined an ideal a to be a cohomologically complete
intersection if ht(a) = cd(a,R). In the case where (R,m) is a Gorenstein local ring,
they gave a characterization of cohomologically complete intersections for a certain
class of ideals.

One more concept we will use is the analytic spread of an ideal. Let (R,m) be
a local ring with infinite residue field. We denote by l(a) the Krull dimension of⊕∞

n=0(an/anm), called the analytic spread of a. In general,

(1.1) ht(a) ≤ cd(a,R) ≤ ara(a) ≤ l(a) ≤ µ(a),
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where µ(a) is the minimal number of generators of a. Burch [7] proved what is now
known as Burch’s inequality that l(a) ≤ dim R − (minn depth R/an). It should be
noted that the stability of depth R/an was established by Brodmann (cf. [4]). The
equality l(a) = dim R − (min depth R/an) has been studied from several points of
view by many authors, and deep results have been obtained in recent years by the
assumptions that the associated graded ring of a is Cohen–Macaulay; see for instance
[11, Proposition 3.3] or [21, Proposition 5.1] for detailed information.

The outline of this paper is as follows. In Section 2, we give a slight generalization
of a result of Cowsik and Nori in order to turn some of the inequalities in (1.1) into
equalities (cf. Theorem 2.8 ). According to the results given in Section 2, one can see
that the equality ht(a) = cd(a,R) has a critical role in clarifying the structure of a. In
Sections 3 and 4 we have focused our attention on this equality.

2 Formal Grade and Depth

Throughout this section, (R,m) is a commutative Noetherian local ring. Let a be an
ideal of R and M be an R-module. For an integer i, let Hi

a(M) denote the i-th local co-
homology module of M. We have the isomorphism of Hi

a(M) to lim−→n Exti
R(R/an,M)

for every i ∈ Z; see [5] for more details.
Consider the family of local cohomology modules {Hi

m(M/anM)}n∈N . For every
n there is a natural homomorphism Hi

m(M/an+1M) → Hi
m(M/anM) such that the

family forms a projective system. The projective limit Fi
a(M) := lim←−nHi

m(M/anM) is
called the i-th formal local cohomology of M with respect to a (cf. [18]; see also [1]
and [10] for more information).

For an ideal a of R , the formal grade, fgrade(a,M), is defined as the index of the
minimal nonvanishing formal cohomology module, i.e.,

fgrade(a,M) = inf
{

i ∈ Z : lim
←−n

Hi
m(M/anM) 6= 0

}
.

The formal grade plays an important role throughout this note. We first recall a
few remarks.

Remark 2.1 Let a denote an ideal of a local ring (R,m). Let M be a finitely gener-
ated R-module.

(a) fgrade(a,M) ≤ dim R̂/(aR̂, p) for all p ∈ Ass M̂ (cf. [18, Theorem 4.12]).
(b) In the case where M is a Cohen–Macaulay module, fgrade(a,M) = dim M −

cd(a,M) (cf. [1, Corollary 4.2]).

A key point in the proof of the main results in this section is the following propo-
sition.

Proposition 2.2 Let a be an ideal of a d-dimensional local ring (R,m). Then the
inequality

min
n

depth R/an ≤ fgrade(a,R)

holds.
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Proof Put minn depth R/an := t , then for each integer n, Hi
m(R/an) = 0 for all

i < t . This implies that lim←−Hi
m(R/an) = 0 for all i < t . Then the definition of the

formal grade implies that minn depth R/an ≤ fgrade(a,R).

The above inequality may be strict, as the next example demonstrates.

Example 2.3 Let k be a field and R = k[|x, y, z|] denote the formal power series
ring in three variables over k. Put a := (x, y) ∩ (y, z) ∩ (x, z). One can easily see
that depth R/a = 1. However, a2 = (x, y)2 ∩ (y, z)2 ∩ (x, z)2 ∩ (x2, y2, z2), and
consequently depth R/a2 = 0.

On the other hand, lim←−n
H0

m(R/an) = 0. Then we have fgrade(a,R) = 1.

In view of the above results we state the next definition.

Definition 2.4 Let a be an ideal of a local ring (R,m). We define a nonnegative
integer dg(a) to measure the distance between fgrade(a,R) and the lower bound of
depth R/an, n ∈ N, i.e.,

dg(a) := fgrade(a,R)−min
n

depth R/an.

It should be noted that the stability of depth R/an was established by Brodmann
(cf. [4]).

Inspired by Remark 2.1, fgrade(a,R) ≤ dim(R̂/aR̂ + p) for all p ∈ Ass R̂. It can be
a suitable upper bound to control the formal grade of a and minn depth R/an as well.
It is clear that if Rad(aR̂ + p) = mR̂ for some p ∈ Ass R̂, then minn depth R/an =
fgrade(a,R) = 0 and consequently dg(a) = 0.

Example 2.5 Let R = k[[x, y, z]]/(xy, xz) and a := (x, y). One can see that
fgrade(a,R) = 0, and consequently dg(a) = 0.

Proposition 2.6 Let a be an ideal of a Cohen–Macaulay local ring (R,m).

(i) If dg(a) = 0, then the following are equivalent:

(a) ht(a) = cd(a,R);
(b) a is a set-theoretic complete intersection ideal.

(ii) Suppose that dg(a) = 1. Then l(a) 6= dim R − minn depth R/an if and only if
cd(a,R) = ara(a) = l(a).

Proof (i) In the case where dg(a) = 0, the inequalities

ht(a) ≤ cd(a,R) ≤ l(a) ≤ dim R− fgrade(a,R)

hold. Moreover, if R is a Cohen-Macaulay ring, then in light of Remark 2.1(b) and
(1.1), one has

ht(a) ≤ cd(a,R) ≤ l(a) ≤ dim R−min
n

depth R/an

= dim R− fgrade(a,R) = cd(a,R).
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By virtue of (1.1) and in conjunction with the above equalities, statements (a) and
(b) are equivalent.

(ii) Assume that l(a) 6= dim R−minn depth R/an. Then, by assumption, we have

cd(a,R) ≤ ara(a) ≤ l(a) < dim R−min depth R/an

= dim R− fgrade(a,R) + 1 = cd(a,R) + 1.

Now the claim is clear.
For the reverse implication, assume that l(a) = dim R−min depth R/an. If this is

the case, then l(a) = dim R−fgrade(a,R)+1 = cd(a,R)+1, which is a contradiction.

Example 2.7 Let R = k[[x1, x2, x3, x4]] be the formal power series ring over a field k
in four variables and let a = (x1, x2)∩ (x3, x4). Clearly one can see that dim R/a = 2,
fgrade(a,R) = 1, and by virtue of [19, Lemma 2] minn depth R/an = 1, i.e., dg(a) =
0. On the other hand, ht(a) = 2 and cd(a,R) = 3. By a Mayer–Vietoris sequence,
one can see that H3

a (R) 6= 0, that is ara(a) = 3 = l(a).

For a prime ideal p of R, the n-th symbolic power of p is denoted by p(n) =
pnRp ∩ R. The following theorem, gives conditions at which the required equality
(1.1) is provided.

Theorem 2.8 Let p be a prime ideal of a Cohen–Macaulay local ring (R,m) with
fgrade(p,R) ≤ 1.

(i) If p(n) = pn, for all n, then l(p) = cd(p,R) = dim R− 1.
(ii) If l(p) = dim R − 1 and ht(p) = cd(p,R), then p is a set-theoretic complete

intersection.

Proof (i) As p(n) = pn, for all n, all of prime divisors of pn are minimal for
all n, that is depth R/pn > 0. On the other hand, Proposition 2.2 implies that
min depth R/pn = fgrade(p,R) = 1, so the claim follows. To this end, note that

cd(p,R) ≤ l(p) ≤ dim R− 1 = dim R− fgrade(p,R) = cd(p,R).

(ii) As fgrade(p,R) ≤ 1 and R is a Cohen–Macaulay local ring, we have
cd(p,R) = dim R− fgrade(p,R) ≥ dim R− 1. Hence,

dim R− 1 ≤ cd(p,R) = ht(p) ≤ l(p) = dim R− 1.

It follows that p is a set-theoretic complete intersection ideal.

Since fgrade(p,R) ≤ dim R/p, one can get the following corollary of Theorem 2.8.

Corollary 2.9 Let p be a one-dimensional prime ideal of a Cohen-Macaulay local
ring (R,m). Then (i) implies (ii), and (ii) implies (iii).

(i) p(n) = pn, for all n.
(ii) l(p) = dim R− 1.
(iii) p is a set-theoretic complete intersection.
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It should be noted that with some extra assumptions, Cowsik and Nori [9, Propo-
sition 3] have shown that the conditions in Corollary 2.9 are equivalent for p gener-
ated by an R-sequence.

3 Case One: The Ring of Positive Characteristic

Let p be a prime number and R a commutative Noetherian ring of characteristic p.
The Frobenius endomorphism of R is the map ϕ : R → R, where ϕ(r) = rp. Let
a = (x1, . . . , xn) be an ideal of R. Then a[pe] is the e-th Frobenius power of a, defined

by a[pe] = (xpe

1 , . . . , x
pe

n )R. Then anpe ⊆ a[pe] ⊆ ape

; i.e., a[pe] and ape

have the same
radical (cf. [6]).

Peskine and Szpiro [17, Chap. 3, Proposition 4.1] proved that for a regular local
ring R of characteristic p > 0 and an ideal a of R, if R/a is a Cohen–Macaulay ring,
then ht(a) = cd(a,R). Below (see Proposition 3.2), we give a generalization of their
result.

Remark 3.1 Let (R,m) be a regular local ring of characteristic p > 0. Then the
following inequality holds:

depth R/a ≤ fgrade(a,R) ≤ dim R/a.

Proof It is known that fgrade(a,R) ≤ dim R/a (cf. Section 2). By what we have
seen above, depth of R/a is the same as the depth of every iteration of it. Put l :=
depth R/a = depth R/a[pe] for each integer e. Since Hi

m(R/a[pe]) is zero for all i < l,
so is

lim
←−

Hi
m(R/ape

) = lim
←−

Hi
m(R/a[pe])

(cf. [18, Lemma 3.8]). Hence, l ≤ fgrade(a,R). Therefore we get the desired inequal-
ity.

Note that in the case where R is a Cohen–Macaulay local ring (not necessarily of
positive characteristic), then in the light of Remark 2.1(b), the following statement
holds:

ht(a) = cd(a,R) if and only if fgrade(a,R) = dim R/a.

Proposition 3.2 Let (R,m) be a regular local ring of characteristic p > 0. Then the
following statements are equivalent:

(i) R/a is a Cohen–Macaulay ring;

(ii) ht(a) = cd(a,R) and Hs
m(R/a[pe+1]) → Hs

m(R/a[pe]) is epimorphism for each
integer e, where s := depth R/a.

Proof (i)⇒ (ii) As R/a is a Cohen–Macaulay ring, by assumption every iteration of
R/a is again a Cohen–Macaulay ring. Hence, Hi

m(R/a[pe]) is zero for all i < dim R/a,
then so is

lim
←−

Hi
m(R/a[pe]) ∼= lim

←−
Hi

m(R/ape

)

for all i < dim R/a (cf. [18, Lemma 3.8]).
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By virtue of [18, Remark 3.6], one can see that Hdim R−i
a (R) = 0 for all dim R− i >

ht(a), i.e., ht(a) = cd(a,R). The second part of the claim follows by Hartshorne’s
non-vanishing Theorem, since depth R/a = dim R/a.

(ii) ⇒ (i) Assume that ht(a) = cd(a,R). Then fgrade(a,R) = dim R/a. If we
can prove that depth R/a ≥ fgrade(a,R), we are done. Consider the epimorphism of
nonzero R-modules for each e:

Hs
m(R/a[pe+1])→ Hs

m(R/a[pe])→ 0.

Hence, [22, Lemma 3.5.3] implies that fgrade(a,R) ≤ depth R/a. This completes the
proof.

4 Case Two: The Polynomial Ring

Throughout this section, assume that R = k[x1, . . . , xn] is a polynomial ring in n
variables x1, . . . , xn over a field k. Let S := k[x1, . . . , xn](x1,...,xn) be the local ring and
let I be a square free monomial ideal of S.

Proposition 4.1 Let S and I be as above. Then the following are true.

(i)
Hi

I(S) = 0⇐⇒ lim←−t
Hn−i

m (S/It ) = 0⇐⇒ Hn−i
m (S/I) = 0,

for a given integer i. In particular, S/I is a Cohen–Macaulay ring if and only if

lim←−t
H j

m(S/It ) = 0 for all j < n− ht I.
(ii) If ht(a) = cd(a,R), then R/a is a Cohen–Macaulay ring, provided that a is a

squarefree monomial ideal of R.

Proof
(i) By virtue of [18, Remark 3.6], Hi

I(S) = 0 if and only if lim
←−t

Hn−i
m (S/It ) = 0.

On the other hand, by virtue of [20, Corollary 4.2], we have Hi
I(S) = 0 if and only if

Hn−i
m (S/I) = 0. The second assertion follows easily from the first one.
(ii) Without loss of generality, we may assume that R is a local ring with the

graded maximal ideal m = (x1, . . . , xn). Now the claim follows by part (i).

The next result provides as a consequence an upper bound for the depth S/I l for
each l ≥ 1. Moreover, the second part of the next result was proved by Lyubeznik
[16].

Corollary 4.2 Let R, S and I be as above.

(i) depth S/I = fgrade(I, S) holds.
(ii) Assume that a is a squarefree monomial ideal in R. Then pdR R/a = cd(a,R).

Proof Assume that fgrade(I, S) := t . Then for all i < t we have lim←−t Hi
m(S/It ) = 0

if and only if Hi
m(S/I) = 0 (cf. Proposition 4.1). Hence, t ≤ depth S/I. On the

other hand, assume that depth S/I := s. Again using Proposition 4.1 we have s ≤
fgrade(I, S), as desired.

In order to prove the second part, note that both pdR R/a and cd(a,R) are finite.
Since pd R/a = pd Rm/aRm and cd(a,R) = cd(aRm,Rm), with m = (x1, . . . , xn),
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then without loss of generality, we may assume that R is a local ring with the ho-
mogeneous maximal ideal m = (x1, . . . , xn). Now, by the Auslander–Buchsbaum
formula and the first part, one can get the claim. To this end note that

pdR R/a = depth R− depth R/a = dim R− fgrade(a,R) = cd(a,R).

In the light of Corollary 4.2, it is noteworthy to mention that for a squarefree
monomial ideal I, we have

depth S/I l ≤ fgrade(I, S)

for all positive integers l. Notice that depth S/I l ≤ depth S/I for all positive integers
l; see for example [13].

Corollary 4.3 Let R = k[x1, . . . , xn] be a polynomial ring in n variables x1, . . . , xn

over a field k and a be a squarefree monomial ideal of R. Then the following are equiva-
lent:

(i) Hi
a(R) = 0 for all i 6= ht a, i.e., a is cohomologically a complete intersection ideal;

(ii) R/a is a Cohen–Macaulay ring.

Proof Since each of the modules in question is graded, the issue of vanishing is
unchanged under localization at the homogeneous maximal ideal of R. Hence, the
claim follows by Proposition 4.1.

Let x1, . . . , xn be the image of the regular sequence x1, . . . , xn in S. Let k, l ≤ n be
arbitrary integers. For all i = 1, . . . , k set Ii := (xi1 , . . . , xiri

), where the elements xi j ,
1 ≤ j ≤ ri ≤ l are from the set {x1, . . . , xn} and a squarefree monomial ideal I is as
follows

I = I1 ∩ I2 ∩ · · · ∩ Ik,

where the set of basis elements of the Ii are disjoint.

Proposition 4.4 Let I be as above. Then cd(I, S) =
∑k

i=1 ri−k+1, and in particular,
dg(I) = 0.

Proof By virtue of [19, Lemma 2], depth S/I = depth S −
∑k

i=1 ri + k − 1. As
depth S/I = fgrade(I, S) = dim S − cd(I, S) (cf. Corollary 4.2 and Remark 2.1), the
claim is clear.
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